
Message Length as an E�e
tive O
kham's Razor in De
ision Tree

Indu
tion

S
ott L. Needham

Computer S
ien
e and Software Engineering

Monash University

Clayton, Vi
toria 3168, Australia

sneedham�
sse.monash.edu.au

David L. Dowe

Computer S
ien
e and Software Engineering

Monash University

Clayton, Vi
toria 3168, Australia

dld�
sse.monash.edu.au

Abstra
t

The validity of the O
kham's Razor prin
iple

is a topi
 of mu
h debate. A series of empiri-


al investigations have sought to dis
redit the

prin
iple by the appli
ation of de
ision trees

to learning tasks using node 
ardinality as the

obje
tive fun
tion. As a response to these pa-

pers, we suggest that the message length of

a hypothesis 
an be used as an e�e
tive in-

terpretation of O
kham's Razor, resulting in

positive empiri
al support for the prin
iple.

The theoreti
al justi�
ation for this Bayesian

interpretation is also investigated.

\Plurality should not be assumed without ne
essity"

{ William of O
kham.

1 INTRODUCTION

O
kham's Razor has long been known as a philosoph-

i
al paradigm, and in re
ent times, has be
ome an

invaluable tool of the ma
hine learning 
ommunity.

It has been in
orporated into many su

essful ma-


hine learning appli
ations, although its validity has

remained an area of mu
h debate. As a ma
hine learn-

ing heuristi
, O
kham's Razor suggests that given a set

of equally likely theories about some data, the \sim-

plest" theory is most likely to 
apture the stru
ture

inherent in a problem. Its underlying philosophy has

drawn mu
h theoreti
al support; however, a means for

extending this theory to provide sound pra
ti
al inter-

pretation has proved problemati
.

Many statisti
ians, parti
ularly those of the Bayesian

S
hool, have long strived to show that Bayes's theo-

rem represents the me
hanism behind O
kham's Ra-

zor, and that in fa
t, it is a 
onsequen
e of the deeper

prin
iples of probability theory. Complementary re-

sear
h has been published supporting this belief, in

the form of investigations into the Bayesian (Je�erys

and Berger 1991, Good 1968) and 
lassi
al probabilis-

ti
 (Forster and Sober 1994) interpretations.

On the experimental front of ma
hine learning, the

paradigm has been the target of empiri
al atta
k.

Murphy and Pazzani (Murphy and Pazzani 1994, Mur-

phy 1995), supported by work from Webb (Webb

1996), have presented a series of papers that attempt

to provide empiri
al eviden
e against the utility of

O
kham's Razor. Experiments in de
ision tree indu
-

tion were 
ondu
ted in whi
h the node 
ardinality of

a de
ision tree is used as an interpretation of the O
k-

ham's Razor obje
tive fun
tion. The relationship be-

tween node 
ardinality and the predi
tive error of a de-


ision tree was investigated in these papers, apparently

putting the O
kham's Razor prin
iple into question.

The 
urrent investigation suggests that the node 
ar-

dinality obje
tive fun
tion is a poor, or at least in
om-

plete, interpretation of O
kham's Razor. As an alter-

native, the inferen
e methods of the Minimum Mes-

sage Length (MML)

1

prin
iple (Walla
e and Boulton

1968, Walla
e and Freeman 1987, Walla
e and Dowe

1999) provide a pra
ti
al appli
ation of the Bayesian

ideals and provides an intuitive interpretation of the

O
kham's Razor prin
iple. The MML prin
iple has

been su

essfully applied to a large number of ma
hine

learning tasks (Walla
e and Dowe 1999, Walla
e and

Dowe 2000 and their referen
es), whi
h immediately

presents a strong argument in favor of O
kham's Ra-

zor. The MML message asso
iated with a de
ision tree

is a well studied 
on
ept (Walla
e and Patri
k 1993,

Quinlan and R.L. Rivest 1989), and provides a very

general interpretation of O
kham's Razor. This paper

provides a summary of an extended empiri
al inves-

tigation of the message length interpretation of O
k-

ham's Razor (S.L. Needham, Honours Thesis, CSSE,

Monash University, 2000).

1

The similar, but independent methods of Minimum

Des
ription Length (MDL) inferen
e (Rissanen 1978)

would give a similar interpretation of O
kham's Razor.



2 PREVIOUS EXPERIMENTAL

EVIDENCE

In this se
tion, the 
hara
teristi
 experiment investi-

gated in the work of Murphy and Pazzani (Murphy

and Pazzani 1994) is repli
ated. The hypothesis spa
e

of binary de
ision trees was used to learn the binary

logi
 
on
ept (XY Z)j(AB) without noise and without

dummy attributes. The experiments involved 100 tri-

als being run, ea
h 
reating a training set by randomly


hoosing without repla
ement 20 of 32 (= 2

5

) possible

training examples. The remaining 12 examples were

used as a test set. For ea
h trial, every 
onsistent

de
ision tree (those with only pure leaves showing all

things in the same 
lass) was 
reated, and the average

error rate made by trees for ea
h node 
ardinality was


omputed. Figure 1 plots the mean and 95% 
on�-

den
e interval of the average \right"/\wrong" errors

as a fun
tion of the node 
ardinality. The average

number of trees found to have ea
h node 
ardinality is

also plotted.
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Figure 1: Node 
ardinality vs. Predi
tion Error

The results in Figure 1 
ompare 
losely to those found

by Murphy and Pazzani (Murphy and Pazzani 1994),

and indi
ate that the node 
ardinality obje
tive fun
-

tion does not provide positive support for O
kham's

Razor. Figure 1 suggests that on average, trees with

node 
ardinality 7 have a lower \right"/\wrong" er-

ror rate on unseen data than trees with lower node


ardinalities. If we a

ept Murphy and Pazzani's in-

terpretation of O
kham's Razor, this eviden
e suggests

a violation of O
kham's Razor.

3 THEORETICAL

INTERPRETATION

The work of Murphy and Pazzani (Murphy and Paz-

zani 1994) suggests a pra
ti
al interpretation of O
k-

ham's Razor whi
h, on the surfa
e, does not seem un-

reasonable. The results des
ribed above agree with

those of Murphy and Pazzani, although it is our belief

that the node 
ardinality of a de
ision tree is a poor in-

terpretation of O
kham's Razor. This se
tion takes on

a theoreti
al investigation of the paradigm, with the

intent of �nding a more appropriate O
kham's Razor

obje
tive fun
tion.

3.1 A BAYESIAN INTERPRETATION OF

OCKHAM'S RAZOR

Bayesian philosophy requires that hypotheses have as-

so
iated prior probabilities, whi
h is the essen
e of its

approa
h to statisti
s. Good tells us that\'O
kham's

Razor' states that if two hypotheses H and H

1

ex-

plain the fa
ts equally, meaning P (EjH) = P (EjH

1

),

then the simpler of the two is to be preferred", (Good

1968). We 
an see from Bayes's theorem, P (H jD) =

Pr(D&H)=Pr(D) = Pr(H)Pr(DjH)=Pr(D), that

this preferen
e is equivalent to the 
hoi
e of the more

probable hypothesis. The Minimum Message Length

prin
iple presents a Bayesian method, whi
h uses sub-

je
tive priors to make this 
hoi
e.

In the general ma
hine learning problem, we are given

a set of data D, from whi
h we wish to infer a hypoth-

esis, H . When looking for the most appropriate hy-

pothesis for some given data, Bayes's theorem suggests

that we 
hoose the hypothesis with the highest poste-

rior probability, P (H jD), or equivalently, that theory

whi
h maximizes the produ
t of the prior probability

of the theory, P (H), with the probability of the data

o

urring in light of the theory, P (DjH). In terms

of O
kham's Razor, a good theory for some data will

have an a

ordingly high prior probability and a good

likelihood \�t".

The MML prin
iple provides a theoreti
al and some-

what intuitive means for making the 
onne
tion be-

tween O
kham's Razor and a 
orresponding quanti-

tative metri
. As above, we 
an regard the problem

of maximizing the posterior probability, Pr(H jD), as

one of 
hoosing H so as to maximize Pr(H):P r(DjH).

Sin
e � log

2

(Pr(H):P r(DjH)) = � log

2

(Pr(H)) �

log

2

(Pr(DjH)), maximizing the posterior probability,

Pr(H jD), is equivalent to minimizing

MessLen = � log

2

(Pr(H)) � log

2

(Pr(DjH)),

the length of a two-part message 
onveying the theory,

H , and the data, D, in light of the theory. Hen
e the

name \minimum message length" (prin
iple) (Walla
e

and Boulton 1968, Walla
e and Freeman 1987, Wal-

la
e and Dowe 1999) for 
hoosing a theory, H , to �t

observed data, D. The part of the MML message ex-

pressing the hypothesis 
an be obtained by 
reating a

Shannon optimal 
ode for the language des
ribing the



set of hypotheses and then 
onstru
ting the message

from this 
ode (Walla
e and Freeman 1987).

As stated at the start of this se
tion, many regard

O
kham's Razor to be primarily 
on
erned with hy-

potheses that have equal likelihood given some data

(Good 1968). In these 
ases, the MML prin
iple sug-

gests that the hypothesis with the shortest en
oding

is most likely to be the best predi
tor of future data.

3.2 ACQUISITION OF PRIORS FOR

BAYESIAN INFERENCE

Referen
ing Bayes's Theorem as it applies to the in-

feren
e of hypotheses, �nding the posterior probability

of a hypothesis given some data requires the probabil-

ity of that hypothesis a priori. The prior probability

of a hypothesis is usually interpreted as the probabil-

ity that the hypothesis des
ribes the true sour
e of a

parti
ular data set. It is 
lear that this probability

distribution over all hypotheses is very diÆ
ult to 
al-


ulate. Even in restri
ted hypothesis spa
es, the task

is usually intra
table and approximate prior probabil-

ity distributions are used. As dis
ussed in Se
tion 3.1,

the MML te
hniques utilize a Shannon optimal 
ode

for a given hypothesis spa
e, using it to 
onstru
t an

en
oding for ea
h hypothesis. The message length for

ea
h hypothesis serves as an approximation to the neg-

ative logarithm to the base 2 of the hypothesis' true

prior probability.

A 
ommon argument against Bayesian inferen
e meth-

ods revolves around the sele
tion of ludi
rous prior

probability distributions. For example (similar to

that given by Domingos (Domingos 1999)), suppose

we gave one parti
ular de
ision tree with one million

nodes a prior of 0.5, and then allo
ated equal prior

probability to all remaining trees. This would result in

the MML inferen
e te
hniques and most Bayesian in-

feren
e te
hniques often inferring this hypothesis given

a variety of data. It has been argued (Domingos 1999),

that by having a de
ision tree of su
h a large node 
ar-

dinality being sele
ted, that O
kham's Razor has been

violated. Bayes's theorem, in its simplest form, makes

no restri
tion in prin
iple on the type of prior probabil-

ity distribution that is 
hosen. However, Bayesian phi-

losophy suggests that the sele
tion of the prior prob-

ability distribution is important. The sele
tion of a

prior probability distribution as des
ribed above would

only ever be made if we truly believed that this hypoth-

esis, with one million nodes, a
tually did o

ur with

probability of 0.5. In this 
ase, in a message length

framework, we would des
ribe the hypothesis with an

optimal en
oding of one bit. This does not disagree

with O
kham's Razor in any way, as the most proba-

ble hypothesis has the simplest des
ription. Assigning

ludi
rous prior probabilities to hypotheses, disregard-

ing our belief in their true prior probabilities, would

have to be very strongly questioned in pra
ti
e. Su
h

attempted sabotage 
ontradi
ts both Bayesian philos-

ophy and basi
 intuition. The use of misrepresen-

tative priors in no way undermines the e�e
tiveness

of Bayesian inferen
e, whi
h endeavors to use plausi-

ble rather than ludi
rous priors. See (Lindley 1972,

Bernardo and Smith 1994, Solomono� 1999, Walla
e

and Dowe 1999) for some of the very broad dis
ussion

on the sele
tion of Bayesian priors and Se
tion 4.1 for

an analysis involving more plausible priors.

4 PRACTICAL APPLICATION OF

OCKHAM'S RAZOR

In the previous se
tion, the groundings of O
kham's

Razor in the theoreti
al �eld of Bayesian statisti
s was

dis
ussed. The pra
ti
al validation of these ideas is

now investigated on the restri
ted sear
h spa
e of de-


ision trees.

4.1 DECISION TREE ENCODING

For de
ision trees, there are four elements to 
onsider

when en
oding their message in an MML framework

(Walla
e and Patri
k 1993, Quinlan and Rivest 1989).

These are:

1a : the en
oding of the stru
ture of the tree - this in-

volves en
oding whether a node is a leaf or an internal

node.

1b : is the labeling of ea
h internal split node with an

attribute.

1
 : in ea
h leaf node there is the en
oding of the prob-

abilisti
 predi
tion asso
iated with ea
h 
ategory. This


ompletes the en
oding of the hypothesis.

2

2 : Finally, there is the en
oding of the 
ategory of ea
h

thing, using for ea
h a 
ode based on the probabilisti


predi
tion asso
iated with the thing's true 
ategory.

A 
omplete investigation of this en
oding is des
ribed

in Walla
e and Patri
k (Walla
e and Patri
k 1993).

4.2 MESSAGE LENGTH AS AN

EFFECTIVE OCKHAM'S RAZOR

We now re-visit the investigation taken on by Murphy

and Pazzani (Murphy and Pazzani 1994), substituting

the node 
ardinality obje
tive fun
tion with that of

the message length measure. Figure 2 displays the re-

lationship found between the 
omplete message length

(parts 1a,1b,1
 and 2) and \right"/\wrong" per
ent-

2

The order in whi
h these 
omponents are arranged in

the message need not ne
essarily be 1a, 1b, 1
.



age error. The distribution of trees over the message

length domain is also plotted. The message length

obje
tive fun
tion has 
ontinuous values, and for this

reason the error is averaged over a number of intervals

of message length. Twenty equal intervals have been

used for the purpose of good visual 
omparison to the

node 
ardinality results in Figure 1, where the maxi-

mum 
ardinality was 20. A notable shift in the distri-

bution of trees from Figure 1 is seen when the message

length is applied in Figure 2. The 
orrelation between

message length and per
entage error does not follow a

smooth monotoni
 
urve, although it 
ertainly shows

a positive 
orrelation as indi
ated by our least-squares

regression �t.
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Figure 2: Message Length vs. Predi
tion Error

The experiments 
ondu
ted by Murphy and Pazzani

(Murphy and Pazzani 1994) 
onsider only 
onsistent

de
ision trees, for whi
h we presume the following jus-

ti�
ation. Re-iterating Good's de�nition of O
kham's

Razor, given \two hypotheses H and H

1

explain the

fa
ts equally, meaning P (EjH) = P (EjH

1

), then the

simpler of the two is to be preferred", (Good 1968).

Taking this interpretation, the set of 
onsistent de
i-

sion trees is 
ertainly a set for whi
h O
kham's Razor

applies, with P (EjH

i

) = P (EjH

j

) for all H

i

and H

j

in the set, sin
e P (EjH) = 1 for all H in the set.

Bayes's theorem suggests that if we have a set of hy-

potheses with 
onstant likelihood, then the posterior

probability of a hypothesis, given some data, be
omes

a simple multiple of its prior probability. In terms of

the message length of a hypothesis, this translates to

sele
ting the hypothesis with the shortest en
oding or,

in other words, the hypothesis with the shortest \�rst

part" (1a,1b and 1
) of the MML message. In pra
ti
e

however, this is not pre
isely the 
ase. The de�nition

of a 
onsistent de
ision tree requires that it have only

pure leaves, that is, the tree makes predi
tions over the

data with probabilities 1 and 0. In a simple example,

suppose we use one su
h 
onsistent tree to 
onstru
t

a Hu�man 
ode for the purpose of transmitting future

data. In this 
ase, any in
orre
tly 
lassi�ed data would

require an in�nite number of bits to be transmitted.

Clearly, 100% pure predi
tions should be made with

extreme 
are, if at all.

In pra
ti
e, MML te
hniques make predi
tions on fu-

ture data with some probability greater than zero. If

we have n

m

training data for 
lass m then we predi
t


lass m with probability, p

m

= (n

m

+

1

2

)=(N +M=2),

where N and M are the number of training examples

and 
lasses respe
tively (Walla
e and Freeman 1987,

Walla
e and Dowe 2000). It 
an be seen, that the only

time 100% pure predi
tions would be made is when an

in�nite and pure training data set is available. As a

result, it is found that part 2 of the MML message, the

en
oding of the data given the hypothesis, is not 
on-

stant a
ross the spa
e of 
onsistent de
ision trees, but

is a fun
tion of the distribution of data in the leaves.

However, the 
ontribution of part 2 on the 
omplete

MML message is small and near 
onstant.

The idea of judging a predi
tion based on its en
od-

ing 
ost 
an be extended to the 
ontext of the 
urrent

problem. It 
an be strongly argued that the logarithm

of probability bit s
ore provides a better dis
rimina-

tor of the performan
e of a hypothesis. In this 
ase,

instead of using a per
entage error, we s
ore ea
h hy-

potheses by giving it � log

2

(p) bits for ea
h test data

item, where p is the probability with whi
h the hy-

pothesis predi
ted the a
tual 
lass of the data item

- see (Dowe et al. 1996) and its referen
e list for a

dis
ussion. The nature of this measure suggests that

hypotheses with small bit 
ost are good predi
tors of

the data, so again strong support for O
kham's Razor

would be indi
ated by a smooth monotoni
ally in
reas-

ing plot. Figure 3 presents the previous results imple-

menting the logarithm of probability bit s
ore in pla
e

of the \right"/\wrong" predi
tive error. The results

found appear to be very similar to those found with the

\right"/\wrong" predi
tive error. When using 
onsis-

tent trees, the leaf distributions are near Bernoulli with

p = 1, with this simple distribution the range of bit

s
ores is also simple usually only taking on values near

0 and 1.

The experimental results for the message length ob-

je
tive fun
tion in Figures 2 and 3 seem to give some

positive support for O
kham's Razor, with a positive


orrelation being seen in ea
h 
ase. However, there

are some 
hara
teristi
s of the results appearing 
on-

sistently, whi
h do not allow for any 
on
lusive 
laims

to be made about the validity of O
kham's Razor. For

example, the results in Figures 2 and 3 display that at

some points along the message length axis, the average

performan
e (i.e. both \right"/\wrong" predi
tive a
-


ura
y and the logarithm of probability of bit s
ore)
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Figure 3: Message Length vs. Bit S
ore

drops to a value below that found for the shorter mes-

sage lengths. These results are open for the 
riti
ism

that Murphy and Pazzani dis
uss in their investigation

of the node 
ardinality obje
tive fun
tion. This prob-

lem is most prominent for the average performan
e re-

sults for message lengths of greater than 80 bits, where

a 
ontinuous de
rease in average performan
e is seen

for over �ve intervals of message length. It is believed

that these results many be dependent of the experi-

mental 
onditions, for whi
h an indepth investigation

is made in the following se
tion.

5 DISCUSSION OF RESULTS AND

LEARNING TASK

The message length obje
tive fun
tion has been shown

to provide better support for O
kham's Razor than the

previously suggested node 
ardinality obje
tive fun
-

tion (Murphy and Pazzani 1994). However, this im-

provement has not been suÆ
ient to provide undis-

puted eviden
e for the validity of our interpretation of

O
kham's Razor. It 
ould be argued that even though

the message length obje
tive fun
tion was unable to

provide 
lear support for O
kham's Razor in these ex-

periments, that in fa
t no obje
tive fun
tion will per-

form well on the proposed learning task. As an alter-

native example to make this point 
lear, suppose that

we applied our obje
tive fun
tion to the task of infer-

ring a hypothesis about some large sample of random

noise. Of 
ourse the results will provide no support for

O
kham's Razor, but by no means 
ould we argue that

this is eviden
e against O
kham's Razor. The suspi-


ion that these poor results 
ould be related to the

experimental 
onditions is investigated in this se
tion.

In the experiments 
ondu
ted involving message

length, it was found that for the trees of large mes-

sage length, the results were not in favor of O
kham's

Razor. The relationship between message length and

the performan
e measures displayed a negative gra-

dient, suggesting that on average, trees of relatively

longer message length were better predi
tors of the

future data. This trend was seen 
onsistently in the

results and seems to be a 
onsequen
e of the small

training sets. Noting that the MML approximation of

the probability asso
iated with a 
lass is never zero,

the 
lass probabilities for a binary leaf with one train-

ing data thing are 3=4 and 1=4. That is, the MML ap-

proximation of probability suggests that even though

there is no data supporting a 
lass, there is insuÆ
ient

data to make a pure predi
tion. This not only redu
es

the penalty for in
orre
tly 
lassifying a test example,

but also redu
es the en
oding 
ost of the leaf distri-

bution. As a result it is found that large trees, with

many leaves 
ontaining one data example, are found to

make relaxed predi
tions and thus in
ur relaxed penal-

ties for in
orre
t 
lassi�
ations. This is not a problem

with the MML approximations as the 
hoi
e not to

make pure predi
tions with one data example appears

reasonable. The problem appears to be related to the

insuÆ
ient sample sizes. Methods for 
reating larger

training data sets are investigated in the next se
tion.

A se
ond 
on
ern with the investigation was with the


hoi
e to only investigate 
onsistent de
ision trees.

This de
ision was made for the purpose of investigating

Good's interpretation of O
kham's Razor and to pro-

vide a 
omparative investigation with the work of Mur-

phy and Pazzani (Murphy and Pazzani 1994). How-

ever, it appears that this restri
tion is not ne
essary.

The argument made by Murphy and Pazzani for us-

ing 
onsistent de
ision trees is that typi
ally (Quinlan

1986, et
.) de
ision tree indu
tion methods use 
on-

sisten
y as a stopping 
riterion. For many methods,

this is the 
ase, although many indu
tion te
hniques

(Walla
e and Patri
k 1993, Quinlan and Rivest 1989,

Uther and Veloso 2000) do not restri
t their sear
h

spa
e to 
onsistent trees. This leads to the extended

investigation, involving the 
omplete spa
e of de
ision

trees, taken on in the following se
tion.

5.1 OCKHAM'S RAZOR; AN

ALTERNATIVE INTERPRETATION

O
kham's Razor has been a debated topi
 for 
en-

turies, with the debate extending to the disagreement

on the words that O
kham a
tually spoke. Clearly,

this makes 
onstru
ting an interpretation of O
kham's

Razor in the 
ontext of ma
hine learning a diÆ
ult

task. Referring to its 
ommonly a

epted translation:

\plurality should not be assumed without ne
essity",

we �nd that a 
lear mathemati
al interpretation is not

obvious. O
kham's Razor seems to suggest that we

should prefer a simpler hypothesis while the bene�t



of the redu
ed 
omplexity is not outweighed by a de-


rease in the goodness of \�t" of the hypothesis. That

is, we prefer a simpler hypothesis while the 
ombined


omplexity of its des
ription and the data given it, is

shorter than that of the 
urrent hypothesis. This new

interpretation of O
kham's Razor is a generalization

of that given by Good (Good 1968), the interpreta-

tion is equivalent to Good's in the 
ase where the set

of hypotheses 
onsidered has 
onstant likelihood. The

Minimum Message Length prin
iple a

esses this trade

o� between the 
omplexity of the hypothesis and the

likelihood of the hypothesis given some data. This is

a
hieved by 
omparing hypotheses using the two-part

en
oding of the hypotheses and the data given the hy-

pothesis (refer Se
tion 3). In this se
tion, the perfor-

man
e of this new interpretation will be investigated

through a series of experiments.

The major 
onsequen
e of this new interpretation of

O
kham's Razor on the experimental investigation is

that we are now 
on
erned with the 
omplete spa
e of

de
ision trees, and not only those 
onsistent with the

test data. Experimentation with the node 
ardinal-

ity obje
tive fun
tion requires a set of de
ision trees

that have a 
onstant likelihood given some data (e.g.

the set of 
onsistent trees). This is be
ause the node


ardinality obje
tive fun
tion does not in
orporate a

measure of the goodness of \�t" of a hypothesis. As

a result it will make no di�erentiation between two

trees with equal node 
ardinality even if one 
orre
tly


lassi�es all of the test data and the other does not


orre
tly 
lassify a single example.

The pra
ti
al investigation of this new interpretation

of O
kham's Razor follows a similar path to that taken

in the previous se
tion. Figure 4 displays the results

for experiments in
orporating the 
omplete spa
e of

de
ision trees. The experiments are otherwise iden-

ti
al to those 
ondu
ted in Se
tion 4.2, with the data

having no noise or dummy variables. The results found

demonstrate a smoother relationship between the mes-

sage length and the performan
e measures. This is

most likely the result of the greatly in
reased number

of experimental points used to 
reate the plots, as a

huge number of trees that are not 
onsistent with the

data are now in
luded in the averaged results. Never-

theless, these results do not provide 
lear support for

O
kham's Razor. A 
lear drop in the predi
tive error

and bit s
ore is seen for trees with message lengths of

around 65 bits, similar to that seen in the previous ex-

periments. Also, a trend of de
reasing average predi
-

tive error and bit s
ore starting for trees with message

length of around 80 bits and 
ontinuing to the trees

of maximum message length is again seen. In the �rst


ase we 
an o�er little explanation for this eviden
e

against O
kham's Razor. In the se
ond 
ase, as dis-
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Figure 4: Results With Complete Sear
h Spa
e


ussed in the previous se
tion, we believe the trend to

be the result of the small size of the data set.

5.2 ALTERNATIVE TRAINING DATA

GENERATION ALGORITHM

As dis
ussed in Se
tion 5, it is felt that the size of the

training data set is not adequate for the leaf distri-

butions to make a

urate predi
tions about the data.

In the previous se
tion the 
omplete spa
e of de
ision

trees was introdu
ed into the investigation. This se
-

tion extends these experiments by in
orporating a new

training data generation algorithm.

It should be possible to use some arbitrary number

of training examples for the purpose of de
ision tree

inferen
e. When training data is taken from a \real

world" data sour
e, in many 
ases, the number of sam-

ples that 
an be attained is only 
onstrained by the

time that is spend gathering the data. In 
ontrast

to the 
urrent method for attaining training data, in

\real world" data samples it is expe
ted that the data

examples may o

ur many times and with di�erent

frequen
y. Also, the data is a�e
ted by the measure-

ment error found in the experimental equipment and



often the attributes relating to the data are not obvi-

ous. Using this \real world" model, a new method

for data generation is suggested where by an arbi-

trary number of training data examples 
an be 
re-

ated. The method is given by the simple algorithm:

repeat until suÆ
ient examples are 
reated f

1. Randomly sele
t a permutation of the attributes

to 
reate a data thing.

2. Evaluate the 
lass of the data thing and with

some probability assign a noisy 
lass to the data thing.

3. Add the data thing to the training set.

g

When a data thing is a�e
ted by noise, the 
lass asso-


iated with its attribute ve
tor is assigned randomly

without referen
e to the true value. This means that

as the probability of noise approa
hes 1 the data be-


omes 
ompletely random. A \dummy" variable is in-


orporated into the data by simply in
luded it in the

attribute ve
tor of ea
h data thing and assigning it a

random value, thus it provides no information about

the true 
lass of the data thing. In a \real world" learn-

ing task, the performan
e of the inferred hypotheses

is assessed by testing the hypotheses on future data

samples. When using an arti�
ial learning task, the

hypotheses 
an be evaluated using the 
omplete un-


orrupted data set. With this algorithm we do not

expli
itly withhold a subset of the data set for testing,

although there is some probability proportional to the

size of the data set, that an example will be ex
luded.

Figure 5 displays the results found when a training

set of 200 examples is used with 0.3 probability of

noise and 1 dummy variable . In Se
tion 2, it was

dis
ussed that the ideal support for O
kham's Razor

would 
onsist of a smooth monotoni
ally in
reasing


urve over the entire message length domain. This is


learly demonstrated in Figure 5, whi
h satis�es these

requirement to near perfe
tion, in 
ontrast to the pre-

vious results shown in Figure 4. Results of near this

quality are seen for data sets as small as 30 training

examples and for noise levels as high as 0.5 probability.

6 CONCLUSION

The fo
us of this paper has been primarily to provide a

response to the growing number of empiri
al investiga-

tions (Murphy and Pazzani 1994,Murphy 1995,Webb

1996,Domingos 1999) that have appeared to dis
redit

the O
kham's Razor prin
iple as a ma
hine learning

obje
tive fun
tion. In parti
ular, we have fo
used on

the investigation taken on by Murphy and Pazzani

(Murphy and Pazzani 1994), who in their work pro-

pose node 
ardinality as an O
kham's Razor obje
tive
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Figure 5: Data With 0.3 Probability of Noise and 1

Dummy Variable

fun
tion for the indu
tion of de
ision trees. We have

proposed that the node 
ardinality obje
tive fun
tion

is a in
omplete interpretation of O
kham's Razor, and

that instead the MML message length is an e�e
tive

alternative in de
ision tree indu
tion.

From the experiments 
ondu
ted using the learn-

ing task proposed by Murphy and Pazzani (Murphy

and Pazzani 1994), it was shown that the message

length interpretation of O
kham's Razor 
learly out-

performed that of the node 
ardinality. The results,

however still did not provide undisputed eviden
e for

the O
kham's Razor prin
iple. We proposed a new in-

terpretation, whi
h is 
losely related to the MML and

Bayesian interpretations of O
kham's Razor: we pre-

fer a simpler hypothesis while the 
ombined 
omplex-

ity of its des
ription and the data given it, is shorter

than that of the 
urrent hypothesis. With this in-

terpretation, the 
omplete spa
e of de
ision trees was

in
luded in the investigation. Nevertheless, while the

experimental investigation of this new interpretation

yielded improved support for O
kham's Razor, the ev-

iden
e was still in
on
lusive. A new means for 
reat-

ing training data is proposed that is based on a \real



world" model, whi
h in
ludes repeated data points,

noise and dummy variables. Experimentation with

this new data generation algorithm produ
ed ex
ep-

tional results with respe
t to the \right"/\wrong" pre-

di
tion error and logarithm of probability bit s
ore.

In future work, it is hoped that the strong support

shown for O
kham's Razor in the 
urrent investigation


an be extended to the investigation of other learning

tasks, and alternative hypothesis spa
es. The inter-

pretation of O
kham's Razor proposed by Murphy and

Pazzani appears rather similar to that of the Akaike

Information Criterion (Akaike 1973, Forster and Sober

1994) and may well lead to 
omparable results. At this

stage, very few empiri
al 
ontradi
tions of O
kham's

Razor have been proposed - however, they have been

suÆ
ient to put the validity of O
kham's Razor into

question. It is our belief that before any 
on
lusions


an be rea
hed over the validity of O
kham's Razor

signi�
antly more empiri
al experimentation will be

required. A theoreti
al proof of our interpretation of

O
kham's Razor is 
urrently unavailable, but many

well lie in the realms of 
omplexity, information and

probability theory. While this investigation would ap-

pear to be the �rst expli
it investigation of the message

length interpretation of O
kham's Razor, the strength

of the MML inferen
e te
hniques promise mu
h poten-

tial for future work.
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