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Abstract

The classical minimal model of glucose disposal
was proposed as a powerful modeling approach
to estimating the insulin sensitivity and the glu-
cose effectiveness, which are very useful in the
study of diabetes. The minimal model is a highly
ill-posed inverse problem and most often the re-
construction of the glucose Kinetics has been
done by deterministic iterative numerical algo-
rithms. However, these algorithms do not con-
sider the severe ill-posedness inherent in the min-
imal model and may only be efficient when a
good initial estimate is provided. In this work we
adopt graphical models as a powerful and flexible
modeling framework for regularizing the prob-
lem and thereby allow for estimation of the in-
sulin sensitivity and glucose effectiveness. We il-
lustrate how the reconstruction algorithm may be
efficiently implemented in a Bayesian approach
where posterior sampling is made through the
use of Markov chain Monte Carlo techniques.
We demonstrate the method on simulated data.

1 INTRODUCTION

Diabetes is associated with a large number of abnormalities
in insulin metabolism, ranging from an absolute deficiency
to a combination of deficiency and resistance, causing
an inability to dispose glucose from the blood stream.
Three factors, referred to as The Metabolic Portrait (Pacini
and Bergman, 1986), play an important role for glucose
disposal

Insulin sensitivity: the capability of insulin to increase
glucose disposal to muscles, liver and adipose tissue.

Glucose effectiveness: the ability of glucose to enhance
its own disposal at basal insulin level.

Pancreatic responsiveness: the ability of the pan-
creatic B-cells to secrete insulin in response to
glucose stimuli.
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Failure in any of these may lead to impaired glucose tol-
erance, or, if severe, diabetes. Quantitative assessment is
possible by the The Minimal Model (Bergman et al., 1979),
and may improve classification, prognosis and therapy of
the disease (Martin et al., 1992).

The minimal model is based on an Intravenous Glucose
Tolerance Test (IVGTT), where glucose and insulin con-
centrations in plasma are sampled after an intravenous glu-
cose injection. In the minimal model the glucose and in-
sulin kinetics are described by two components, where
the parameters traditionally have been estimated separately
within each component. The glucose-insulin system is an
integrated system and coupling of the components to obtain
a unified model seems appropriate. However, this leads to a
highly ill-posed inverse problem and it can easily be shown
that, for even commonly observed combinations of param-
eter values the system may not admit a well-defined equi-
librium.

In the Bayesian approach for solving ill-posed inverse
problems presented here, the available priori information
is used to construct an efficient representation of the un-
known quantities to be recovered. Thus we combine the
components to obtain a unified model, and by adopting a
graphical model (Lauritzen, 1996), we estimate the param-
eters in a Bayesian approach, where posterior sampling is
performed by Markov chain Monte Carlo (MCMC) meth-
ods.

2 BERGMAN'SMINIMAL MODEL

In an IVGTT study a dose of glucose (usually 0.3 gr of
glucose per kg body weight) is administered intravenously
over a 60 seconds period to overnight-fasted subjects, and
subsequently the glucose and insulin concentrations in
plasma are frequently sampled (usually 30 times) over a
period of 180 minutes. Data from a normal glucose toler-
ant individual is shown in Figure 1 (Pacini and Bergman,
1986).

The intravenous glucose dose immediately elevates the glu-
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Figure 2: ‘Bergman’s Minimal Model” describing the glucose and insulin kinetics in an IVGTT study.
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Figure 1: Glucose and insulin concentrations in plasma fre-
quently sampled over 180 minutes after an intravenous glu-
cose injection given to a normal glucose tolerant individual.

cose concentration in plasma forcing the pancreatic 3-cells
to secrete insulin. The insulin in plasma is hereby in-
creased, and the glucose uptake in muscles, liver and tis-
sue is raised by the remote insulin in action. This lowers
the glucose concentration in plasma, implying the 3-cells
to secrete less insulin, from which a feedback effect arises.
This integrated glucose-insulin system is illustrated by the
compartment model in Figure 2, which can be described by
the following non-linearly coupled system of differential
equations (see e.g. Gaetano and Arino (2000) for details)

G@1t) =-pi(G(t) — Gp) — X1)G(t), G(0) =Gy,
X(t) = -pX(t) + ps(I(t) — L), X(0)=0,
I(t) = -n(I(t) - L) +v(G(t) — h)*t, I(0) = Io,

where t = 0 is the glucose injection time, + denotes
positive reflection and

G(t): the glucose concentration in plasma [mg/dI] at time ¢
[min].
I(t): the insulin concentration in plasma [pU/ml] at time ¢
[min].
X (t): the insulin’s effect on the net glucose disappearance
(remote insulin in action) [min™'].

Gy: the basal preinjection level of glucose [mg/dl].
Iy: the basal preinjection level of insulin [pU/mI].
p1: the insulin-independent rate constant of glucose up-
take in muscles, liver and adipose tissue [min~'].
po: the rate for decrease in tissue glucose uptake ability
[min~!].
p3: the insulin-dependent increase in glucose uptake abil-
ity in tissue per unit of insulin concentration above I;
[min=2(pU/ml)~1].
n: thefirst order decay rate for insulin in plasma [min~!].
h: the threshold value of glucose [mg/dl] above which
the pancreatic 3-cells release insulin.
~: the rate of the pancreatic 8-cells’ release of insulin
after the glucose injection and with glucose concen-
tration above A [(uU/mlmin~—2(mg/dl)~'].
Go: the theoretical glucose concentration in plasma
[mg/dl] at time 0.
Iy: the theoretical insulin concentration in plasma
[zU/ml] at time 0.

The metabolic portrait of a single individual is then
determined by the following parameters

Insulin sensitivity: Sr = @,
D2
Glucose effectiveness: Sa =p1,
. . Imax - Ib
Pancreatic responsiveness: ¢ = ————,
n(Go — Gb)
¢2 =y x 104,

where Inax i the maximum value of insulin in plasma.
Note that S; is measured in (zU/ml)~! per minute, Sg in
min~" and ¢; in min~! xU/ml per mg/dl.

The model parameters have usually been estimated by a
non-linear weighted least squares estimation technique in
a two-step procedure, where the parameters in G and X
are estimated using insulin as a forcing function and then
the parameter in I are estimated using glucose as a forcing
function. However, the glucose-insulin system is an inte-
grated system, and must be considered as a whole.



3 BERGMAN'SMINIMAL MODEL ASA
STATISTICAL MODEL

The glucose and insulin concentrations are positive, and ex-
perience shows that the variability in the samples increases
with the mean. Therefore we assume that both G(t) and
I(t) are log-normally distributed and introduce

(0 =logGl) = ()= 50,
o) =log X() = (t)= igg
i) =logI(t) = i(t) = %2

where g(t) and i(t) are normally distributed. This logarith-
mic transformation implies that the minimal model can be
rewritten as

§(t) = —p1(1 = Gpe 9¥) — ",

(t) = —pa(1 = Si(e'® — I)e™*)), @)

i(t) = —n(1 —e_i(t)Ib) + e_i(t)'y(eg(t) — h)*t,
subject to the initial conditions

9(0) = log(Go),
z(0) = —oo,

i(0) = log(Lo).

Hereby the minimal model has no unit of measurement, and
the three processes can be re-parameterized, such that they
are on the same scale.

Glucose disposal described by the deterministic minimal
model in (1) may, however, not comply with the actual
glucose and insulin time courses from an IVGTT study.
We therefore introduce a stochastic version of the mini-
mal model, where Brownian motion fluctuations B¢, B*
and B* are used to model possible model deviations, i.e.
the stochastic minimal model takes the differential form

dg(t)=(— pr(1—Gpe9M) — e*D)dt + r1/2dB?(t),
dz(t) = (= po(1=S1(e’) = I,)e * D)) dt+1, 1/2dB*(t),
di(t) = (—~ n(1—e O L) + ey (es® — p)+t)dt
+7, '?dBi(1),
where 7,4, 7, and 7; denote the reciprocal variances (the so-
called precisions) of the Brownian motions accounting for
model deviations. The analysis of the differential form of
the stochastic minimal model can be transferred by simple

integration to that of an equivalent set of integral equations,
e.g. for g(t) we obtain

t+At
gt + At) —g(t) = / (—p1(1 — Gpe™90) — e2W)dt
t

+7Y2(BI(t + At) — BI(1)).

The involved unknown integral is approximated by the
product between its width and its left end point, that is

g(t+At) = g(t)— At(p: (1 —Gpe9) —ex(t)) +€](At),

where the random process e/ (At) = 75 “/*(B9(t + At) —
B9(t)) is well-known to depend on At only and to follow
a normal distribution with mean zero and variance 7-9—1At.

If we introduce a more convenient notation using ¢ as a
subscript, e.g. g(t) = g¢, then the stochastic minimal model
can be rewritten as

girar = [9(ge, 7, At) + €/ (At),
T+ At = fz (.Z't, it, At) + 6? (At),
it+At = fi(ita 9t At) + Ei (At)a

where

f%ge, x, At) =g — At(p1(1 — Gpe %) + €™),
[ @ty ie, At) =24 — Atpa (1 — Sp(e™ — I)e™™),
fiie, ge, At) =i+ At(—n(l — e 1)
+ e y(e? — h)Tt),

and we for notational convenience have sup-
pressed the functional dependencies of the parame-
ters p1, p2, Sr, Gy, Ip,n,y and h.

The conditional distributions for the processes g;yat,
Ze+-Ar and iz A are given as

gt+At|gt;~'EtaTg ~ N(fg(gtvmt’At)’Tg_l)’
Tt At | "L't;it;T:c ~ N(fz(mhitaAt)aT;l)a (2)
Gea | ity 9o, Ti ~ N (f2(ig, g, AL), 7, 1).

The statistical dependencies in this model specifies a
directed graphical model (Lauritzen, 1996) that can
be illustrated by the directed acyclic graph in Fig-
ure 3, in which we have omitted the parameter ver-
tices p1, pa2, S1, Gs, In, n, v, h, 74, 7; and 7,,. In addition we
have added the random variables

g¢ =log(GY) and iy = log(I}),

where G and I are the random variables actually ob-
served for specific values of ¢.

We model the measurement error on g¢ and ¢ by the ran-
dom white noise processes; €/ and e with precisions 7.
and 7., i.e. the model assumptions for g7, A, and i¢, A, are

9rarl GeranTge ~ N(giyar, 700),

. . . @)
2y ar lierae, 7o ~ Nirar, To').
Notice that the mean structures of the logarithmically
transformed observations are modelled by the underlying
non-observable and hereby latent processes g:+a¢, TrrAt
and it-l—At-
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Figure 3: Directed acyclic graph illustrating the statistical
dependencies for the g, x and 4 processes.

4 SIMULATION BASED INFERENCE

If we assume that ¥ = {g¢,x¢,49:}ten, Where A =
{At,2At,..., NAt}, denotes the three latent processes
in (2) and that the observed data are described by the model
given in (3), then the statistical problem is to estimate the
vector of unobserved parameters

0= (p17p2751a73n7h5Gbalb7907i037gaTmaTiaTg°7Ti°)

given the vector of the logarithmically transformed obser-
vations ® = {g7,i{ }+e7, where T denotes the set of ob-
servation times. For this we need to establish the posterior
distribution 7(©, ¥ | &), which represents our beliefs about
the feasible structures of (©, ¥) after having observed the
data ®. Dividing all the quantities into subsets of data, @,
latent processes, ¥ and parameters, ©, the statistical de-
pendencies in the model defined in (2) and (3) can be sum-
marized by the simple directed acyclic graph in Figure 4,
where it should be noticed that the time aspect depicted in
Figure 3 has eventually vanished.

?

Figure 4: Directed acyclic graph illustrating the statistical
relationship for the observed data, @, the latent variables,
¥, and the parameters, ©.

The recursive factorization of the directed graphical model

implies that the posterior distribution factorizes as
(0, ¥ |®) o p(O)p(¥ |O)p(® |6, ¥),

where p(©) represents our beliefs about the parameters be-
fore having observed any dataand p(¥ | ©) and p(® | ©, )
form the likelihood determined by (2) and (3). Performing
inference about the parameters are reduced to the compu-
tational task of evaluating integrals over the state space of
the latent variables and parameters, e.g.

E, (0) ://@w@w(@,m@)d@dw.

Explicit evaluation of such integrals are impossible due to
the huge state space, however, MCMC methods provide
an approximative integration technique whereby marginal
posterior means, for example, are estimated by using
the sample mean from a representative series of random
draws from the posterior distribution. These random
draws are obtained by constructing an irreducible Markov
chain {(0y,¥,), (02, ¥5),...} with state space @ x ¥
and with stationary distribution 7. MCMC sampling was
first introduced by Metropolis et al. (1953) and was sub-
sequently adapted by Hastings (1970). Over the past ten
years such methods have enjoyed widespread popularity
within the statistical literature and there exist various stan-
dard techniques for constructing the necessary chains (see
e.g. Brooks, 1998; Robert and Casella, 1999).

4.1 Metropolis—Hastings updates

Metropolis—Hastings updates are used to move around
the parameter space by proposing moves which are sub-
sequently either accepted or rejected.  Suppose that
we are currently in configuration (©, ¥), then we draw
a new configuration (©',®') from some proposal den-
sity ¢(©, ¥; @', ¥'). This proposal is then accepted with
probability

! ! ! I.

" m(0,¥]d)q(0,T; 0, )

However, if the proposal is rejected, the chain remains in
the current state. Many proposal distributions lead to ir-
reducible Markov chains which ensure the convergence of
the posterior mean estimate, though several forms possess
useful analytic properties. For example, when the pro-
posal distribution ¢ is symmetric, i.e. ¢(©,¥; 0’ ¥') =
q(®', ' ©, W), the acceptance function reduces to

o T s W(Gla'l'l“b)
a(@,\I!,G,lIJ)—mln{l,iﬂ_(@,wlé) ,

which is essentially the original Metropolis update pro-
posed by Metropolis et al. (1953).



4.2 Implementation

One approach for a MCMC simulation algorithm for the
stochastic minimal model is successive updates of each un-
known quantity given all the remaining quantities of the
model. Due to the recursive factorization property of the
directed graphical model the acceptance probabilities only
depend locally on the updated quantity itself, its parents,
its children and its childrens other parents, the so-called
Markov blanket. This approach eventually appears to be
very inefficient due to bad mixing properties of the algo-
rithm caused by the highly correlated quantities.

Another approach would be to block the updates into ©
and U, by first proposing a new state of the parameters ©'
drawn from a symmetric proposal distribution ¢(©;@").
Conditioned on ¥ and & the acceptance probability sim-
ply becomes

oo [, PO 0p(@ |0, B)
«(0:0) = {1’ P©)p(T[0)p(®6, ) }

Then afterwards updating ¥ by proposing a new state ¥’
drawn from a symmetric proposal distribution ¢(¥; ¥'),
where the acceptance probability conditioned on © and ®
is

p(¥'|©)p(®|6,¥')
p(¥]0)p(2]0,¥) [

a(¥; ¥') = min {1, (

However, again the highly correlated quantities are ex-
pected to lead to a very inefficient MCMC simulation al-
gorithm.

Alternatively we choose to update ® by proposing a can-
didate ©' from a symmetric proposal distribution ¢(©; ©')
and then simulate ¥’ from p(¥ | ©'). This proposal is sub-
sequently accepted with probability

0)p(¥'|0")p(® |6, ')

a @7‘11;6)/7‘1(/ — l,p( ’ .
( ) { P(©)p(¥ [©)p(T |0, T)

By updating ¥ and © simultaneously we may suppress the
strong inter-relation between them, and thereby improve
the simulation algorithm’s mixing properties and overall ef-
ficiency.

In order to guarantee that the posterior distribution is dom-
inated by the likelihood, we adopt a vague prior distri-
bution p(©) on ©. Thus we assume that the elements
of © are independent and that each of the system param-
eters p1,p2, St,m,7, h, Gp, Iy, go and ig are log-normally
distributed and that the precisions 7, 7, 74, 4o and ;. are
Gamma-distributed, all with large variances.

Consequently the prior density takes the simple form

p(0) = p(p1)p(p2)p(S1)p(n)p(7)p(h)p(Gs)p(Is)
x p(g0)p(io)p(79)p(T2 ) p(Ti) (140 )p(Tic),

where the densities are either densities of a log-normal dis-
tribution or a gamma distribution.

Using the recursive factorization of the directed graphical
model in Figure 3 it is easily shown that

p(¥|0) = Hp(gt | 9t—at, Te—at, Ty)

teA ]
X p(mt | Tt At LAt Tz)

X (it | Ge—At, Gt—At> Ti)

& (1y75) N2 exp{ -V (¥, 0)},

with
ZTg V2 7s (= £7)? 4l — )2,
teA
and
I{ = f2(gt—nt, Te—at, At),
I = [P (@e—Ar, t—nar, AL),
fi = Fi(it—at, gi—n, At).
Furthermore
p(®10,9) = [] p(9f | 97— at> T2 )P(if | i ny, Tie)
teT
X (TgaTiu)lT‘/z exp{—W(@, ®7 lI’)}a
with
W(®,0,¥) ZTQ 0 — g0)% + 0 (i0 — ir)?,

2T
where | 7| denotes the number of observations.

In practice the Metropolis—Hastings updating scheme de-
scribed above can be used either to update the entire state
vector or individual elements therein. Since proposals con-
sisting of perturbations of the entire state vector tend to
have correspondingly small acceptance probabilities, the
proposed perturbations need to be kept at a suitable small
level in order to achieve a satisfactory acceptance proba-
bility. However, this full component Metropolis—Hastings
updating technique is known to lead to a Markov chain with
slow convergence properties and therefore typical MCMC
algorithms consist of a sequence of updates focusing upon
each element of the state vector in turn. In Section 5, we
shall combine this approach, known as single component
Metropolis—Hastings, with updating of the entire vector to
obtain a MCMC simulation algorithm with good conver-
gence and mixing properties.

5 RESULTS

In this section we consider the performance of our approach
on data simulated from the stochastic version of the mini-
mal model derived in Section 3. The simulated data comes



Table 1: The choice of parameter values used for simulating the data depicted in Figure 5, prior assumptions, proposal
distributions (numbers indicate the standard deviances of the proposals), initial values and the resulting posterior means,
standard deviances and credible intervals for the unknown parameters.

One component Full component 95% C.1.
Parameter  Truth Prior proposal (o) proposal (o) Initial Mean St.d. Lower Upper
P1 0.0317 log N'(0.025,1/36) 1/1000 1/10000 0.0100 0.0316 0.0023 0.0271 0.0361
P2 0.0123 log N'(0.01,1/36) 1/1000 1/10000 0.0300 0.0107 0.0018 0.0072 0.0142
S 0.0004 log N'(0.0005, 1/36) 1/600000 1/800000 0.0001 0.0005 0.0001 0.0003 0.0007
o 0.0039 log N'(0.0028, 1/36) 1/400000 1/800000 0.0010 0.0042 0.0002 0.0038 0.0046
n 0.2659 log N'(0.2,1/25) 1/200 1/5000 0.1000 0.2640 0.0089 0.2465 0.2814
h 79.0353 log N (100, 1/25) 1/2 1/20 100.0000 80.2576 1.3670 77.5783 82.9370
Go 291.2000 log N'(300,1/64) 1/20 1/40 200.0000 289.3832 3.4804 282.2594 296.6869
Gy 60.0000 log N'(60,1/200) 1/4 1/40 60.0000 62.2412 2.1782 57.9719 66.5105
Io 364.8000 log N'(350,1/64) 1/20 1/80 400.0000 344.1208 16.1917 313.4896 377.7450
Iy 7.0000 log N (7,1/200) 1/40 1/80 7.0000 6.7806 0.1125 6.5601 7.0011
T 15000 I'(15,0.0005) 1000 200 20000 13266 2443 8491 18055
Tgo 500 I'(1,0.001) 25 - 50 463 115 236 690
T;0 100 I'(1,0.001) 25 - 50 132 33 67 197

from a normal glucose tolerant individual with basal in-
sulin level I, = 7 pU/ml and basal glucose level G = 60 St
mg/dl, i.e. we have chosen parameters according to the nor- °
mal glucose tolerant population, see Table 1 for specific
details.

The logarithmic transformation of the three latent
processes brings them approximately on the same
scale.  We will therefore assume that the Brownian
motions inherent within each process are indepen-
dent and identically distributed. Subsequently we 5 = o s
let 7 = 1, = 7, = 7, whereby we have reduced the Time (minutes)

number of parameters to be estimated. The three latent
processes i(t),z(t) and g(t) were simulated according
to (2) with At = 1. The data available for statistical
inference was then generated according to (3) with obser-
vations recorded at ¢ € T, where T = {0,2,3,4,5,6,
7,8,10,12,14, 16,19, 22,23, 24, 25,27, 30, 35, 40, 50, 60,
70, 80,90, 100,120, 140,160,180}. The data obtained
is depicted in Figure 5 together with the three latent
processes. It is apparent that the injected glucose at t = 0
provokes an initial increment in glucose. By approximately ‘ ‘ ‘
60 minutes glucose is normalized, and in the following 50 100 150
two hours, a moderate undershoot is observed. Note Time (minutes)

how hyperglycemia induces an immediate peak in insulin
followed by a second phase pancreatic responsiveness.

Glucose (mg/dl)
200

100

0.01
T

Remote insulin (time™1)
0.005

o

300
T

A MCMC simulation algorithm was constructed as de-
scribed in Section 4. However, in order to efficiently ex-
plore the state space ® of © we propose combining the
single component Metropolis—Hastings algorithm with the
updating mechanism for the entire vector of parameters, i.e.
the full component Metropolis—Hastings algorithm. Thus
we may suggest more radical perturbations of the parame-
ter of interest when using the single component Metropolis- 50 1_60 150

Hastings algorithm whereas less radical perturbations are Time (minutes)

proposed when updating the entire vector. We base our a  Figure 5: Simulated data. From top to bottom is shown:
priori knowledge upon reported normal ranges for the pa-  The glucose concentration; the remote insulin action; and
rameters of interest, however, we may pre-record approxi-  the insulin concentration. Dots represent observed data and
mate basal lines in glucose and insulin prior to the exper- the lines represent the underlying processes.

Insulin (pU/mlI)
200

100

o
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Figure 6: Trace plots from the Markov chain: From top to
bottom: The trace plot of the glucose effectiveness S¢ and
the insulin sensitivity Sy.

iment and will therefore model these two quantities with
highly informative priors. Table 1 provides details on the
prior information used within the MCMC simulation.

The MCMC simulation algorithm is based upon the ran-
dom walk Metropolis—Hastings updating mechanism. Thus
a candidate ©' is generated by a symmetric perturbation
of the current state O, i.e. for the full-component pro-
posal distribution we will choose ®' ~ A/(©,X), where
¥ = diag(o2,,...,02) is the diagonal covariance matrix
specified by the standard deviances provided in Table 1.
Likewise we update the single elements in ® by random
walk Metropolis—Hastings. Note that we update 74. and
T;0 Separately.

The MCMC algorithm was initiated in an arbitrary vector
O, far from the “true’ ©, see Table 1 and ran for 10 000 000
iterations. The chain proposes single component updates
30 per cent of the time leading to an overall acceptance
probability of 54.7 per cent. In Figure 6 we give the trace
plots for the latter 5000000 samples obtained for the glu-
cose effectiveness, Sg, and the insulin sensitivity, S;.

The trace plots for the remaining parameters in © ex-
hibit similar behavior and it is therefore apparent that the
Markov chain exhibits rather excellent mixing properties.
Inference about © is based upon the latter 5000000 sam-
ples. The posterior means and 95 per cent credible inter-
vals for the parameters are given in Table 1, from which we
may conclude that the Markov chain is sampling from the
desired distribution. Note that all the ‘true’ values of the
parameters are within the corresponding credible intervals,
implying that the Bayesian approach to ill-posed inverse
problems is a useful tool for regularization of the minimal
model.

0.01

Remote insulin (time 1)
0.005

o | | |
0 50 100 150

Time (minutes)
Figure 7: Posterior mean (white line) and 95% credible in-

terval superimposed in gray for the remote insulin action
(black line).

Furthermore, our approach also allows us to assess the un-
certainty on the latent processes, e.g. the remote insulin ac-
tion may be of special interest. The posterior mean of X (t)
is shown in Figure 7 together with its 95 per cent credible
interval.

6 DISCUSSION

In this work we have adopted a graphical model as a pow-
erful and flexible modeling framework for parameter esti-
mation in general systems of coupled differential systems.
In particular we have addressed the problem of regulariz-
ing the highly ill-posed inverse problem possessed by cou-
pling the three differential equations in Bergman’s minimal
model for glucose and insulin kinetics. We have illustrated
how the reconstruction may efficiently be implemented by
a Bayesian graphical model where posterior sampling is
performed through the use of Markov chain Monte Carlo
techniques. Hereby we have made estimation of the highly
correlated parameters in the minimal model possible even
though we consider all three differential equations simulta-
neously, and we have provided a quantitative assessment of
the metabolic portrait of a single individual, which is very
useful in the prognosis and prevention of diabetes.

The method has been performed on simulated data and
seems rather promising and very robust, but must also be
proven useful on real field data. The Bayesian approach is
based on specification of prior distributions on the param-
eters, which is a strength when prior information is avail-
able. We have used priors based on reported normal ranges,
but with relatively large variances, requiring a prior sensi-
tivity analysis to be considered.



The minimal model is developed for a single individual,
and the extension to population modeling for the purpose
of validating the normal metabolic portrait, is a potential
of our method that is worth pursuing. However, this would
probably require an even faster and more efficient simu-
lations algorithm based upon e.g. the Metropolis adjusted
Langevin algorithm.
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