
Solving Hidden-Mode Markov Decision Problems

Samuel Ping-Man Choi Nevin L. Zhang

Department of Computer Science,

Hong Kong University of Science and Technology,

Clear Water Bay, Hong Kong, China

fpmchoi,lzhang,dyyeungg@cs.ust.hk

Dit-Yan Yeung

Abstract

Hidden-Mode Markov decision processes

(HM-MDPs) are a novel mathematical frame-

work for a subclass of nonstationary rein-

forcement learning problems where environ-

ment dynamics change over time according

to a Markov process. HM-MDPs are a spe-

cial case of partially observable Markov de-

cision processes (POMDPs), and therefore

nonstationary problems of this type can in

principle be addressed indirectly via existing

POMDP algorithms. However, previous re-

search has shown that such an indirect ap-

proach is ine�cient compared with a direct

HM-MDP approach in terms of the model

learning time. In this paper, we investigate

how to solve HM-MDP problems e�ciently

by using a direct approach. We exploit the

HM-MDP structure and derive an equation

for dynamic programming update. Our equa-

tion decomposes the value function into a

number of components and as a result, sub-

stantially reduces the amount of computa-

tions in �nding optimal policies. Based on

the incremental pruning and point-based im-

provement techniques, a value iteration algo-

rithm is also implemented. Empirical results

show that the HM-MDP approach outper-

forms the POMDP one several order of mag-

nitude with respect to both space require-

ment and speed.

1 INTRODUCTION

Hidden-mode Markov decision processes (HM-MDPs)

[5, 4] are a novel mathematical framework for a sub-

class of nonstationary reinforcement learning prob-

lems. Unlike traditional nonstationary reinforcement

learning in which a slowly-varying environment dy-

namics is assumed, HM-MDPs are for a speci�c type of

nonstationary problems where environmental changes

are restricted to a �xed number of modes. Each mode

speci�es a Markov decision process (MDP) and shares

the same state and action spaces

1

, but transition and

reward functions may di�er according to the mode. In

addition, modes are not directly observable and evolve

over time according to a Markov process. The notion

of modes seems to be applicable to many real-world

tasks. For instance, one may use two modes to model

bull and bear markets in the stock trading environ-

ment. For tra�c control problems [6, 11], one may use

three modes to model morning rush hours, evening

rush hours, and non-rush hours.

HM-MDPs are a generalization of MDPs. In addition

to standard MDPs, HM-MDPs allow their model pa-

rameters to change probabilistically. This feature is

important as many real-world tasks are nonstationary

in nature and cannot be represented accurately by a

�xed model. Nevertheless, HM-MDPs also add uncer-

tainty in the model parameters and makes the prob-

lem, in general, more di�cult than the MDP ones.

HM-MDPs are a specialization of POMDPs; they can

always be converted into POMDPs with an augmented

state space. While POMDPs are superior in terms of

representational power, HM-MDPs require fewer pa-

rameters, and is a more natural formulation for certain

types of nonstationary problems. This simpli�cation

has shown signi�cant speedup in model learning [5, 4].

This paper considers how HM-MDP problems can be

solved e�ciently. Obviously, a straightforward ap-

proach is to convert an HM-MDP problem into a

POMDP one and then applies existing POMDP al-

gorithms to �nd a solution. Nevertheless, POMDP

algorithms do not exploit the special structures of HM-

MDPs. Herein, we derive a Bellman equation and de-

velop a value iteration algorithm speci�cally for HM-

1

This condition can always be satis�ed by taking the

union of the state (or action) spaces of di�erent modes.



MDPs. The resultant algorithm is akin to the POMDP

approach in concept but more e�cient. In particular,

the HM-MDP Bellman equation decomposes the value

function into a number of components and as a result,

substantially reduces the amount of computations in

�nding optimal policies. Our empirical results show

that the new algorithm signi�cantly outperforms the

POMDP value iteration with respect to both space

requirement and speed.

2 Background

2.1 HM-MDP FORMULATION

This section gives the formulation of HM-MDPs.

Mathematically, an HM-MDP consists of a set of

modes M, a set of states S, and a set of actions A.

Initially, an agent resides in a mode m 2 M and a

state s 2 S with the probabilities of �

m

and  

s

re-

spectively. Unlike in POMDP, states in HM-MDPs are

fully observable. In other words, the agent knows ex-

actly which state it is current in. The current mode,

on the contrary, is not directly observable and must

be inferred through observing the state transitions.

Based on the obtained information, the agent selects

an action a from A. After executing the action, the

agent is subsequently transferred to another state s

0

,

according to the probability of y

m

(s; a; s

0

) prescribed

by the state transition function, and receives a reward

r

m

(s; a) 2 <. At the same time, the mode changes

from m to n with the probability of x

mn

given by the

mode transition function

2

. The goal of the agent is

to determine a policy which maximizes the sum of the

discounted rewards in the long run.

Since HM-MDPs are special POMDPs, an HM-

MDP can always be converted into a POMDP by

the transformation shown in Figure 1. Note that

S

0

;A

0

; T

0

;R

0

;Z

0

;Q

0

;�

0

are the state space, action

space, state transition function, reward function, ob-

servation space, observation function, and prior state

probabilities of the resulting POMDP respectively.

2.2 INDIRECT POMDP APPROACH

Now we brie
y review the POMDP approach, as this

concept is also essential for solving HM-MDP prob-

lems. Among the POMDP algorithms [1], this paper

is only concerned with the value iteration method.

Solving a POMDP problem means to prescribe actions

(i.e., policy) for every possible situation (i.e., state) in

order to optimize the total discounted rewards. Since

2

Herein, we only consider the case that the mode transi-

tions are independent of the chosen actions. In the general

case, the mode transitions can also be a function of actions.

POMDP = (S

0

;A

0

; T

0

;R

0

;Z

0

;Q

0

;�

0

)

S

0

=M�S; Z

0

= S; A

0

= A

T

0

: fp

ij

(a) = x

mn

� y

m

(s; a; s

0

)

where i = hm; si 2 S

0

; j = hn; s

0

i 2 S

0

g

Q

0

: fq

i

(a; s

0

) =

�

1 : if s = s

0

0 : if s 6= s

0

where i = hm; si 2 S

0

; s

0

2 Z

0

g

R

0

: fr

i

(a) = r

m

(s; a) j i = hm; si 2 S

0

g

�

0

= f�

0

i

= �

m

�  

s

j i = hm; si 2 S

0

g

Figure 1: Reformulating HM-MDP into POMDP

the states of POMDP are not perceivable, the learn-

ing agent must decide its action according to the past

observations and actions. Nevertheless, it could be a

burden to keep the whole observation and action se-

quence over a long period of time. Fortunately, this

sequence can be summarized by a probability distri-

bution over every possible state without sacri�cing the

optimal solution. The distribution is represented by a

�xed-size real-value vector of the dimension jSj called

belief state. Hence, the optimal policy becomes a map-

ping from the belief state space to the action space.

The optimal policy can be obtained through the opti-

mal value function, which satis�es the following Bell-

man equation:

V (b) = max

a2A

(r(b; a) + 


X

z2Z

P(zjb; a)V (b

a

z

)) (1)

where V (�) is the value function; b denotes the belief

state; 
 denotes the discount factor; a is an action in

the action space A; z is an observation in the observa-

tion space Z ; r(b; a) is the immediate reward obtained

by taking the action a at the belief state b; b

a

z

is the

next belief state given the action a and observation

z. By using the above equation, the value iteration

method iteratively improves the value function until

the convergence is reached. Each iteration is known

as a dynamic-programming update.

Exact POMDP algorithms compute the optimal value

function for all possible belief states. Since there are

in�nite number of belief states, it is infeasible to repre-

sent the value function in table form. Fortunately, the

value function is piecewise linear and convex (PWLC),

and thus can be represented by a set of vectors [12].



It turns out that the dynamic-programming update in-

volves how to generate a new set of vectors based on

the old set. This vector set grows exponentially in size

but fortunately, many vectors in the set are redundant.

Incremental pruning [2] is an e�cient technique that

prunes the vector set incrementally so as to minimize

the number of operations required. Together with the

point-based improvement technique [13], incremental

pruning is currently known as the most e�cient algo-

rithm for solving POMDP problems.

3 SOLVING HM-MDPS

While developing independently, our work happens to

be very similar to the one proposed by Hauskrecht

and Fraser [7], where they brie
y described how the

decomposition method can be used for dynamic be-

lief networks with both partially and fully observable

states. The idea is then applied to the diagnosis of the

ischemic heart disease along with others such as ap-

proximation method. However, they do not address in

depth how the decomposition method alone can save

the computation and the space requirements in �nding

the optimal solution. In this paper, we elaborate their

idea in the context of HM-MDPs and evaluate the ap-

proach analytically and empirically. We also demon-

strate how the modi�ed Bellman equation can be easily

extended to existing value iteration algorithms.

Now let us examine why the POMDP approach is not

an ideal choice for solving HM-MDPs. Suppose an

HM-MDP and its equivalent POMDP are given. Re-

call thatM and S are respectively the sets of modes

and states in HM-MDPs. According to Figure 1, a be-

lief state b of the equivalent POMDP is a probability

distribution of the current state over the set M� S.

Such a belief state can have up to jMj � jSj non-zero

entries so long as

P

hm;si2M�S

b(hm; si) = 1. This

representation is in fact more general than necessary,

because an HM-MDP only has uncertainty in modes

but not states. In other words, an HM-MDP belief

state should only contain at most jMj number of non-

zero entries. Lemma 1 proves this statement.

Lemma 1 A valid belief state of an HM-MDP-

equivalent POMDP has at most jMj non-zero entries.

Proof: Recall that the belief state updating equation

for POMDP is the following:

b

a

z

(s

0

) =

P(zjs

0

; a)

P

s2S

P(s

0

js; a)b(s)

P(zjb; a)

; (2)

given a belief state b, an action a, and the resulting

observation z.

Due to the HM-MDP to POMDP transformation, the

hidden states of an HM-MDP-equivalent POMDP can

always be written as hm; si. By substituting hm; si for

s, Equation 2 is rewritten as:

b

a

z

(hm; si

0

) =

P(zjhm; si

0

; a)

P

hm;si

P(hm; si

0

jhm; si; a)b(hm; si)

P(zjb; a)

(3)

Since P(zjhm; si

0

; a) equals 1 if z = s and 0 otherwise,

there are exactly jMj number of P(zjhm; si; a) giving

the value of 1. It follows that b

a

z

has at most jMj non-

zero entries.

2

Lemma 1 implies that not every belief state in the

equivalent POMDP is relevant to the original prob-

lem. Many of them simply never occur. From this

point of view, the indirect approach unnecessarily en-

larges the belief state space and complicates the prob-

lem. A more compact representation is thus needed to

eliminate the redundant belief states. Exploiting the

fact that states in HM-MDPs are fully observable, we

introduce a representation that satis�es the constraint

P

m2M

b(hm; si) = 1; 8 s 2 S.

3.1 BELIEF STATE FOR HM-MDPS

The new belief state for HM-MDP contains two com-

ponents: the current state and the belief mode. The

current state, as usual, is a discrete variable that keeps

the state observed at the current time instance. This

is the belief mode that keeps the probability distribu-

tion of the current mode over every possible mode. A

belief mode is denoted as �; the set of all possible be-

lief modes is referred to as the belief mode space and

denoted by B

m

.

Lemma 2 The belief mode plus the current state is

su�cient for representing any valid belief state in an

HM-MDP-equivalent POMDP.

Proof: A valid belief state of an HM-MDP-

equivalent POMDP must satisfy the belief state up-

dating rule (Equation 3). Lemma 1 shows that the

non-zero entries are corresponding to di�erent modes

but the same observable state. There is no informa-

tion loss by keeping only the mode distribution and

the current state, because a belief mode can always

be converted back into its original belief state. Hence,

the lemma follows. 2

Lemma 2 implies that the belief mode and the current

state is su�cient statistics for HM-MDPs. In other

words, the optimal solution can be obtained based on

these two pieces of information without the need of

referring to the past state transitions.



3.2 UPDATING BELIEF MODES

Let s and � be the current state and the current belief

mode respectively. Suppose an action a is executed

and afterwards, the environment moves to state s

0

.

According to the Bayes rule and the basic probabil-

ity theory, the next belief mode �

0

is then given by

�

0

(m

0

) =

P

m

P(m

0

jm)P(s

0

js;m; a)�(m)

P

m

0

;m

P(m

0

jm)P(s

0

js;m; a)�(m)

(4)

This equation signi�es the dependency of �

0

on the

action a and state s

0

; the next belief mode �

0

is also

denoted as �

a

s

0

. The numerator computes the likeli-

hood of the next mode, and the denominator is the

normalization constant. This constant is sometimes

written as P(s

0

js; �; a), and can be interpreted as the

probability of reaching state s

0

when executing action

a in state s and belief mode �.

3.3 OPTIMAL POLICIES FOR HM-MDPS

At each point in time, the agent chooses an action

based on the current state and the current belief mode.

An HM-MDP policy prescribes an action for each pair

of state and belief mode. In other words, the policy is

a mapping from S � B

m

to A.

The value function V

�

of a policy � is a real-valued

function over S � B

m

. For any state s and any belief

mode �, V

�

(s; �) is the expected discounted long term

rewards the agent obtains if it acts according to policy

� starting from state s and belief mode �. Formally,

it is given by

V

�

(s; �) = E

s;�

[

1

X

t=0




t

r

t

];

where r

t

is the reward obtained at time t and 
 is the

discount factor in the range of [0; 1).

Following the proofs in POMDPs and MDPs, it could

be shown that there exists a policy �

�

such that

V

�

�

(s; �) � V

�

(s; �)

for any state s, any belief mode � and any other policy

�. Such a policy is called an optimal policy, and its

associated value function is called the optimal value

function, denoted by V

�

. For any positive number �,

a policy � is �-optimal if

V

�

(s; �) + � � V

�

(s; �);

for any state s and any belief mode �.

3.4 VALUE ITERATION

Value iteration is a standard algorithm for �nding �-

optimal policies for both MDPs and POMDPs. It

could also be easily adapted to HM-MDPs. Now

the new HM-MDP equation can be derived from the

POMDP by using the belief mode � and the current

state s. By substituting the belief mode and the cur-

rent state for the belief state, Equation 1 is rewritten

into the following:

V (�; s) = max

a2A

(r(�; s; a) + 


X

s

0

2S

P(s

0

j�; s; a)V (�

0

; s

0

))

where �

0

; s

0

denotes the next belief mode given the

action a and the resultant state s

0

; the reward r(�; s; a)

can be computed by

P

m2M

r

m

(s; a) � �(m). Since s

is a discrete variable, one can view the value function

V as jSj number of value functions of the belief mode

vectors. Now the above equation becomes:

V

s

(�) = max

a2A

(

X

m2M

r

m

(s; a)�(m)+


X

s

0

2S

P(s

0

j�; s; a)V

s

0

(�

0

))

(5)

Note that the decomposed value functions are still

piecewise linear and convex (PWLC), since a subset

of PWLC function is also PWLC. One can now use

Equation 5 for the value iteration to compute the op-

timal value function for each observable state in S.

De�ne an operator T that takes a value function V

and returns another value function TV as follows:

TV

s

(�) = max

a

[r(s; �; a) + 


X

s

0

P(s

0

js; �; a)V

s

0

(�

0

)]: (6)

where r(s; �; a) =

P

m

r

m

(s; a)�(m) is the expected

immediate reward for taking action a in state s and

belief mode �. For a given value function V , a policy

� is said to be V -improving if

�(s; �) = argmax

a

[r(s; �; a) + 


X

s

0

P(s

0

js; �; a)V

s

0

(�

0

)] (7)

for all belief modes �.

3.5 BELLMAN RESIDUAL FOR

HM-MDPS

Value iteration is an algorithm for �nding �-optimal

policies. It starts with an initial value function V

0

and iterates using the following formula:

V

n

= TV

n�1

:

It is known (e.g. [10, Theorem 6.9]) that V

n

converges

to V

�

as n goes to in�nity. Value iteration terminates

when the Bellman residual max

b

jV

n

(�) � V

n�1

(�)j



falls below �(1��)=2�. When it does, a V

n

-improving

policy is �-optimal. As the HM-MDP value function

contains a number of components, the Bellman resid-

ual for HM-MDP becomes:

max

�2B;s2S

jV

n

s

(�)� V

n�1

s

(�)j

Since there are in�nitely many possible belief states,

value iteration cannot be carried explicitly. Fortu-

nately, it can be carried out implicitly. In the next

section, we discuss how the implicit value iteration can

be achieved by manipulating a set of vectors.

4 IMPLICIT VALUE ITERATION

4.1 TECHNICAL AND NOTATIONAL

CONSIDERATIONS

We �rst introduce several technical concepts and no-

tations. Following the convention of POMDP, we call

functions over the mode space vectors. Lower case

Greek letters � and � are used to refer to vectors

whereas script letters V and U , sometimes with sub-

scripts, are used to refer to sets of vectors. In contrast,

the upper letters V and U always refer to value func-

tions, i.e., functions over S � B

m

. Note that a belief

mode is a function over the mode space and hence can

be viewed as a vector.

Suppose W and X are two sets of vectors over the

mode space. The cross sum of W and X is a new set

of vectors given by

W�X = f�+�j�2W ; �2Xg:

It is evident that the cross sum operation is commu-

tative and associative. Hence one can talk about the

cross sum of more than two sets of vectors. For any

constant 
, 
W = f
�j� 2 Wg.

A subset W

0

of W is a covering of W if for any belief

mode �, there exists �

0

2W

0

such that

�

0

� � � � � b

for all �2W . Here �

0

�� and ��� are the inner products

of �

0

and � with �. A covering of W is parsimonious

if none of its proper subsets are coverings of W . If W

is a parsimonious covering of itself, we say that W is

parsimonious.

The witness region R(�;W) of a vector �2W with

respect to W is subsets of B

m

respectively given by

R(�;W) = f�2B

m

j� � �>�

0

� � 8�

0

2Wnf�gg;

It can be proved [9] thatW has a unique parsimonious

covering and is given by

PC(W) = f�jR(�;W) 6= ;g:

A point in R(�;W) is called a witness point for � be-

cause it testi�es to the fact that � is in the parsimo-

nious covering PC(W).

4.2 FINITE REPRESENTATION OF

VALUE FUNCTIONS

Consider a value function V (s; �) and a collection of

sets of vectors fV

s

js 2 Sg. We say that the sets rep-

resent the value function if:

V (s; �) = max

�2V

s

� � �; 8� 2 B

m

;

When this is the case, we say that the value function is

representable by a �nite number of vectors. Note that

if fV

s

js 2 Sg represents a value function, then so does

fPC(V

s

)js 2 Sg. This representation is parsimonious

in the obvious sense.

Unless otherwise speci�ed, from now we assume that

value iteration begins with the 0 value function, i.e.,

the value function that is 0 everywhere. This value

function is obviously representable by a �nite number

of vectors. Together with the following lemma, this

implies all value functions produced during value iter-

ations are representable by a �nite number of vectors.

Lemma 3 Suppose a value function V is represented

by a collection fV

s

0

js

0

2 Sg of sets of vectors. Then

TV is represented by fU

s

js 2 Sg, where

U

s

= [

a

[fr(s;m; a)g � 
(�

s

0

V

s;a;s

0

)];

and V

s;a;s

0

is a set of vectors given by

V

s;a;s

0

= f� j 9 � 2 V

s

0

s.t. 8m 2 M;

�(m) =

X

m

0

�(m

0

)P (m

0

jm)P (s

0

js;m; a) g

This lemma can be proved in a similar way to the

corresponding fact for POMDP (see [14, page 210]).

5 DYNAMIC-PROGRAMMING

UPDATE FOR HM-MDPS

Dynamic-programming update (DPU) refers to the

process of computing a parsimonious representation

of TV from a parsimonious representation fV

s

js 2 Sg

of V . The naive approach to this problem is to �rst

construct the sets U

s

de�ned above and then compute

their parsimonious covering. This approach is ine�-

cient since the size of U

s

is exponential in jSj and jAj.



5.1 INCREMENTAL PRUNING

A more e�cient method called incremental pruning

(IP) is employed here. The basic idea of IP is to in-

terleave cross sums and pruning of extraneous vectors,

so as to reduces the required computations for each

iteration. There exist some variants of the algorithm

[2], but here we consider only the basic version. The

outline of the HM-MDP IP algorithm is given below:

Procedure DP-Update(fV

s

0

js

0

2 Sg)

1. For each s,

2. For each a,

3. V

s;a

 IP(fV

s;a;s

0

js

0

2 Sg).

4. U

s

 PC([

a

[fr

m

(s; a)g

L

V

s;a

])

5. return fU

s

js 2 Sg .

Procedure IP(fW

i

ji = 1; : : : ;mg)

1. Y  W

1

.

2. For i = 2 to m,

3. Y  PC(Y �W

i

):

3. Return Y .

The function DP-Update takes from the input an ar-

ray of vector sets, performs a dynamic-programming

update according to the HM-MDP Bellman equation,

and returns the updated vector sets. There is no dif-

ference between the HM-MDP and the POMDP ver-

sions in the IP procedure. The HM-MDP incremen-

tal pruning algorithm di�ers from the original one

mainly in the dynamic-programming update routine

(DP-Update). The major di�erence would be that a

collection of (rather than a single) value functions are

maintained and indexed by states.

In Equation 1, the summation of the value function for

all observations is very costly. It generates new vectors

exponential to the number of observations (i.e., jVj

jZj

).

Comparing with the POMDP equation, the HM-MDP

one is more e�cient since V

s

0

is a subset of V and

therefore contains much fewer vectors in general.

5.2 POINT-BASED IMPROVEMENT

TECHNIQUE

The point-based improvement (PBI) technique [13] is

an e�cient method for speeding up the value itera-

tion process. The idea behind is similar to that of

the modi�ed policy iteration method. In particular,

PBI approximates the new value function by applying

the backup operator on each vectors in the old value

function. This procedure is repeated until the largest

vector improvement falls below a threshold. PBI can

be incorporated easily into any value-iteration method

and empirical results show that it substantially reduces

the required number of iterations.

For HM-MDPs, one should note that PBI should be

applied to every V

s

for each iteration instead of repeat-

edly on one single function. The complete HM-MDP

PBI algorithm is depicted as follows.

Procedure PBI(fV

s

js 2 Sg):

1. U

s

 V

s

8 s 2 S

2. do f

3. U

0

 ;;W  ;:

4. For s 2 S,

5. For � 2 U

s

; s

0

2 S,

6. �

0

 backup(pt(�), act(�), U

s

0

[W)

7. if �� pt(�) > �

0

� pt(�)

8, �

0

 �

9. else

10. W  W [ f�

0

g

11. pt(�

0

) pt(�)

12. act(�

0

) act(�)

13. U

s

 U

s

[ f�

0

g

14. g while stop(fU

s

g; fU

0

s

gjs 2 S) = false

15. return fPC(U

0

s

[ V

s

)js 2 Sg

PBI takes as input a collection of vector sets and im-

proves them iteratively. The HM-MDP version of PBI

has two additional loops (line 4 and 5) for the current

state s and the next state s

0

. Line 6 constructs a new

vector based on the backup operator. Note that only

a subset of value function (i.e., U

s

0

) is needed. Line

7 to line 12 are the same as the original version, and

pt(�) and act(�) are respectively the witness point and

the action associated with the vector �. Line 14 de-

termines if the PBI process should be repeated. Line

15 computes and returns the parsimonious representa-

tion of the resultant vector sets based on an e�cient

method described in [13].

The termination condition relying on a single improve-

ment is sometimes problematic due to the possible pre-

cision error in solving the linear programs. We there-

fore used a slightly di�erent scheme [8] in our imple-

mentation. In particular, we determine the termina-

tion condition of the recursive improvement call by ex-

amining the average vector improvement. This scheme

is found more robust empirically for many test cases.

6 EMPIRICAL RESULTS

Our experiments were conducted on a number of sim-

pli�ed real-world domains. Table 1 shows the sum-

mary of the tasks. Among them, the �rst three prob-

lems are randomly generated, whereas the fourth and

the last two problems are respectively described in [4]

and [3]. Note that some of these problems are fairly

large in the context of POMDPs, since the number



Table 1: HM-MDP problems

Problem Modes States Actions

Random1 2 2 2

Random2 2 3 3

Random3 2 4 3

Tra�c Light 2 8 2

Sailboat 4 16 2

Elevator 3 32 3

Table 2: Empirical results on solving HM-MDP prob-

lems using POMDP incremental pruning and point-

based improvement

POMDP Approach

Problem

Time Vectors Epochs

Random1 745 1672 10

Random2 446299 28272 8

Random3 >604800 - -

Tra�c Light >604800 - -

Sailboat >604800 - -

Elevator >604800 - -

of hidden states in the corresponding POMDP prob-

lems is equal to the number of observable states multi-

plied by the number of hidden modes. In the elevator

problem, for example, an equivalent POMDP problem

would contain 96 hidden states and 32 observations.

We implemented the HM-MDP IP method together

with the PBI technique, and ran the program on a

SPARC Ultra 2 machine with a time limit of CPU

604800 seconds (7 days) for each task. In the experi-

ments, a discount factor 0.95 and a 0.01-optimal solu-

tion were considered. The PBI termination parameter

was set at 0.01 of the Bellman residual. The CPU

time in seconds (Time), the number of vectors in the

value function (Vectors) and the number of iterations

(Epochs) are reported in Table 2 and 3.

Table 3: Empirical results on solving HM-MDP prob-

lems using HM-MDP incremental pruning and point-

based improvement

HM-MDP Approach

Problem

Time Vectors Epochs

Random1 27 174 10

Random2 41 235 8

Random3 28 163 6

Tra�c Light 48 446 9

Sailboat 1815 1342 10

Elevator 725 3154 8

The HM-MDP approach outperforms the POMDP one

signi�cantly with respect to both time and space. For

the �rst and second problems, the HM-MDP approach

is about 28 times and 10884 times faster than the

POMDP approach respectively. For the rest of the

problems, the POMDP approach simply cannot com-

plete the tasks within the speci�ed time limit.

Figure 2 and 3 show the actual performance of both

algorithms during each iteration. The y-axis is the

estimated policy quality based on the Bellman residual

while the x-axis is the CPU running time in seconds.

Note that both x and y axes are in logarithmic scale.

Each data point plotted in the graph indicates one

iteration of the run. The �gures reveal that the HM-

MDP approach performs consistently better than the

POMDP one, and the performance gain increases with

the number of iterations.

For the space requirement, the number of vectors gen-

erated by the HM-MDP approach is also much smaller

than the POMDP one | only about 10% and 0.8% of

its counterpart in size for the �rst two problems. It

is worth mentioning that the length of vectors in HM-

MDP (i.e., jMj) is also much less than that in POMDP

(i.e., jMj � jSj). This means that the actual saving in

space is even greater in practice.

From the �rst two experiments we conducted, the

number of iterations required for HM-MDP and

POMDP problems are the same. This suggests that

PBI for POMDP problems works as e�ective as for the

HM-MDP problems in terms of reducing the number of

iterations. However, due to the relatively larger value

function, each PBI call typically requires more com-

putational time for the POMDP than the HM-MDP.

0.001

0.01

0.1

1

10

100

0.01 0.1 1 10 100 1000

E
rr

or
 o

f p
ol

ic
y

CPU time in seconds

’HM-MDP Approach’
’POMDP Approach’

Figure 2: The policy quality over time for the Ran-

dom1 problem.



0.001

0.01

0.1

1

10

100

0.1 1 10 100 1000 10000 100000 1e+06

E
rr

or
 o

f p
ol

ic
y

CPU time in seconds

’HM-MDP Approach’
’POMDP Approach’

Figure 3: The policy quality over time for the Ran-

dom2 problem.

7 CONCLUSION

We have derived a variant of Bellman equation for solv-

ing HM-MDPs. Since the equation is similar to that of

POMDP, existing POMDP algorithms, such as IP and

PBI, can easily be adopted. In addition, solving HM-

MDPs can directly bene�t from any future advances

in POMDP techniques.

Empirical results verify that the direct HM-MDP ap-

proach is more e�cient than the indirect POMDP ap-

proach. There are two main reasons. First, the dimen-

sion of the vector is signi�cantly reduced from jMj�jSj

to jMj. Second, the most time-consuming part of the

algorithm, namely the cross sum operation, no longer

performs on the whole value function but on a smaller

vector set.

Acknowledgement

This research work is supported by Hong Kong Re-

search Grants Council Grant: HKUST6152/98E. The

authors would like to thank Stephen S. Lee for suggest-

ing the use of the overall improvement as a termination

condition for PBI.

References

[1] A. R. Cassandra. Exact and Approximate Algo-

rithms for Partially Observable Markov Decision

Processes. PhD thesis, Brown University, 1998.

[2] A. R. Cassandra, M. L. Littman, and N. Zhang.

Incremental pruning: A simple, fast, exact al-

gorithm for partially observable Markov decision

processes. In UAI, 1997.

[3] S. P. M. Choi. Reinforcement Learning in Non-

stationary Environments. PhD thesis, Hong Kong

University of Science and Technology, Depart-

ment of Computer Science, Hong Kong, China,

Jan. 2000.

[4] S. P. M. Choi, D. Y. Yeung, and N. L. Zhang. An

environment model for nonstationary reinforce-

ment learning. In Advances in Neural Information

Processing Systems 12, 1999.

[5] S. P. M. Choi, D. Y. Yeung, and N. L. Zhang.

Hidden-Mode Markov decision processes. In IJ-

CAI 99 Workshop on Neural, Symbolic, and Rein-

forcement Methods for Sequence Learning, 1999.

[6] R. H. Crites and A. G. Barto. Improving eleva-

tor performance using reinforcement learning. In

D. Touretzky, M. Mozer, and M. Hasselmo, edi-

tors, NIPS 8, 1996.

[7] M. Hauskrecht and H. Fraser. Planning medical

therapy using partially observable Markov deci-

sion processes. In Proceedings of the Principles of

Diagnosis, pages 182{189, 1998.

[8] S. S. Lee. Planning with partially observable

Markov decision processes: Advances in exact so-

lution method. MPhil thesis, Hong Kong Uni-

versity of Science and Technology, Department of

Computer Science, Hong Kong, 1999.

[9] M. L. Littman, A. R. Cassandra, and L. P. Kael-

bling. E�cient dynamic-programming updates in

partially observable Markov decision processes.

Technical Report CS-95-19, Brown University,

1995.

[10] M. L. Puterman. Markov decision processes. In

D. P. Heyman and M. J. Sobel, editors, Handbooks

in OR and MS, volume 2, pages 331{434. Elsevier

Science Publishers, 1990.

[11] S. Singh and D. P. Bertsekas. Reinforcement

learning for dynamic channel allocation in cellular

telephone systems. In NIPS 9, 1997.

[12] E. J. Sondik. The Optimal Control of Partially

Observable Markov Processes. PhD thesis, Stan-

ford University, Stanford, California, USA, 1971.

[13] N. L. Zhang, S. S. Lee, and W. Zhang. A method

for speeding up value iteration in partially observ-

able Markov decision processes. In Proceeding of

15th Conference on Uncertainties in Arti�cial In-

telligence, 1999.

[14] N. L. Zhang and W. Liu. A model approxima-

tion scheme for planning in partially observable

stochastic domains. Journal of Arti�cial Intelli-

gence Research, 7:199 { 230, 1997.


