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Abstrat

The validity of the Okham's Razor priniple

is a topi of muh debate. A series of empiri-

al investigations have sought to disredit the

priniple by the appliation of deision trees

to learning tasks using node ardinality as the

objetive funtion. As a response to these pa-

pers, we suggest that the message length of

a hypothesis an be used as an e�etive in-

terpretation of Okham's Razor, resulting in

positive empirial support for the priniple.

The theoretial justi�ation for this Bayesian

interpretation is also investigated.

\Plurality should not be assumed without neessity"

{ William of Okham.

1 INTRODUCTION

Okham's Razor has long been known as a philosoph-

ial paradigm, and in reent times, has beome an

invaluable tool of the mahine learning ommunity.

It has been inorporated into many suessful ma-

hine learning appliations, although its validity has

remained an area of muh debate. As a mahine learn-

ing heuristi, Okham's Razor suggests that given a set

of equally likely theories about some data, the \sim-

plest" theory is most likely to apture the struture

inherent in a problem. Its underlying philosophy has

drawn muh theoretial support; however, a means for

extending this theory to provide sound pratial inter-

pretation has proved problemati.

Many statistiians, partiularly those of the Bayesian

Shool, have long strived to show that Bayes's theo-

rem represents the mehanism behind Okham's Ra-

zor, and that in fat, it is a onsequene of the deeper

priniples of probability theory. Complementary re-

searh has been published supporting this belief, in

the form of investigations into the Bayesian (Je�erys

and Berger 1991, Good 1968) and lassial probabilis-

ti (Forster and Sober 1994) interpretations.

On the experimental front of mahine learning, the

paradigm has been the target of empirial attak.

Murphy and Pazzani (Murphy and Pazzani 1994, Mur-

phy 1995), supported by work from Webb (Webb

1996), have presented a series of papers that attempt

to provide empirial evidene against the utility of

Okham's Razor. Experiments in deision tree indu-

tion were onduted in whih the node ardinality of

a deision tree is used as an interpretation of the Ok-

ham's Razor objetive funtion. The relationship be-

tween node ardinality and the preditive error of a de-

ision tree was investigated in these papers, apparently

putting the Okham's Razor priniple into question.

The urrent investigation suggests that the node ar-

dinality objetive funtion is a poor, or at least inom-

plete, interpretation of Okham's Razor. As an alter-

native, the inferene methods of the Minimum Mes-

sage Length (MML)

1

priniple (Wallae and Boulton

1968, Wallae and Freeman 1987, Wallae and Dowe

1999) provide a pratial appliation of the Bayesian

ideals and provides an intuitive interpretation of the

Okham's Razor priniple. The MML priniple has

been suessfully applied to a large number of mahine

learning tasks (Wallae and Dowe 1999, Wallae and

Dowe 2000 and their referenes), whih immediately

presents a strong argument in favor of Okham's Ra-

zor. The MML message assoiated with a deision tree

is a well studied onept (Wallae and Patrik 1993,

Quinlan and R.L. Rivest 1989), and provides a very

general interpretation of Okham's Razor. This paper

provides a summary of an extended empirial inves-

tigation of the message length interpretation of Ok-

ham's Razor (S.L. Needham, Honours Thesis, CSSE,

Monash University, 2000).

1

The similar, but independent methods of Minimum

Desription Length (MDL) inferene (Rissanen 1978)

would give a similar interpretation of Okham's Razor.



2 PREVIOUS EXPERIMENTAL

EVIDENCE

In this setion, the harateristi experiment investi-

gated in the work of Murphy and Pazzani (Murphy

and Pazzani 1994) is repliated. The hypothesis spae

of binary deision trees was used to learn the binary

logi onept (XY Z)j(AB) without noise and without

dummy attributes. The experiments involved 100 tri-

als being run, eah reating a training set by randomly

hoosing without replaement 20 of 32 (= 2

5

) possible

training examples. The remaining 12 examples were

used as a test set. For eah trial, every onsistent

deision tree (those with only pure leaves showing all

things in the same lass) was reated, and the average

error rate made by trees for eah node ardinality was

omputed. Figure 1 plots the mean and 95% on�-

dene interval of the average \right"/\wrong" errors

as a funtion of the node ardinality. The average

number of trees found to have eah node ardinality is

also plotted.
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Figure 1: Node ardinality vs. Predition Error

The results in Figure 1 ompare losely to those found

by Murphy and Pazzani (Murphy and Pazzani 1994),

and indiate that the node ardinality objetive fun-

tion does not provide positive support for Okham's

Razor. Figure 1 suggests that on average, trees with

node ardinality 7 have a lower \right"/\wrong" er-

ror rate on unseen data than trees with lower node

ardinalities. If we aept Murphy and Pazzani's in-

terpretation of Okham's Razor, this evidene suggests

a violation of Okham's Razor.

3 THEORETICAL

INTERPRETATION

The work of Murphy and Pazzani (Murphy and Paz-

zani 1994) suggests a pratial interpretation of Ok-

ham's Razor whih, on the surfae, does not seem un-

reasonable. The results desribed above agree with

those of Murphy and Pazzani, although it is our belief

that the node ardinality of a deision tree is a poor in-

terpretation of Okham's Razor. This setion takes on

a theoretial investigation of the paradigm, with the

intent of �nding a more appropriate Okham's Razor

objetive funtion.

3.1 A BAYESIAN INTERPRETATION OF

OCKHAM'S RAZOR

Bayesian philosophy requires that hypotheses have as-

soiated prior probabilities, whih is the essene of its

approah to statistis. Good tells us that\'Okham's

Razor' states that if two hypotheses H and H

1

ex-

plain the fats equally, meaning P (EjH) = P (EjH

1

),

then the simpler of the two is to be preferred", (Good

1968). We an see from Bayes's theorem, P (H jD) =

Pr(D&H)=Pr(D) = Pr(H)Pr(DjH)=Pr(D), that

this preferene is equivalent to the hoie of the more

probable hypothesis. The Minimum Message Length

priniple presents a Bayesian method, whih uses sub-

jetive priors to make this hoie.

In the general mahine learning problem, we are given

a set of data D, from whih we wish to infer a hypoth-

esis, H . When looking for the most appropriate hy-

pothesis for some given data, Bayes's theorem suggests

that we hoose the hypothesis with the highest poste-

rior probability, P (H jD), or equivalently, that theory

whih maximizes the produt of the prior probability

of the theory, P (H), with the probability of the data

ourring in light of the theory, P (DjH). In terms

of Okham's Razor, a good theory for some data will

have an aordingly high prior probability and a good

likelihood \�t".

The MML priniple provides a theoretial and some-

what intuitive means for making the onnetion be-

tween Okham's Razor and a orresponding quanti-

tative metri. As above, we an regard the problem

of maximizing the posterior probability, Pr(H jD), as

one of hoosing H so as to maximize Pr(H):P r(DjH).

Sine � log

2

(Pr(H):P r(DjH)) = � log

2

(Pr(H)) �

log

2

(Pr(DjH)), maximizing the posterior probability,

Pr(H jD), is equivalent to minimizing

MessLen = � log

2

(Pr(H)) � log

2

(Pr(DjH)),

the length of a two-part message onveying the theory,

H , and the data, D, in light of the theory. Hene the

name \minimum message length" (priniple) (Wallae

and Boulton 1968, Wallae and Freeman 1987, Wal-

lae and Dowe 1999) for hoosing a theory, H , to �t

observed data, D. The part of the MML message ex-

pressing the hypothesis an be obtained by reating a

Shannon optimal ode for the language desribing the



set of hypotheses and then onstruting the message

from this ode (Wallae and Freeman 1987).

As stated at the start of this setion, many regard

Okham's Razor to be primarily onerned with hy-

potheses that have equal likelihood given some data

(Good 1968). In these ases, the MML priniple sug-

gests that the hypothesis with the shortest enoding

is most likely to be the best preditor of future data.

3.2 ACQUISITION OF PRIORS FOR

BAYESIAN INFERENCE

Referening Bayes's Theorem as it applies to the in-

ferene of hypotheses, �nding the posterior probability

of a hypothesis given some data requires the probabil-

ity of that hypothesis a priori. The prior probability

of a hypothesis is usually interpreted as the probabil-

ity that the hypothesis desribes the true soure of a

partiular data set. It is lear that this probability

distribution over all hypotheses is very diÆult to al-

ulate. Even in restrited hypothesis spaes, the task

is usually intratable and approximate prior probabil-

ity distributions are used. As disussed in Setion 3.1,

the MML tehniques utilize a Shannon optimal ode

for a given hypothesis spae, using it to onstrut an

enoding for eah hypothesis. The message length for

eah hypothesis serves as an approximation to the neg-

ative logarithm to the base 2 of the hypothesis' true

prior probability.

A ommon argument against Bayesian inferene meth-

ods revolves around the seletion of ludirous prior

probability distributions. For example (similar to

that given by Domingos (Domingos 1999)), suppose

we gave one partiular deision tree with one million

nodes a prior of 0.5, and then alloated equal prior

probability to all remaining trees. This would result in

the MML inferene tehniques and most Bayesian in-

ferene tehniques often inferring this hypothesis given

a variety of data. It has been argued (Domingos 1999),

that by having a deision tree of suh a large node ar-

dinality being seleted, that Okham's Razor has been

violated. Bayes's theorem, in its simplest form, makes

no restrition in priniple on the type of prior probabil-

ity distribution that is hosen. However, Bayesian phi-

losophy suggests that the seletion of the prior prob-

ability distribution is important. The seletion of a

prior probability distribution as desribed above would

only ever be made if we truly believed that this hypoth-

esis, with one million nodes, atually did our with

probability of 0.5. In this ase, in a message length

framework, we would desribe the hypothesis with an

optimal enoding of one bit. This does not disagree

with Okham's Razor in any way, as the most proba-

ble hypothesis has the simplest desription. Assigning

ludirous prior probabilities to hypotheses, disregard-

ing our belief in their true prior probabilities, would

have to be very strongly questioned in pratie. Suh

attempted sabotage ontradits both Bayesian philos-

ophy and basi intuition. The use of misrepresen-

tative priors in no way undermines the e�etiveness

of Bayesian inferene, whih endeavors to use plausi-

ble rather than ludirous priors. See (Lindley 1972,

Bernardo and Smith 1994, Solomono� 1999, Wallae

and Dowe 1999) for some of the very broad disussion

on the seletion of Bayesian priors and Setion 4.1 for

an analysis involving more plausible priors.

4 PRACTICAL APPLICATION OF

OCKHAM'S RAZOR

In the previous setion, the groundings of Okham's

Razor in the theoretial �eld of Bayesian statistis was

disussed. The pratial validation of these ideas is

now investigated on the restrited searh spae of de-

ision trees.

4.1 DECISION TREE ENCODING

For deision trees, there are four elements to onsider

when enoding their message in an MML framework

(Wallae and Patrik 1993, Quinlan and Rivest 1989).

These are:

1a : the enoding of the struture of the tree - this in-

volves enoding whether a node is a leaf or an internal

node.

1b : is the labeling of eah internal split node with an

attribute.

1 : in eah leaf node there is the enoding of the prob-

abilisti predition assoiated with eah ategory. This

ompletes the enoding of the hypothesis.

2

2 : Finally, there is the enoding of the ategory of eah

thing, using for eah a ode based on the probabilisti

predition assoiated with the thing's true ategory.

A omplete investigation of this enoding is desribed

in Wallae and Patrik (Wallae and Patrik 1993).

4.2 MESSAGE LENGTH AS AN

EFFECTIVE OCKHAM'S RAZOR

We now re-visit the investigation taken on by Murphy

and Pazzani (Murphy and Pazzani 1994), substituting

the node ardinality objetive funtion with that of

the message length measure. Figure 2 displays the re-

lationship found between the omplete message length

(parts 1a,1b,1 and 2) and \right"/\wrong" perent-

2

The order in whih these omponents are arranged in

the message need not neessarily be 1a, 1b, 1.



age error. The distribution of trees over the message

length domain is also plotted. The message length

objetive funtion has ontinuous values, and for this

reason the error is averaged over a number of intervals

of message length. Twenty equal intervals have been

used for the purpose of good visual omparison to the

node ardinality results in Figure 1, where the maxi-

mum ardinality was 20. A notable shift in the distri-

bution of trees from Figure 1 is seen when the message

length is applied in Figure 2. The orrelation between

message length and perentage error does not follow a

smooth monotoni urve, although it ertainly shows

a positive orrelation as indiated by our least-squares

regression �t.
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Figure 2: Message Length vs. Predition Error

The experiments onduted by Murphy and Pazzani

(Murphy and Pazzani 1994) onsider only onsistent

deision trees, for whih we presume the following jus-

ti�ation. Re-iterating Good's de�nition of Okham's

Razor, given \two hypotheses H and H

1

explain the

fats equally, meaning P (EjH) = P (EjH

1

), then the

simpler of the two is to be preferred", (Good 1968).

Taking this interpretation, the set of onsistent dei-

sion trees is ertainly a set for whih Okham's Razor

applies, with P (EjH

i

) = P (EjH

j

) for all H

i

and H

j

in the set, sine P (EjH) = 1 for all H in the set.

Bayes's theorem suggests that if we have a set of hy-

potheses with onstant likelihood, then the posterior

probability of a hypothesis, given some data, beomes

a simple multiple of its prior probability. In terms of

the message length of a hypothesis, this translates to

seleting the hypothesis with the shortest enoding or,

in other words, the hypothesis with the shortest \�rst

part" (1a,1b and 1) of the MML message. In pratie

however, this is not preisely the ase. The de�nition

of a onsistent deision tree requires that it have only

pure leaves, that is, the tree makes preditions over the

data with probabilities 1 and 0. In a simple example,

suppose we use one suh onsistent tree to onstrut

a Hu�man ode for the purpose of transmitting future

data. In this ase, any inorretly lassi�ed data would

require an in�nite number of bits to be transmitted.

Clearly, 100% pure preditions should be made with

extreme are, if at all.

In pratie, MML tehniques make preditions on fu-

ture data with some probability greater than zero. If

we have n

m

training data for lass m then we predit

lass m with probability, p

m

= (n

m

+

1

2

)=(N +M=2),

where N and M are the number of training examples

and lasses respetively (Wallae and Freeman 1987,

Wallae and Dowe 2000). It an be seen, that the only

time 100% pure preditions would be made is when an

in�nite and pure training data set is available. As a

result, it is found that part 2 of the MML message, the

enoding of the data given the hypothesis, is not on-

stant aross the spae of onsistent deision trees, but

is a funtion of the distribution of data in the leaves.

However, the ontribution of part 2 on the omplete

MML message is small and near onstant.

The idea of judging a predition based on its enod-

ing ost an be extended to the ontext of the urrent

problem. It an be strongly argued that the logarithm

of probability bit sore provides a better disrimina-

tor of the performane of a hypothesis. In this ase,

instead of using a perentage error, we sore eah hy-

potheses by giving it � log

2

(p) bits for eah test data

item, where p is the probability with whih the hy-

pothesis predited the atual lass of the data item

- see (Dowe et al. 1996) and its referene list for a

disussion. The nature of this measure suggests that

hypotheses with small bit ost are good preditors of

the data, so again strong support for Okham's Razor

would be indiated by a smooth monotonially inreas-

ing plot. Figure 3 presents the previous results imple-

menting the logarithm of probability bit sore in plae

of the \right"/\wrong" preditive error. The results

found appear to be very similar to those found with the

\right"/\wrong" preditive error. When using onsis-

tent trees, the leaf distributions are near Bernoulli with

p = 1, with this simple distribution the range of bit

sores is also simple usually only taking on values near

0 and 1.

The experimental results for the message length ob-

jetive funtion in Figures 2 and 3 seem to give some

positive support for Okham's Razor, with a positive

orrelation being seen in eah ase. However, there

are some harateristis of the results appearing on-

sistently, whih do not allow for any onlusive laims

to be made about the validity of Okham's Razor. For

example, the results in Figures 2 and 3 display that at

some points along the message length axis, the average

performane (i.e. both \right"/\wrong" preditive a-

uray and the logarithm of probability of bit sore)
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Figure 3: Message Length vs. Bit Sore

drops to a value below that found for the shorter mes-

sage lengths. These results are open for the ritiism

that Murphy and Pazzani disuss in their investigation

of the node ardinality objetive funtion. This prob-

lem is most prominent for the average performane re-

sults for message lengths of greater than 80 bits, where

a ontinuous derease in average performane is seen

for over �ve intervals of message length. It is believed

that these results many be dependent of the experi-

mental onditions, for whih an indepth investigation

is made in the following setion.

5 DISCUSSION OF RESULTS AND

LEARNING TASK

The message length objetive funtion has been shown

to provide better support for Okham's Razor than the

previously suggested node ardinality objetive fun-

tion (Murphy and Pazzani 1994). However, this im-

provement has not been suÆient to provide undis-

puted evidene for the validity of our interpretation of

Okham's Razor. It ould be argued that even though

the message length objetive funtion was unable to

provide lear support for Okham's Razor in these ex-

periments, that in fat no objetive funtion will per-

form well on the proposed learning task. As an alter-

native example to make this point lear, suppose that

we applied our objetive funtion to the task of infer-

ring a hypothesis about some large sample of random

noise. Of ourse the results will provide no support for

Okham's Razor, but by no means ould we argue that

this is evidene against Okham's Razor. The suspi-

ion that these poor results ould be related to the

experimental onditions is investigated in this setion.

In the experiments onduted involving message

length, it was found that for the trees of large mes-

sage length, the results were not in favor of Okham's

Razor. The relationship between message length and

the performane measures displayed a negative gra-

dient, suggesting that on average, trees of relatively

longer message length were better preditors of the

future data. This trend was seen onsistently in the

results and seems to be a onsequene of the small

training sets. Noting that the MML approximation of

the probability assoiated with a lass is never zero,

the lass probabilities for a binary leaf with one train-

ing data thing are 3=4 and 1=4. That is, the MML ap-

proximation of probability suggests that even though

there is no data supporting a lass, there is insuÆient

data to make a pure predition. This not only redues

the penalty for inorretly lassifying a test example,

but also redues the enoding ost of the leaf distri-

bution. As a result it is found that large trees, with

many leaves ontaining one data example, are found to

make relaxed preditions and thus inur relaxed penal-

ties for inorret lassi�ations. This is not a problem

with the MML approximations as the hoie not to

make pure preditions with one data example appears

reasonable. The problem appears to be related to the

insuÆient sample sizes. Methods for reating larger

training data sets are investigated in the next setion.

A seond onern with the investigation was with the

hoie to only investigate onsistent deision trees.

This deision was made for the purpose of investigating

Good's interpretation of Okham's Razor and to pro-

vide a omparative investigation with the work of Mur-

phy and Pazzani (Murphy and Pazzani 1994). How-

ever, it appears that this restrition is not neessary.

The argument made by Murphy and Pazzani for us-

ing onsistent deision trees is that typially (Quinlan

1986, et.) deision tree indution methods use on-

sisteny as a stopping riterion. For many methods,

this is the ase, although many indution tehniques

(Wallae and Patrik 1993, Quinlan and Rivest 1989,

Uther and Veloso 2000) do not restrit their searh

spae to onsistent trees. This leads to the extended

investigation, involving the omplete spae of deision

trees, taken on in the following setion.

5.1 OCKHAM'S RAZOR; AN

ALTERNATIVE INTERPRETATION

Okham's Razor has been a debated topi for en-

turies, with the debate extending to the disagreement

on the words that Okham atually spoke. Clearly,

this makes onstruting an interpretation of Okham's

Razor in the ontext of mahine learning a diÆult

task. Referring to its ommonly aepted translation:

\plurality should not be assumed without neessity",

we �nd that a lear mathematial interpretation is not

obvious. Okham's Razor seems to suggest that we

should prefer a simpler hypothesis while the bene�t



of the redued omplexity is not outweighed by a de-

rease in the goodness of \�t" of the hypothesis. That

is, we prefer a simpler hypothesis while the ombined

omplexity of its desription and the data given it, is

shorter than that of the urrent hypothesis. This new

interpretation of Okham's Razor is a generalization

of that given by Good (Good 1968), the interpreta-

tion is equivalent to Good's in the ase where the set

of hypotheses onsidered has onstant likelihood. The

Minimum Message Length priniple aesses this trade

o� between the omplexity of the hypothesis and the

likelihood of the hypothesis given some data. This is

ahieved by omparing hypotheses using the two-part

enoding of the hypotheses and the data given the hy-

pothesis (refer Setion 3). In this setion, the perfor-

mane of this new interpretation will be investigated

through a series of experiments.

The major onsequene of this new interpretation of

Okham's Razor on the experimental investigation is

that we are now onerned with the omplete spae of

deision trees, and not only those onsistent with the

test data. Experimentation with the node ardinal-

ity objetive funtion requires a set of deision trees

that have a onstant likelihood given some data (e.g.

the set of onsistent trees). This is beause the node

ardinality objetive funtion does not inorporate a

measure of the goodness of \�t" of a hypothesis. As

a result it will make no di�erentiation between two

trees with equal node ardinality even if one orretly

lassi�es all of the test data and the other does not

orretly lassify a single example.

The pratial investigation of this new interpretation

of Okham's Razor follows a similar path to that taken

in the previous setion. Figure 4 displays the results

for experiments inorporating the omplete spae of

deision trees. The experiments are otherwise iden-

tial to those onduted in Setion 4.2, with the data

having no noise or dummy variables. The results found

demonstrate a smoother relationship between the mes-

sage length and the performane measures. This is

most likely the result of the greatly inreased number

of experimental points used to reate the plots, as a

huge number of trees that are not onsistent with the

data are now inluded in the averaged results. Never-

theless, these results do not provide lear support for

Okham's Razor. A lear drop in the preditive error

and bit sore is seen for trees with message lengths of

around 65 bits, similar to that seen in the previous ex-

periments. Also, a trend of dereasing average predi-

tive error and bit sore starting for trees with message

length of around 80 bits and ontinuing to the trees

of maximum message length is again seen. In the �rst

ase we an o�er little explanation for this evidene

against Okham's Razor. In the seond ase, as dis-
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Figure 4: Results With Complete Searh Spae

ussed in the previous setion, we believe the trend to

be the result of the small size of the data set.

5.2 ALTERNATIVE TRAINING DATA

GENERATION ALGORITHM

As disussed in Setion 5, it is felt that the size of the

training data set is not adequate for the leaf distri-

butions to make aurate preditions about the data.

In the previous setion the omplete spae of deision

trees was introdued into the investigation. This se-

tion extends these experiments by inorporating a new

training data generation algorithm.

It should be possible to use some arbitrary number

of training examples for the purpose of deision tree

inferene. When training data is taken from a \real

world" data soure, in many ases, the number of sam-

ples that an be attained is only onstrained by the

time that is spend gathering the data. In ontrast

to the urrent method for attaining training data, in

\real world" data samples it is expeted that the data

examples may our many times and with di�erent

frequeny. Also, the data is a�eted by the measure-

ment error found in the experimental equipment and



often the attributes relating to the data are not obvi-

ous. Using this \real world" model, a new method

for data generation is suggested where by an arbi-

trary number of training data examples an be re-

ated. The method is given by the simple algorithm:

repeat until suÆient examples are reated f

1. Randomly selet a permutation of the attributes

to reate a data thing.

2. Evaluate the lass of the data thing and with

some probability assign a noisy lass to the data thing.

3. Add the data thing to the training set.

g

When a data thing is a�eted by noise, the lass asso-

iated with its attribute vetor is assigned randomly

without referene to the true value. This means that

as the probability of noise approahes 1 the data be-

omes ompletely random. A \dummy" variable is in-

orporated into the data by simply inluded it in the

attribute vetor of eah data thing and assigning it a

random value, thus it provides no information about

the true lass of the data thing. In a \real world" learn-

ing task, the performane of the inferred hypotheses

is assessed by testing the hypotheses on future data

samples. When using an arti�ial learning task, the

hypotheses an be evaluated using the omplete un-

orrupted data set. With this algorithm we do not

expliitly withhold a subset of the data set for testing,

although there is some probability proportional to the

size of the data set, that an example will be exluded.

Figure 5 displays the results found when a training

set of 200 examples is used with 0.3 probability of

noise and 1 dummy variable . In Setion 2, it was

disussed that the ideal support for Okham's Razor

would onsist of a smooth monotonially inreasing

urve over the entire message length domain. This is

learly demonstrated in Figure 5, whih satis�es these

requirement to near perfetion, in ontrast to the pre-

vious results shown in Figure 4. Results of near this

quality are seen for data sets as small as 30 training

examples and for noise levels as high as 0.5 probability.

6 CONCLUSION

The fous of this paper has been primarily to provide a

response to the growing number of empirial investiga-

tions (Murphy and Pazzani 1994,Murphy 1995,Webb

1996,Domingos 1999) that have appeared to disredit

the Okham's Razor priniple as a mahine learning

objetive funtion. In partiular, we have foused on

the investigation taken on by Murphy and Pazzani

(Murphy and Pazzani 1994), who in their work pro-

pose node ardinality as an Okham's Razor objetive
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Figure 5: Data With 0.3 Probability of Noise and 1

Dummy Variable

funtion for the indution of deision trees. We have

proposed that the node ardinality objetive funtion

is a inomplete interpretation of Okham's Razor, and

that instead the MML message length is an e�etive

alternative in deision tree indution.

From the experiments onduted using the learn-

ing task proposed by Murphy and Pazzani (Murphy

and Pazzani 1994), it was shown that the message

length interpretation of Okham's Razor learly out-

performed that of the node ardinality. The results,

however still did not provide undisputed evidene for

the Okham's Razor priniple. We proposed a new in-

terpretation, whih is losely related to the MML and

Bayesian interpretations of Okham's Razor: we pre-

fer a simpler hypothesis while the ombined omplex-

ity of its desription and the data given it, is shorter

than that of the urrent hypothesis. With this in-

terpretation, the omplete spae of deision trees was

inluded in the investigation. Nevertheless, while the

experimental investigation of this new interpretation

yielded improved support for Okham's Razor, the ev-

idene was still inonlusive. A new means for reat-

ing training data is proposed that is based on a \real



world" model, whih inludes repeated data points,

noise and dummy variables. Experimentation with

this new data generation algorithm produed exep-

tional results with respet to the \right"/\wrong" pre-

dition error and logarithm of probability bit sore.

In future work, it is hoped that the strong support

shown for Okham's Razor in the urrent investigation

an be extended to the investigation of other learning

tasks, and alternative hypothesis spaes. The inter-

pretation of Okham's Razor proposed by Murphy and

Pazzani appears rather similar to that of the Akaike

Information Criterion (Akaike 1973, Forster and Sober

1994) and may well lead to omparable results. At this

stage, very few empirial ontraditions of Okham's

Razor have been proposed - however, they have been

suÆient to put the validity of Okham's Razor into

question. It is our belief that before any onlusions

an be reahed over the validity of Okham's Razor

signi�antly more empirial experimentation will be

required. A theoretial proof of our interpretation of

Okham's Razor is urrently unavailable, but many

well lie in the realms of omplexity, information and

probability theory. While this investigation would ap-

pear to be the �rst expliit investigation of the message

length interpretation of Okham's Razor, the strength

of the MML inferene tehniques promise muh poten-

tial for future work.
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