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Abstract

This paper presents and demonstrates a new
approach to the problem of planning under
uncertainty. Actions are treated as hidden
variables, with their own prior distributions,
in a probabilistic generative model involv-
ing actions and states. Planning is done by
computing the posterior distribution over ac-
tions, conditioned on reaching the goal state
within a specified number of steps. Under
the new formulation, the toolbox of inference
techniques be brought to bear on the plan-
ning problem. This paper focuses on prob-
lems with discrete actions and states, and
discusses some extensions.

1 Introduction

Planning under uncertainty is a central problem in ar-
tificial intelligence and has applications in many do-
mains. In the AI, control theory, and decision the-
ory literature, planning (or sequential decision mak-
ing) problems are often formulated using a dynamic
Bayesian network with nodes corresponding to actions,
states and rewards [1-3]. Such networks are termed
influence diagrams or decision networks. Tradition-
ally, the task has been defined as selecting an ac-
tion sequence that maximizes the mean total reward.
This requires searching the space of all possible action
sequences and computing the mean total reward for
each. Existing approaches to performing this search
efficiently, starting with Bellman’s work in the 1950s,
seek an optimal policy, which is a mapping from states
to actions. An optimal policy is computed using vari-
ants of the policy iteration or value iteration methods.
Such methods work well for problems with fully ob-
servable states, where the states are discrete and the
state space is relatively small. However, many cases
of interest involve continuous or partially observable

states, which pose difficult challenges for these meth-
ods. Whereas much recent work has attempted to
meet these challenges (see, e.g., [4-7]), planning under
uncertainty remains an open problem and the subject
of active research.

This paper presents and demonstrates a new approach
to selecting an optimal action sequence. It is moti-
vated by the observation, which is perhaps a bit con-
troversial, that the traditional approach may be at-
tempting to solve a more difficult problem than nec-
essary. First, many scenarios of interest do not inher-
ently involve rewards. For instance, consider an agent
navigating a maze, whose task is to reach an exit; or a
chess playing agent, whose task is to defeat its oppo-
nent. The traditional approach adds to these problems
a positive reward, given to the agent upon successfully
completing the task, and perhaps additional positive
and negative rewards along the way. The augmented
problem may be formulated as a reward maximization
problem. However, such tasks can also be formulated
simply as reaching a state which is specified as a goal
state; augmenting the problem with rewards is just a
technical device which facilitates attacking them us-
ing policy/value iteration and their variants. Second,
even in scenarios that inherently involve rewards, we
suggest that the task may often be reformulated as
reaching a goal state corresponding to maximal total
reward.

In the following, we cast the problem of action selec-
tion as a problem of probabilistic inference in a gener-
ative model. We use models where actions are treated
as hidden variables with their own prior distributions,
and where one (or more) of the states are designated
as goal states. We also specify a number N of actions
the agent is allowed to take. We then compute the
posterior distribution over the actions, conditioned on
arriving at the goal state within N steps. The action
sequence most likely to produce the goal state is the
one which maximizes that posterior.

Here is the main contribution of our approach: under



the new formulation, the whole toolbox of inference
techniques, both exact and approximate, can now be
brought to bear on the planning problem, potentially
resulting in many new algorithms for a variety of sce-
narios. In addition, our approach differs in important
technical respects from existing methods. For exam-
ple, whereas in the traditional framework, problems
with partially observable states are intractable, in our
approach some of these problems (see Section 7) are
tractable, and are treated on the same footing as prob-
lems with fully observable states. For those problems
that are intractable in our approach (see Section 8),
a new class of algorithms may be derived based on
approximate inference techniques.

This paper focuses on problems with discrete actions
and states, and discusses some extensions.

2 The State-Action Model

Assume an agent may be in one of M states, and let
sn denote its state at time n. At each time, the agent
may take one of K actions. Let a, denote the action
taken at time m. We assume that an action changes
the agent’s state in a stochastic manner. Taking ac-
tion a,, in state s, brings the agent to state s, 41 with
probability p(sp+1 | @n, sn). Starting from the initial
state s; = 7 and allowing the agent to act for N time
points, the task of planning is to select an action se-
quence ai.y = (a1, ...,ay) that would take the agent
to the goal state sy+1 = g.

Here we focus on the case where the states are com-
pletely observable, i.e., after taking action a,,, the state
Sp is known with certainty. The case of partially ob-
servable states will be discussed later.

The planning problem can be cast in the form of an
inference problem in a probabilistic generative model
as follows. Define the transition probabilities

p(sn = SI | Sp—1 = S,An—-1 = a) )\s’sa 5
plan, = d |an—1=a) = Nua (1)
forn=2:N+1, and
plar =a) =1 (2)

for n = 1 (note that we fix s; = ¢). Our model is
defined by the joint probability over all states and ac-
tions, which is given by the product of the transition
probabilities over time,

N

psanit,a1:n) =[] P(sn | sn-1,an-1)p(an | an-1)
n=2
pla)p(snt1 | s, an) - (3)

The model parameters are 0 = {\g/sa, Ma’asNa }-

Next, we consider the posterior distribution over ac-
tions by

plarn | $1=1,5v41 =9), (4)

which is the distribution over actions conditioned on
the initial state being ¢ and the final state being the
goal g. This distribution can be computed from our
model via Bayes’ rule. We define a plan as the ac-
tion sequence a;.n that maximizes the posterior over
actions,

a1y = argrglalicp(alw | 81 =1,5N41 = 9) . (5)
1:

Computing this sequence is referred to as planning.

Planning thus defined selects an action sequence which
maximizes the probability of reaching the goal, with
a bias toward a pre-defined action sequence. To see
this, observe that the posterior over actions satisfies
plain | s1,88+41) X p(SN+1 | @1:n, 51)p(a1:.n). Hence,
the selected sequence maximizes a sum of two terms,

41§ = arg max logp(snt+1 =g | a1.n, 51 =1)
1:
+logp(ai.n)] ,

where the first term is the log probability of arriving at
the goal state g starting at the initial state ¢ and taking
N steps, and the second term is the log prior distribu-
tion over actions p(aj.n). The prior over actions can
be used not just to bias the plan toward a particu-
lar action sequence (the mean of the prior), but also
to restrict the allowed actions to a particular regime,
which may be achieved by setting the prior to zero (or
making it vanishingly small) outside that regime.

One interesting point about our use of inference is that
we are inferring hidden variables conditioned on data
that we wish to observe in the future. Usually in gen-
erative models, data observed up to the present time is
used to infer the value of hidden variables most likely
to have generated the data. For instance, in classifi-
cation problems, inference is used to identify the class
label corresponding to the pattern at hand. But in our
formulation of planning, inference identifies the action
sequence that would be most likely to generate the
desired goal state within N steps.

3 Planning Algorithm

We now provide an algorithm for computing an opti-
mal plan, assuming the model parameters are known.
Our model may be viewed as a hidden Markov model
with all variables being hidden, except s; and sy41.
The following algorithm can be shown to be equivalent
to the Baum-Welch technique adapted to our case; the
derivation is omitted.



We start by introducing the quantities z, (s, a) defined
below. We also define the quantities g, (s’,a’ | s,a)
and g, (a’ | a) forn=2,....N, and ¢ (a’) for n = 1, by

qn(s/7a/ | 87@) = (6)
p(sn=8a,=0a |sp_1=5a,_1=0a,5n11=9)
and

pla, =a' | an—1=a,81 =i,y =g)

pla; =d | s1 =1i,88y11=9) - (7)

gn(a’ | a) =
qa(d) =

The z, will turn out to be normalization constants of
the ¢,,.

Backward pass. Initialize
ZN+1(s,a) =1 (8)

for all s,a. Then, for n = N, ..., 2 compute

1
QTL(S/aa// | s,a) = m/\s'sana'azn+1(8/7a/)
Zn(S, CL) = Z )\s’sana’a«zn—i-l (3/7 a/) . (9)

s'a’

For n = N, the above equations are modified by a mul-
tiplicative factor of Agerq/. Next, for n =1 compute

1 .
;lna/ZQ(Zv a )

S tzaliya) (10)

q(d) =

zZ1T =

Forward Pass. For n = 2,..., N compute
qn (s’ d") = an(s’,a’ | s,a)qn—1(s,a) (11)
sa
and

Z/: Qn(slv a/ | S, a)anl(& a)
qn(a’ [ a) = == (12)

ZS: anl(sa a)

Planning. We now have

=

plain | s1 =1, 5N41=9) = qn(an | an—1) . (13)

I
—

n

The optimal sequence a1,y (5) may be computed from
it by the Viterbi algorithm.

4 Learning Algorithm

The next section discusses the mechanism for action
selection. Here we assume that we have such a mech-
anism, and that the agent has used it to select a se-
quence (or several sequences) of actions. Using these

actions and the resulting sequence of states, maxi-
mum likelihood estimation of the model parameters
is straightforward. The agent learns Ays, and 7,4
simply by counting,

Near
)\s’sa m ’
Na’a
Na'a = ) (14)

§ al’ Na'a

where ny 4, is the number of times taking action a at
state s resulted in a transition to state s’, and ng, is
the number of times the agent took action a’ following
action a.

It is also straightforward to incorporate prior knowl-
edge (or bias) on these parameters, using prior distri-
butions on the model parameters, p(Ag/sq) and p(narq)-
In our case where both states and actions are discrete,
a convenient standard choice for each of these priors
would be a Dirichlet distribution. A MAP estimate of
the parameters using Dirichlet priors would modify the
above estimates by an additional term. Posterior dis-
tributions over the parameters may also be computed,
reflecting uncertainty in their estimates, as discussed
in the last section.

5 Action Selection and
Explore-Exploit

We introduce two primary modes of action selection.
The first is explore mode, where actions are selected by
sampling from a probability distribution. In this mode
we describe two secondary modes. In pure-explore
mode the agent samples from the prior over actions
p(a1.n). In post-explore mode the agent samples from
the posterior over actions, conditioned on the initial
and goal states (4). The second primary mode is ez-
ploit mode, where the selected action sequence maxi-
mizes that posterior as in (5).

These modes exhibit obvious differences when used to
select actions after the learning phase has been com-
pleted. Actions selected in pure-explore mode do not
reflect any information acquired by the model. In con-
trast, actions selected in post-explore and in exploit
modes do reflect such information. Whereas exploit al-
ways selects the optimal action sequence, post-explore
may select other actions as well.

More important are the differences between the modes
when used during the learning phase. Notice that Eq.
(5) would select an optimal action sequence after learn-
ing if, during learning, the agent has acquired enough
information to predict with high probability that the
sequence would bring it to the goal state. For this
to happen, the agent should have tried that sequence,
or nearby ones. If one uses pure-explore throughout



the learning phase, the model could learn the conse-
quences of actions in a range as wide as the prior over
actions allows. This would increase the accuracy of
the posterior over actions (4) and facilitate selecting
the optimal action sequence after learning. During
learning, however, only occasionally would the agent
select the optimal action sequence.

Compared to pure-explore, acting during learning in
post-explore or exploit mode differs in two important
respect. First, actions are selected from a narrower
range, since the posterior is narrower than the prior.
Second, this range changes with time, since the poste-
rior is modified as additional data updates the model
parameters. Hence, it depends on the initial condi-
tions and on the initially selected actions. Now, if the
agent happened to try actions near the optimal action
sequence during learning, and discovered the optimal
one, the posterior over actions would quickly start fo-
cusing on it. Thus, subsequent actions are likely to
be optimal (or near optimal) as well, and so would be
actions in exploit mode after learning. But, it may
also happen that the agent never gets near the opti-
mal sequence during learning. In that case, the agent
will select suboptimal actions both during and after
learning.

This discussion motivates one to use the following pol-
icy during learning. Start by acting in pure-explore,
then switch to post-explore, using either a soft or a
hard switch. One way to model this is by sampling ac-
tions from the distribution pjeqrrn, defined by the mix-
ture

Plearn (alzN) = (]- - a)p(alzN)
+ ap(ar.y | s1=1,5y41 = g) (15)

where 0 < « < 1 is the switch. Note that one could
also switch from pure-explore to exploit rather than to
post-explore, which amounts to replacing the posterior
over actions by a delta function centered at its maxi-
mum a1.x (5). There are also ways other than (15) to
model the switch, e.g., by sampling from plleam defined
by

1 1 1

plearn(aliN) = 7p(a12N)
«

plann | 51 =14,5nv41 = g)* (16)

—Q

where 0 < o < 1 and Z, is a normalization constant.

To summarize, an action selection mechanism is a
function A. It takes as inputs an initial state ¢, a goal
state g, a desired number of steps N, and a variable
« interpolating between the pure-explore and post-
explore modes. It returns an action sequence ai.y,

ai.y = A(i,g,N, ) . (17)

We point out one more twist on action selection dur-
ing planning. The agent may call A(%,g, N,a) once
and execute the full action sequence. Alternatively, it
may take just a few actions, redraw the plan, take a
few more actions, and repeat. To do that, it would
call A(i,g,N,«), execute the first N’ actions with
1 < N’ < N, observe the new state sy.y1 = #', call
again A(i',g, N — N’  «), and repeat.

6 Results

We tested the algorithm on a probabilistic maze de-
fined on a 7 x 7 grid, where each grid point repre-
sented a location. The agent could take 5 actions —
north, east, south, west, and null. Each action brought
the agent to the intended grid point with probability
.7, and to any of the other 3 neighboring points with
probability .1. The maze was constructed such that 20
grid points were forbidden, and so were the points sur-
rounding the maze area. An attempted transition into
a forbidden point resulted in a null transition. The
magze had one exit.

In the first experiment, the transition parameters Ay g,
were fixed to their correct values, and the prior param-
eters were set to 7,/ = .2, corresponding to a uniform
distribution. The agent was placed at an initial posi-
tion and the task was to reach the exit within N = 20
steps. Averaged over 20 random initial positions, the
success rate was .84. Using N = 15 decreased the
success rate to .71.

In the second experiment, we used a random initializa-
tion for the transition parameters, and learned them
by acting in pure-explore mode for 500 time points, fol-
lowed by post-explore for additional 500 time points.
Next, we repeated the previous experiment for N = 20.
As expected, the success rate decreased, to .76. More
experiments are necessary to investigate further the
effects of exploration phases with different settings.

7 Partially Observable States

Until now, we have assumed that the states are fully
observable, and the only non-deterministic feature of
the model was which state s’ resulted from taking ac-
tion a in state s. However, in most cases of practical
interest, only some aspects of the state are observable,
and rest are hidden. For example, an agent equipped
with sonar sensors that is navigating a space bounded
by walls has no direct knowledge of its position (in x-
y coordinates) in that space. It can only observe the
sensor signals, which inform it how far ahead in sev-
eral different directions it may find an obstacle. Fur-
thermore, in general there is no one-to-one mapping
between the observed and hidden features of a state.



In the case of the navigating agent, for instance, there
are two reasons for this. First, depending on the con-
figuration of the space, several different positions may
yield the same sonar reading (e.g., corners of a sym-
metric room). Second, sonar signals are highly vari-
able due to reflection properties of different objects,
propagation properties of the medium, motion effects,
and internal noise.

Existing planning techniques based on policy or value
iteration become intractable when transitioning from
fully to partially observable states. However, in our
approach this transition is straightforward.

We now define the model with partially observed
states. Whereas in our original model the state at
time n was denoted by s, and was fully observable,
here we denote the state at time n by (s, 2, ), where
T, is observed and s, is now hidden. Henceforth, we
will reserve the term states for the s,,, and use data or
observations to refer to the x,. As before, the agent
may take one of K actions, and a, denotes the ac-
tion taken at time n. Here we assume that actions
affect only the states, via the transition probability
p(sn | @n—1,8n—1), but this restriction may be easily
relaxed. We also assume that the data at time n de-
pend only on the state at that time. This dependence
is probabilistic and described by the conditional dis-
tribution p(x, | s,). Hence, our model components
are

p(xn:x|5n:5) = N($n|ﬂsays)7
p(sn =5 | Sp—1 = §,0n-1 = Cl) = Assas
plan =d' |an-1=0a) = fNaa (18)

with the obvious modification for n = 1. We use a
Gaussian distribution with mean pg and precision (de-
fined as the inverse covariance) matrix v, to describe
the observations, which is defined by

Vs — — vl —in.
N(a’,‘n | MS)VS) :| % ‘1/2 e (1/2)(3771 NS)T s(Tn—ps) . (19)

Other distributions may also be used. The full model
is defined by the joint probability over all observations,
states and actions, which is given by the product of the
transition probabilities over time,

N+1
p($1:N+1,S1:N+1,al:N) = H p(mn | Sn)
n=1

N+1
: H p(sn ‘ Sn—lvan—l)p(an ‘ an-1)
n=2
‘plai)p(s1) . (20)

The parameters of the new model are 6 =
{,Us,Vs,/\s'savna’aana}'

The planning task is defined as follows. Starting from
the initial observation x; and allowing the agent to
act for N time points, the agent must select an ac-
tion sequence ap.y that would take it to the goal state
sn+1 = g. Note that we specify an initial observation
but a final state. To see why, imagine that the agent
is placed at a random position in a room, and is given
a task to navigate to the exit door, which corresponds
to the goal state g in our model. The agent observes
the sonar signals x; but has no knowledge of its posi-
tion s;. Similarly, the observation x 1 after N steps
generally cannot determine whether the exit door has
been reached, due to the variability of the sonar read-
ings. This variability is captured by the distribution
p(xn+1 | Sv+1 = g). It is therefore natural to define
the task as reaching a particular state rather than a
particular observation.

We point out that the hidden states do not need to cor-
respond to physical variables in the problems. As an
example, consider the case of the sonar using agent.
Whereas the hidden states may represent the actual
spatial locations of the agent, they may also repre-
sent clusters of locations, where different locations in
a given cluster (e.g., different corners) produce similar
sonar readings.

To perform planning, we consider the posterior distri-
bution over actions, which is now conditioned on the
initial observation and the final state,

p(a1:N | T1,SN+1 = 9) . (21)

This distribution can be computed from our model via
Bayes’ rule. Again, we define a plan as the action se-
quence a1.y that maximizes the posterior over actions,

41§ = arg Iglaxp(alzzv | T1,SN+1 = g) . (22)
1:N

Planning and learning. The planning algorithm for
this model is a direct extension of the planning algo-
rithm presented above for the model with fully ob-
servable states, as inference remains tractable. The
difference is that instead of the conditional distribu-
tions (6), one computes

gn(2',8",a" | s,a) = (23)
p(xn - ',1:/7871 = S/ua/’n = a/ |
Sn—1=8,an-1 = a,8N+1 = 9) ,
with similar simple modifications for the other ¢’s.

The learning algorithm becomes a bit more complex
compared to the case of fully observable states. Having
taken actions a, and observed the data x,,, the agent
needs an EM algorithm to estimate the model param-
eters, as the states s, remain hidden. This algorithm
is straightforward to derive and is omitted.



7.1 Results

We tested this algorithm using a 5 x 5 gridworld
bounded from all sides by a wall. The agent could
take the same actions as in the previous experiments.
The observation at each time point was a 4-dim vec-
tor, whose entries were the distance from the agent’s
location to the wall in the north, east, south, and
west directions. The observed distance equaled the
correct distance with probability .8, and differed from
the correct distance by +1 grid point with probability
.1. Starting at the southwest corner, the task was to
reach the northeast corner. Only a preliminary exper-
iment has been performed so far. Using a model with
4 hidden states, the model parameters was learned in
pure-explore mode. Testing the learned model on the
task, the success rate averaged over 10 trials was .81.

8 Incorporating Rewards

As has been pointed out in the introduction, many
planning tasks discussed in the literature in terms of
maximizing mean total reward can be formulated as
requiring the agent to reach a particular goal state,
in which case the approach presented so far may be
applied. However, many other planning scenarios ac-
tually include a reward, which the agent is required to
maximize. Here we outline a treatment of such scenar-
ios within our approach.

We restrict the discussion to the case of fully observ-
able states. As before, taking action a,_; at state
sn—1 brings the agent to state s, with probability
p($n | Sn—1,an—1). But in addition, the agent re-
ceives a reward r, with probability p(ry | Sn,a@n-1),
which depends on the action taken and on the result-
ing state. The task is to choose an actions sequence
a1.n that maximizes the total mean reward (> ry),
where (-) averages w.r.t. the model distribution. This
is the traditional formulation of the problem. We now
proceed to discuss the new formulation.

First, instead of working with the reward r,, directly,
we will be working with the cummulative reward 7,
defined by

n
Ty = E Tm -

m=1

(24)

Similarly, we use the probability of the cummula-
tive reward, p(Tn, | Sn,@n—1,7n—1). This probabil-
ity (notice the dependence on 7,_1) is derived from
p(rn | Sn,an—1) by observing that 7, = Tp_1 + 7.
Hence, we have the model

N+1

p(f1:N+1751;N+1,a1:N) = H p(?:n | Sn,an—hfn—l)
n=2

N+1
! H p(sn | Sn—laan—l)p(an | an—l)
n=2
plar)p(s1)p(r | s1) - (25)
Next, we propose a new task for the agent. Rather
than maximizing the mean total reward (Fn41), con-
sider the posterior over actions conditioned on the to-
tal reward 741, as well as on the initial state,

plar.n | $1 =14,7n41 = R) , (26)

where R is a maximal value for the total reward to be
discussed shortly. This distribution is obtained from
our model via Bayes’ rule. We define a plan as the
action sequence a1. that maximizes the posterior over
actions,

a1y = argmaxp(aiy | 51 =1,7v+1 = R) . (27)
1:

Planning thus defined selects an action sequence which
maximizes the probability of achieving a total reward
R, with a bias toward a pre-defined action sequence.
To see this, observe that the posterior over actions sat-
isfies p(a1:n | 51,7n+1) X D(FN+1 | ai:n, s1)p(a1:n)-
Hence, the selected sequence maximizes a sum of two
terms,

a;.N = arg max logp(Fn41 = R | a1.n, $1 = 1)
1:

+ logp(alzN)] .

It remains to select an appropriate value for R. In
problems where the highest possible total reward may
be estimated using available domain knowledge, this
value may be substituted for R. Alternatively, the
agent may use the following strategy. Plan to achieve
a particular value of R. Record the actual total re-
ward obtained. Next, plan to achieve a higher value of
R. If the actual total reward obtained has increased,
increase R and repeat. Iterate until the actual total
reward stops increasing. Notice that, due to the prob-
abilistic nature of the reward, care must be taken in
defining the stopping criterion. We defer a discussion
of this and related points to a separate paper.

Finally, we comment on implementation issues. Com-
pared to the algorithms for planning to reach a goal
state presented above, which work in the state-action
space, an algorithm for achieving a desired total re-
ward must work in the state-action-reward space. If
the reward is discrete and assumes one of L values,
the computational complexity increases by a factor of
O(L). A large L would require using approximation
techniques for inference in the model, in particular for
computing the posterior (26). Such approximations
may be based on clustering [10] or variational methods



[9]. Furthermore, if the reward is continuous, inference
is computationally intractable even for a small L. For
continuous rewards, our model belongs to the class of
switching state space models, for which several approx-
imation techniques have been developed [8,11,12].

9 Conclusion and Extensions

This paper has presented a new approach to plan-
ning under uncertainty. In our approach, actions are
treated as hidden variables in a probabilistic gener-
ative model and have their own prior distributions.
The model describes the joint distribution of actions
and states. Goal planning is performed by computing
the posterior distribution over actions, conditioned on
initial and goal states. An extension to partially ob-
servable states and another extension to planning with
rewards have been discussed.

This new framework opens a new avenue for research
on planning /decision making under uncertainty. Here
are several topics for further work. (1) Learning a 'pol-
icy’. Our state-action model used a prior distribution
over actions where the action a,, depended only on the
previous action a,_1. However, one may add a depen-
dence on the previous state s,,_1 as well, and work with
the conditional distribution p(a, | an—1,8,—1). As the
agent selects actions in post-explore mode, this condi-
tional distribution adapts to describe the dependence
of an action on the state at which it is taken. To the
extent that actions taken are optimal, this distribution
would ultimately describe an optimal ’policy’. Conse-
quently, optimal actions may be obtained by sampling
from that distribution rather than by performing in-
ference. (2) Extension to continuous states and ac-
tions. Except in the case of partially observable states
whose observed part x,, was continuous, the states and
actions in the models discussed in this paper were dis-
crete. However, many scenarios of practical interest
involve continuous actions (e.g., a robot’s speed) and
states (e.g., a robot’s position). (3) Efficient inference
methods. Having formulated the task of planning un-
der uncertainty as an inference problem, a variety of
exact and approximate inference methods may now be
applied to this problem. In particular, new efficient
approximate algorithms may be developed for plan-
ning in problems with a large state space, problems
with continuous states and actions, and problems in-
volving continuous rewards. (4) Bayesian treatment.
Currently we use a MAP estimate for the model pa-
rameters. However, in cases where the amount of data
collected by the agent is relatively small, there may
be large uncertainty in our parameter estimates. A
Bayesian treatment would compute the full posterior
distribution over the parameters given the data, de-
noted here by ¢(#). This distribution would then be

used to compute the posterior over actions via
plain | 51 =14,58v11=9) = (28)

/d9 q@)plar:n | 1 =1,5n41 = g,0),

thus incorporating parameter uncertainty into action
selection. In many models, the computation of g(6)
and of the posterior over actions would be computa-
tionally intractable, making approximations such as
those developed in [13,14] necessary. (5) Finding the
shortest action sequence. Our current method finds
the optimal N-action-long sequence, but not necessar-
ily the shortest one. One approach may use a prior
over actions which favors short sequences. (6) Investi-
gating the relationship with MDP and POMDP based
methods. In particular, the posterior over actions that
we compute may be used to restrict the space of ac-
tions which traditional methods search to find optimal
policies.

References

[1] C. Boutilier, T. Dean, S. Hanks (1999). Decision
theoretic planning: structural assumptions and com-
putational leverage. JAIR 1, 1-93.

[2] J. Blythe (1999). An overview of planning under
uncertainty. AI Magazine 20(2), 37-54.

[3] J. Pearl (1988). Probabilistic Reasoning in Intelli-
gent Systems. Morgan Kaufmann.

[4] D. Koller, R. Parr (1999). Computing factored
value functions for policies in structured MDPs. Proc.
1JCAI-99.

[5] AY. Ng, M. Jordan (2000). Pegasus: A policy
search method for large MDPs and POMDPs. Proc.
UAI-00.

[6] D. Koller, R. Parr (2000). Policy iteration for fac-
tored MDPs. Proc. UAI-00.

[7] C. Guestrin, D. Koller, R. Parr (2001). Max-norm
projections for factored MDPs. Proc. IJCAI-01, vol.
1, 673-680.

[8] Z. Ghahramani, G.E. Hinton (1998). Variational
learning for switching state-space models. Neural
Computation 12(4), 963-996.

[9] M.I. Jordan, Z. Ghahramani, T.S. Jaakkola, L.K.
Saul (1999). An introduction to variational methods
in graphical models. Machine Learning 37, 183-233.

[10] X. Boyen and D. Koller (1998). Tractable infer-
ence for complex stochastic processes. Proc. UAI-98,
33-42.

[11] D. Koller, U. Lerner, D. Angelov (1999). A Gen-



eral Algorithm for Approximate Inference and its Ap-
plication to Hybrid Bayes Nets. Proc. UAI-99, 324-
333.

[12] U. Lerner, R. Parr (2001). Inference in Hy-
brid Networks: Theoretical Limits and Practical Al-
gorithms. Proc. UAI-01, 310-318.

[13] H. Attias (1999). A variational Bayesian methods
for graphical models. Proc. NIPS-99.

[14] Z. Ghahramani, M.J. Beal (2001). Propagation
algorithms for variational Bayesian learning. Proc.
NIPS-00.



