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Abstract

We introduce a class of �exible conditional
probability models and techniques for classi�
�cation	regression problems
 Many existing
methods such as generalized linear models
and support vector machines are subsumed
under this class
 The �exibility of this class
of techniques comes from the use of kernel
functions as in support vector machines� and
the generality from dual formulations of stan�
dard regression models


� Introduction

Support vector machines ��� are linear maximummar�
gin classi�ers exploiting the idea of a kernel function

A kernel function de�nes an embedding of examples
into �high or in�nite dimensional� feature vectors and
allows the classi�cation to be carried out in the feature
space without ever explicitly representing it
 While
support vector machines are non�probabilistic classi�
�ers they can be extended and formalized for prob�
abilistic settings��� �recently also ���� which is the
topic of this paper
 We can also identify the new for�
mulations with other statistical methods such as Gaus�
sian processes���� ��� �


We begin by de�ning the class of kernel regression
techniques for binary classi�cation� establish the con�
nection to other methods� and provide a practical mea�
sure for assessing the generalization performance of
these methods
 Subsequently� we extend some of these
results to sequential Bayesian estimation
 Finally� we
will provide a theorem governing general kernel refor�
mulation of probabilistic regression models


� Binary classi�cation

We start by considering Gaussian process classi�ers����
� that are fully Bayesian methods
 To this end� de�

�ne a set of zero mean jointly Gaussian random vari�
ables fZig� one corresponding to each example Xi to
be classi�ed
 Assume that the covariance Cov�Zi� Zj�
between any two such variables is given by a kernel
function K�Xi� Xj� of the corresponding examples �we
need the kernel function to be strictly positive de�nite
in this case�
 Assume further that the binary �� la�
bels fSig are generated with probabilities P �SijZi� �
��SiZi� where� for example� ��z� � ��� e�z��� is the
logistic function
 The example vectors fXig thus spec�
ify the Gaussian variables fZig that are subsequently
passed through transfer functions to yield probabilities
for the labels
 Similar Z�s �and hence similar labels�
are assigned to input vectors that are �close� in the
sense of the kernel
 Given now a training set of labels
fSig and example vectors fXig we can� in principle�
compute the posterior distribution of the latent Gaus�
sian variables fZig and use it in assigning labels for
yet unknown examples� the Gaussian variable Zt cor�
responding to the new example Xt is correlated with
fZig constrained by the �xed training labels
 The cal�
culations involved in this procedure are� however� typ�
ically infeasible


Instead of trying to maintain a full posterior distribu�
tion over the latent Gaussian variables� we may set�
tle for the MAP con�guration f �Zig� and assign the
label to a new example according to the probabil�
ity P �Stj �Zt� � ��St �Zt�
 De�nition � below gives a
generic formulation of this procedure in terms of dual
parameters
 The dual parameters arise from Legen�
dre transformations of concave functions �see e
g
 ����
the concave functions in this case are the classi�cation
losses logP �Stj �Zt�
 We consider such transformations
in more detail later in the paper


De�nition � We de�ne a kernel regression classi�er
to be any classi�cation technique with the following
properties� �� given any example vector X� the method
predicts the �maximum probability� label �S for X ac�



cording to the rule

�S � sign

�
TX
i��

�iSiK�X�Xi�

�
���

where �S�� X��� � � � � �ST � XT � are labeled training ex�
amples� the �i are non�negative coe�cients� and the
kernel function K�Xi� Xj� is positive �semi�� de�nite�
	� The coe�cients f�tg weighting the training exam�
ples in the classi�cation rule are obtained by maximiz�
ing

J��� � �
�

�

X
i�j

�i�jSiSjK�Xi� Xj� �
X
i

F ��i� ���

subject to � � �i � �� where the potential function
F ��� is continuous and concave �strictly concave when�
ever the kernel is only positive semi�de�nite��

The assumptions of positive �semi��de�nite kernel
function and �strictly� concave and continuous po�
tential functions F ��� are introduced primarily to en�
sure that the solution to the maximization problem
is unique
 In practice this solution can be achieved
monotonically by successively updating each individ�
ual coe�cient �i from

�

��i
J��� � �

X
j

�jSiSjK�Xi� Xj� �
�

��i
F ��i� � � ���

while holding the other �j � for j �� i� �xed
 The solu�
tions to these one dimensional equations are relatively
easy to �nd for any kernel method in our class
 The
optimal solution is characterized by these �xed point
equations� reminiscent of mean �eld equations


Let us now consider a few examples to gain more in�
sight into the nature and generality of this class
 Sup�
port vector machines�� for example� can be seen as
realizations of this class simply by setting F ��t� � �t
�see e
g
 ����
 Generalized linear models�� can be also
seen as members of this class
 For example� consider
a logistic regression model� where the probabilities for
the labels are given by P �SijXi� �� � ��Si�

TX� and
the prior distribution P ��� over the parameters is a
zero mean Gaussian
 With each input vector Xi we
can associate a new variable Zi � �TXi that de�nes
the conditional probability for the label Si through

�Note that in support vector machines a bias term is
added explicitly into the classi�cation rule and treated sep�
arately in the optimization problem� In our formulation the
bias term is realized indirectly through an additive con�
stant in the kernel� where the magnitude of this constant
speci�es the prior variance over the bias term� Put into
our setting� support vector machines assume a �at prior
and consequently the two de�nitions agree in so far as the
constant term in the kernel is appropriately large�

P �SijXi� �� � ��SiZi� as above
 Under the Gaussian
prior assumption� these new variables fZig are jointly
Gaussian random variables with a covariance matrix
given by

Cov�Zi� Zj� � Ef ��TXi���
TXj� g � XT

i �Xj ���

where � is the prior covariance of �
 The logistic
regression problem is thus equivalent to a particular
Gaussian process classi�er
 Consequently� MAP es�
timation of the parameters in the logistic regression
models corresponds exactly to the MAP Gaussian pro�
cess formulation �De�nition ��
 The relation between
MAP estimation and De�nition � is presented more
generally later in the paper �Theorem ��
 We note
here only that the potential function F ��� in the lo�
gistic regression case is the binary entropy function
F ��� � �� log��� � �� � �� log�� � �� �see Appendix
E� and the kernel function is the covariance function
Cov�Zi� Zj� given by Eq
 ���


��� The kernel function

Here we discuss a few properties of the kernel func�
tion as given in Eq
 ���
 First� interpreting the kernel
function as a covariance function for a Gaussian pro�
cess classi�er suggests treating it as a similarity func�
tion
 In this sense� examples are similar when their
associated labels would be a priori �positively� corre�
lated
 A simple inner product is not necessarily a good
measure of similarity since� for example� it is possible
for an example to be more similar to another example
than to itself
 Typically� however� the kernel function
is not a simple inner product between the examples
but an inner product between feature vectors corre�
sponding to the examples
 For example� in Eq
 ���

the feature vectors are �X � �
�

�X 
 Any valid ker�
nel function can be reduced to a simple inner product
between �possibly in�nite dimensional� feature vectors
���� ��
 When the feature mapping is non�linear� the
kernel can de�ne a reasonable similarity measure in
the original example space even though this property
doesn�t hold in the feature space


In going from logistic regression models to Gaussian
process classi�ers the prior covariance matrix � over
the original parameters � plays a special role in spec�
ifying the inner product in Eq
 ���
 In other words�
the prior covariance matrix directly changes the met�
ric in the example space
 This metric is� however� the
inverse of what is natural in the parameter space� i
e
�
���
 This inverse relation follows from a more general
property of Riemannian metrics in dual coordinate sys�
tems


If we change the kernel function� our assumptions con�
cerning the examples �similarity� metric properties�



will change
 This suggests that the modeling e�ort in
these classi�ers should go into �nding an appropriate
kernel function
 We can� for example� derive kernels
from generative probability models �� or directly en�
code invariances into the kernel function ��


��� A measure of generalization error

De�nition � provides us with a large class of techniques
with relatively few restrictions on e
g
 the choice of
the kernel function
 To compensate this �exibility we
must provide means for assessing their generalization
performance in order to be able to limit the complex�
ity of the �nal classi�er to an appropriate level
 Our
emphasis here is on practical measures


Support vector machines attain sparse solutions in the
sense that most of the coe�cients �i are set to zero
as a result of the optimization
 This computationally
attractive property also yields a direct assessment of
generalization ���� the expected ratio of the number
of non�zero coe�cients to the number of training ex�
amples bounds the true generalization error
 The ap�
plicability of this measure is limited to support vector
machines� however� since the probabilistic classi�ers
generally do not attain sparse solutions �making the
sparsity measure vacuous�
 The lemma below provides
a more general cross�validation measure that applies to
all kernel classi�ers under De�nition ��

Lemma � For any training set D � fSt� Xtg
T
t�� of

examples and labels and for any kernel regression
classi�er from De�nition � the leave�one�out cross�
validation error estimate of the classi�er is bounded
by

�

T

TX
t��

step

�
��StX

i ��t

�iSiK�X�Xi�

�
A ���

where f�tg are the coe�cients optimized in the pre�
sense of all the training examples�

The step functions in the lemma count the number of
times the sign of the training label St disagrees with
the sign of the prediction based on the other exam�
ples
 If we include the missing tth terms in the predic�
tions� the error estimate would reduce to the training
error �cf
 the prediction rule in De�nition ��
 The
cross�validation error bound is thus no more costly to
evaluate than the training error and obviously requires
no retraining
 As for the accuracy of this bound we
note that in case of support vector machines� it can be
shown that the result above provides a slightly better
estimate than the sparsity bound�
 The proof of the
lemma is given in Appendix A


�The sparsity bound can be� in principle� de�ned in

� Bayesian formulation

In the above MAP formulation the kernel function it�
self remains �xed� regardless of the nature or the num�
ber of training examples
 This is in contrast with a full
Bayesian approach where the kernel function would
have to be modi�ed based on observations
 More pre�
cisely� in the above formulation it is the prior distribu�
tion over the parameters � that speci�es the �simple�
inner product between the examples� in a Bayesian
setting� roughly speaking� this inner product would be
de�ned in terms of the posterior distribution
 While
the full Bayesian approach is unfortunately not feasi�
ble in most cases� it is nevertheless possible to employ
approximate methods for updating the kernel function
through observations


Several approaches have already been proposed for this
purpose� including the use of Laplace approximation
in the context of multi�class regression ��� and the
use of variational methods ��
 Our approach is rather
complementary in the sense that we provide a recur�
sive variational approach that avoids the need for si�
multaneously optimizing a large number of variational
parameters as discussed in ��


��� Bayesian logistic regression

Here we consider a Bayesian formulation of the logistic
regression models
 We start by brie�y reviewing the
variational approximation technique �� that enables
us to estimate the posterior distribution over the pa�
rameters in these models
 We subsequently extend this
approximate solution for use with kernel functions


In Bayesian estimation we can� in principle� update
the parameter distribution sequentially� one example
at a time�

P ��jDt� � P �StjXt� ��P ��jDt��� ���

� ��St�
TXt �P ��jDt��� ���

where Dt � f�S�� X��� � � � � �St� Xt�g is the set of exam�
ples observed up to the time t
 We constrain the above
general formulation a bit by assuming that the prior
distribution P ��� � P ��jD�� over the parameters is a
multivariate Gaussian with possibly arbitrary covari�
ance structure
 While such assumption does not by
itself make the sequential updating feasible in terms
being able to represent the true posterior distribution�
it nevertheless opens the way to a closed form approx�
imate solution
 To this end we employ a variational

terms of �essential� support vectors rather than just those
with non�zero coe�cients� This would improve the esti�
mate but would also make it much more di�cult to evalu�
ate in practice�



transformation of the logistic function as given by�


��z� � ���� exp
�
�z � ���� � �����z� � ���

�
���

� ���z� ���

where � is an adjustable parameter known as the vari�
ational parameter
 Inserting the approximation ���z�
back into the sequential update equation Eq
 ��� we
obtain

P ��jDt� � ���St�
TXt �P ��jDt��� ����

Since the transformed logistic function ����� is a
quadratic function of its argument in the exponent�
it follows that any Gaussian prior P ��jDt��� will re�
sult in a Gaussian posterior in this approximation

The mean and the covariance of this Gaussian can be
related to the mean and the covariance of the prior
through

�t � �t�� � ct�t��XtX
T
t �t�� ����

	t � �t� �
��
t��	t�� �

�

�
StXt � ����

where the subindex t referes to the set of examples
Dt � f�S�� X��� � � � � �St� Xt�g observed so far
 The
variational parameter de�nes the extent to which the
covariance matrix is updated� i
e
� it de�nes ct�

ct �
��t

� � ��tXT
t �t��Xt

����

where �t � tanh��t�������t�
 We would like to set the
variational parameter �t so as to improve the accuracy
of the approximation
 A suitable error measure for the
approximation can be derived from the fact that the
variational transformation introduces a lower bound

The approximation in fact yields a lower bound on the
likelihood of the conditional observation StjXt

P �StjXt�Dt��� �

Z
��St�

TXt �P ��jDt���d�

�

Z
���St�

TXt �P ��jDt���d�

����

where the last integral can be computed in closed form

The maximization of the bound yields a �xed point
equation for �t ���

��t � XT
t �tXt � �	Tt Xt�

� ����

that can be solved iteratively �note that both �t and
	t depend on �t through the equations above�


�Other approximations are possible as well such as the
Laplace approximation �	
�

��� Kernel extension

In order to be able to employ kernels in the context
of these Bayesian calculations we have to reduce all
the calculations with the input examples Xk to ap�
propriate inner products
 Such inner products can be
then replaced with arbitrary positive semi�de�nite ker�
nels
 As before� we de�ne the a priori inner product
as XT

k ��Xk� which is valid since the prior covariance
is positive de�nite
 For simplicity� we assume that the
mean of the Gaussian prior over the parameters is zero

Consequently� it remains to show that the sequential
updating scheme can be carried out by only referring
to the value and not the form of the inner products
K�Xk� Xk�� � XT

k ��Xk� 


We adopt the following compact representations of the
posterior mean and the time dependent kernel�

Kt�k� k
�� � XT

k �tXk� ����

Mt�k� � 	Tt Xk ����

It will become clear later that it is necessary to con�
sider only predictive quantities� i
e
 those for which
k� k� 
 t
 We would like to now express the update
equations for the mean and the covariance in terms
of these new quantities
 Consider �rst Eq
 ����� the
covariance update formula
 Prior and post multiply�
ing the update formula with XT

k and Xk� � respectively�
and using the de�nition for Kt�k� k

�� given above� we
obtain�

Kt�k� k
�� � Kt���k� k

��� ctKt���k� t�Kt���t� k
��

����

Thus the Kt�k� k
�� satisfy a simple recurrence rela�

tion that connects them back to the a priori kernel
K��k� k

�� � XT
k ��Xk� 
 We can also derive a recur�

rence relation forMt�k� in a similar way �see Appendix
B� giving

Mt�k� � Mt���k�

�ct

�
St
��t

�Mt���t�

�
Kt���t� k� ����

Since M��k� � � by assumption �i
e
 the prior mean
is zero�� the values Mt�k� can be rooted in the kernels
and the observed labels St


Finally� both Kt and Mt iterations make use of the
coe�cients ct�

ct �
��t

� � ��tKt���t� t�
����

and �t � tanh��t�������t� which need to be speci�ed

In other words� we need to be able to optimize the
variational parameter �t in terms of Kt��� Mt��� and



St alone in order to preserve the recurrence relations

Starting from the �xed point equation Eq
 ���� we get
�the details can be found in Appendix C�

��t � XT
t �tXt � �	Tt Xt�

� ����

� Kt�t� t� �Mt�t�
� ����

�

	
ct
��t



Kt���t� t� �	

ct
��t


�	
Mt���t� �

�

�
StKt���t� t�


�

����

Note that �t appears on the right hand side only in
the expressions ct����t�
 It follows that to optimize
�t in the process of absorbing a new observation we
only need to know Mt���t�� Kt���t� t� and St
 How
these values can be computed and stored e�ciently is
illustrated in the next section


��� E�cient implementation

Due to the form of the dependencies in the recurrence
relations forKt andMt� we can carry out the computa�
tions in the sequential estimation procedure e�ciently
and compactly
 To show this we proceed inductively

Assume therefore that we have a lower diagonal matrix
Kt and a vectorMt of the form

Kt �

�
�����

K���� ��
K���� �� K���� ��
K���� �� K���� ��








 � � �
K��t� �� K��t� �� � � � Kt���t� t�

�
������

Mt �
�
M���� M���� � � � Mt���t�

�T
����

which we have constructed from the already observed
examples up to �St� Xt�
 To absorb a new training ex�
ample �St��� Xt��� or to evaluate the predictive prob�
ability of St�� given Xt��� we need to be able to op�
timize the variational parameter �t�� associated with
this example
 Consider therefore the �xed point equa�
tion ����
 The required quantities are Kt�t� �� t� ��
andMt�t��� corresponding to the next diagonal com�
ponent of the K matrix and the next component of
the M vector� respectively
 We start computing these
quantities by �lling in the next row of K with the ker�
nels K��t��� k�� k � f�� � � � � t��g
 Consequently� we
can apply the recurrence relation Eq
 ���� to replace
these values �except the �rst one� with K��t � �� k��
k � f�� � � � � t � �g
 Note� however� that we must re�
place these values in the reverse order� from k � t� �
down to k � �� due to the dependence structure in the
recurrence relation
 Following in this manner we can
�ll in Kt��t� �� k� for k � ft� � �� � � � � t� �g and ulti�
mately get Kt�t��� t��� in time O�t����
 Mt�t���
can be computed even more directly by starting from

M��t � �� � � and using the recurrence relation Eq

���� to giveM��t����M��t���� � � � �Mt�t��� in time
O�t�


� Generic kernel regression

De�nition � and some of the discussion in the previous
sections can be generalized to a multi�class or to a
continuous response setting


Theorem � Let P �Y jX� �� be a conditional proba�
bility model over a discrete or continuous variable
Y � where X is a �nite real vector of inputs and
� � f��� ��� � � � � �mg denotes the parameters� Assume
that �� P �Y jX� �� � P �Y jZ�� Z�� � � � � Zm� where Zi �
�Ti X
 	� For all values y of Y � logP �yjZ�� Z�� � � � � Zm�
is a jointly concave continuously di�erentiable func�
tion of Z�� Z�� � � � � Zm 
 �� The prior distribution over
the parameter vectors f�ig is a zero mean multivari�
ate Gaussian with a block diagonal covariance matrix
� � diag������� � � � ��m�� Then� given a training set
D � fYt� Xtg

T
t��� the conditional probability model cor�

responding to the maximum a posteriori �MAP� set of
parameters has the form

P �Y jX� �MAP � � P �Y j �Z�� �Z�� � � � � �Zm� ����

where �Zi �
PT

t�� �t�i�X
T
t �iX�� the coe�cients � �

f�t�ig attain the unique maximum value of

J��� � �
�

�

X
i�t�t�

�t�i�t��i�X
T
t �iXt��

�

TX
t��

Ft��t��� �t��� � � � � �t�m�� ����

and the potential functions Ft��t��� �t��� � � � � �t�m� are
the Legendre transformations of the classi�cation loss
functions logP �YtjZ�� Z�� � � � � Zm��

Ft��t��� �t��� � � � � �t�m� �

min
Z������Zm

�X
i

�t�iZi � logP �YtjZ�� Z�� � � � � Zm�

�

����

The rather strong assumption of continuous dif�
ferentiability can be easily relaxed to piece�wise
di�erentiability�
 The proof is given in Appendix D


The Legendre transformations in the theorem are easy
to compute in typical cases� e
g
� when the conditional

�Piece�wise continuously di�erentiable functions can be
obtained as limits of continously di�erentiable functions�



probabilities P �Y jZ�� Z�� � � � � Zm� are softmax func�
tions �i
e
� eZY �

P
y e

Zy �
 We have listed a few ex�

amples in Appendix E
 The inner products �XT
t �iX�

appearing in the dual formulation can be replaced with
any valid kernel function Ki�Xt� X� such as the Gaus�
sian kernel�
 Note that De�nition � makes stronger as�
sumptions about the Legendre transformations and	or
the positive de�niteness of the kernel function so as to
end up with a unique solution in terms of the new pa�
rameters �
 For the purpose of prediction the possible
non�uniqueness is immaterial since the resulting pre�
dictive distribution remains unique
 Concavity of the
objective function also assures us that the solution is
relatively easy to �nd in all cases


� Discussion

In any classi�cation	regression problem it is necessary
to select an appropriate representation of examples as
well as the model and parameter estimation method

In this paper we have focused on the latter� deriving
a generic class of probabilistic regression models and
a parameter estimation technique that can make use
of arbitrary kernel functions
 This allows greater �ex�
ibility in specifying probabilistic regression models of
various complexity levels without fear of local minima

We can also obtain quick assessments of their general�
ization performance
 The issue concerning the choice
of the kernel function or� equivalently� the representa�
tion of examples� has been addressed elsewhere ��� �
and
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A Proof of the cross�validation bound

Consider the case where the tth example is removed
from the training set D
 In this case we would op�
timize the remaining coe�cients �D�t � f�igi ��t by
maximizing

JD�t��D�t� � �
�

�

X
i�j ��t

�i�jSiSjK�Xi� Xj� �
X
i��t

F ��i�

By our assumptions� the solution is unique and we de�
note it by �tD�t
 Consider now adding the tth example
back into the training set� the optimal setting of the
coe�cients �D�t will naturally change as they need
to be optimized jointly with �t
 To assess the e�ect of
adding the tth example� we perform the joint optimiza�
tion as follows
 First� we �x �t to the value that would
have resulted from the joint optimization� call it ��t 

The remaining coe�cients �D�t can be obtained from
a reduced objective function where all the terms depe�
dending solely on �t are omitted
 Thus when the tth



example is included� the remaining coe�cients �D�t
are obtained by maximizing

JD��D�t� � JD�t��D�t�� ��tSt
X
i��t

�iSiK�Xt� Xi� ����

Let ��D�t be the maximizing coe�cients
 Clearly

JD��
�
D�t� � JD��

t
D�t� ����

Expanding each side according to eq
 ���� and rear�
ranging terms we get

��t St
X
i ��t

�tiSiK�Xt� Xi�

� ��tSt
X
i��t

��i SiK�Xt� Xi�

�JD�t��
t
D�t�� JD�t��

�
D�t�

� ��t St
X
i��t

��i SiK�Xt� Xi� ����

where we have used the fact that JD�t��
t
D�t� �

JD�t��
�
D�t� as the coe�cients �tD�t maximize

JD�t���
 Whenever ��t 
 �� we can divide the �rst and
the last term of Eq
 ���� by ��t and get the desired re�
sult� the sign of the �rst term indicates the correctness
of the cross�validation prediction �positive is correct��
its lower bound� the last term� is the one that appears
in the lemma and uses only the coe�cients optimized
in the presense of all the training examples


Note �nally that when ��t � � the tth example is not
used in the classi�er and the lemma holds trivially


B Recurrence relation for Mt�k�

Let us start by simplifying the posterior mean update�

	t � ��t�� � ct�t��XtX
T
t �t����

�� ���t��	t�� �
�

�
StXt � ����

� 	t�� � ct�X
T
t 	t��� �t��Xt

�
�

�
St��� ctX

T
t �t��Xt� �t��Xt ����

� 	t�� � ct�X
T
t 	t��� �t��Xt

�
�

�
St

ct
��t

�t��Xt ����

� 	t�� � ct

�
St
��t

�XT
t 	t��

�
�t��Xt ����

where we have used the fact that ��� ctX
T
t �t��Xt� �

ct����t� �see the de�nition of ct given in the text�
 In
terms ofMt�k� � 	Tt Xk� we can write the above result
as

Mt�k� � Mt���k� � ct

�
St
��t

�Mt���t�

�
Kt���t� k�

����

C Fixed point equation for �t

The objective here is to transform the �xed point equa�
tion

��t � Kt�t� t� �Mt�t�
� ����

into the form that explicates the dependence of the
right hand side on �t
 Applying the recurrence relation
for Kt�t� t� we �nd

Kt�t� t� � Kt���t� t�� ctKt���t� t�
� ����

� Kt���t� t���� ctKt���t� t�� ����

�
ct
��t

Kt���t� t� ����

where Kt���t� t� is independent of �t �depends only on
��� � � � � �t���
 Similarly� we expand Mt�t��

Mt�t� � Mt���t� � ct

�
St
��t

�Mt���t�

�
Kt���t� t�

����

� Mt���t���� ctKt���t� t��

�
ctSt
��t

Kt���t� t� ����

�
ct
��t

Mt���t� �
ct
��t

St
�
Kt���t� t� ����

�
ct
��t

	
Mt���t� �

�

�
StKt���t� t�



����

where the only dependence on �t is now in ct����t�

Combining these two results gives

��t �

	
ct
��t



Kt���t� t� �	

ct
��t


�	
Mt���t� �

�

�
StKt���t� t�


�

����

D Proof of Theorem �

Given a training set of examples D � fYt� Xtg
T
t��� the

MAP parameter solution is obtained by maximizing
the following penalized likelihood function

J��� �

TX
t��

logP �YtjZt��
�

�

mX
i��

�Ti �
��
i �i ����

where the �rst term is the log�probability of the ob�
served labels and the second comes from the log of the
block�diagonal Gaussian prior distribution
 We have
omitted the terms that do not depend on the param�
eters � and overloaded our previous notation in the
sense that Zt now refers to the vector fZt��� � � � � Zt�mg

The solution �MAP is unique since J��� is strictly con�
cave in � �owing to the log�prior term�




Now� by our assumptions logP �YtjZt� is jointly con�
cave continuously di�erentiable function of Zt and thus
by convex duality �see e
g
 ��� we get� there exists a
function Ft with the same properties such that

logP �YtjZt� � min
�t

�
mX
i��

�t�iZt�i � Ft��t�

�
����

Ft��t� � min
Zt

�
mX
i��

�t�iZt�i � logP �YtjZt�

�

����

where �t � f�t��� � � � � �t�mg
 These transformations
are also known as Legendre transformations and the
function Ft is known as the dual or conjugate function

Note that the conjugate function Ft of logP �YtjZt�
is in general di�erent for each distinct Yt� hence the
additional subindex


Let us now introduce these transformations into the
objective function J��� and de�ne J��� �� as

J��� �� �

TX
t��

�X
i

�t�iZt�i � Ft��t�

�
�

�

�

mX
i��

�Ti �
��
i �i

����

where we have dropped the associated mimizations
with respect to the � coe�cients
 Clearly� J��� �
min� J��� ��
 The lemma below establishes the con�
nection to Theorem ��

Lemma � The objective function in Theorem � is
concave and is given by the negative of

J��� � max
�

J��� �� ����

This result implies that maximizing the objective
function in Theorem � is equivalent to computing
min� J��� in our notation here


Proof� Recall that Zt�i � �Ti Xt which implies that for
any �xed setting of �� J��� �� is a quadratic function
of the parameters �
 We can therefore solve for the
maximizing ��

��i �
X
t

�t�i�iXt ����

and substitute this back into J��� �� giving

J��� �
�

�

X
i�t�t�

�t�i�t��i�X
T
t �iXt���

X
t

Ft��t� ����

which is indeed the negative of the objective function
appearing in the theorem as desired
 It remains to
show that J��� is convex �or that �J��� is concave�

Note �rst that the conjugate functions Ft are concave

and thus all �Ft terms are convex
 Also the �rst term
in Eq
 ���� corresponds to

�

�

X
i

���i �
T���i ���i � ����

where each ��i is a linear function of �� and hence
the above term is also convex
 Without additional
assumptions J��� may not be strictly convex and
thus the solution in terms of � may not be unique

min� J��� and the associated �� remain unique� how�
ever
 �

Since� by de�nition� maximizing J��� means evaluat�
ing max�min� J��� �� and because we have just shown
that min�max� J��� �� corresponds to maximizing the
objective function in Theorem �� it remains to show
that �max�min� � min�max�� for J��� ��
 We state
this as a lemma�

Lemma � For J��� �� given by Eq� ����

max
�

min
�

J��� �� � min
�

max
�

J��� �� ����

Proof� Let �� be the unique maximum of J��� �the
left hand side above�
 �� is also �nite�
 Since in gen�
eral for any �xed ��

max
�

min
�

J��� �� � min
�

max
�

J��� �� ����

� max
�

J��� ��� ����

it su�ces to show that there exists �� such that
J���� � max� J��� �

��


To this end� the �niteness of �� together with the con�
tinuous di�erentiability assumption guarantees that

��t � rZt logP �YtjZt� j���� ����

exists for all t
 It can be shown that these are also
the minimizing coe�cients in our Legendre transfor�
mations
 Consequently� the minimum is attained�

J���� � min
�

J���� �� � J���� ��� ����

At this minimum r�J��
�� �� j���� vanishes and thus

r�J��� j����� r�J��� �
�� j����� � ����

The last equality gives su�cient guarantees that for
our choice of ��

max
�

J��� ��� � J���� ��� ����

Comparing this with Eq
 ���� completes the proof
 �

�The concavity of the log�conditional probabilities im�
plies that they have sublinear asymptotics� Thus in the
maximization the quadratic prior term will eventually
dominate�



E Examples

Here we provide a few examples of how to compute the
Legendre transformations
 Consider �rst the logistic
regression case�

logP �StjZ� � log��StZ� ����

where Z � �TX 
 Treating this log�probability as a
function of Z� we can �nd its Legendre transformation�

Ft��� � max
Z
f�Z � log��StZ� g ����

To perform this maximization� we take the derivative
with respect to Z and set it to zero�

�� St���StZ� � � ����

which implies that Z � �St log�St������ St��
 Sub�
stituting this Z back into Eq
 ����� we get

Ft��� � ��St log
St�

�� St�
� log��� St�� ����

� H�St�� ����

where H��� is the binary entropy function
 If� in ad�
dition� we make a change of variables �t � St�� then
Ft��t� � H��t� and is no longer a function of t
 If
the objective function in Theorem � is expressed in
terms of these new �t� it reduces to the form given in
De�nition �


These calculations can be generalized to the multi�
class setting where the probability model is the soft�
max�

logP �YtjZ�� � � � � Zm� � ZYt � log

mX
i��

eZi ����

with Zi � �Ti X 
 The Legendre transformation is ob�
tained from

Ft��� � max
Z������Zm

�X
i

�iZi � ZYt � log

mX
i��

eZi

�
����

Similarly to the two class case we �nd the maximum
by setting the derivaties with respect to Zi to zero�

�i � �Yt�i �
eZiP
j e

Zj
� � ����

�note that this implies that
P

i �i � ��
 The solution
for the Z variables is unique up to a constant�

Zi � log��Yt�i � �i� � constant� ����

Substituting these back into the transformation gives

Ft��� � �

mX
i��

��Yt�i � �i� log��Yt�i � �i� ����

which is� not surprisingly� the entropy function
 A
change of variables �t�i � �Yt�i��i simpli�es the trans�
formation� Ft��t� � H��t� and F no longer depends
on t
 In the new variables �t � f�t��� � � � � �t�mg� the
objective function in Theorem � reduces to

J��� � �
�

�

X
i�t�t�

��Yt�i � �t�i���Yt� �i � �t��i��X
T
t �iXt��

�
X
t

H��t� ����

We can also rewrite the predictive probability model
in Theorem � in terms of the new �t�i and get

P �Y j �Z�� � � � � �Zm� �
e
	ZYP
i e

	Zi
����

where �Zi �
P

t��Yt�i � �t�i��X
T
t �iX�



