
Model Averaging with Discrete Bayesian Network Classifiers

Denver Dash
Decision Systems Laboratory ∗

Intelligent Systems Program
University of Pittsburgh
Pittsburgh, PA 15213

Gregory F. Cooper
Center for Biomedical Informatics

University of Pittsburgh
Pittsburgh, PA 15213

Abstract

This paper considers the problem of perform-
ing classification by model-averaging over a
class of discrete Bayesian network structures
consistent with a partial ordering and with
bounded in-degree k. We show that for N
nodes this class contains in the worst-case at
least Ω(

(
N/2

k

)N/2
) distinct network structures,

but we show that this summation can be per-
formed in O(

(
N
k

) · N) time. We use this fact
to show that it is possible to efficiently con-
struct a single directed acyclic graph (DAG)
whose predictions approximate those of exact
model-averaging over this class, allowing ap-
proximate model-averaged predictions to be
performed in O(N) time. We evaluate the
procedure in a supervised classification con-
text, and show empirically that this technique
can be beneficial for classification even when
the generating distribution is not a member
of the class being averaged over, and we char-
acterize the performance over several param-
eters on simulated and real-world data.

1 Introduction

The general supervised classification problem seeks to
create a model based on labelled data D, which can
be used to classify future vectors of features F =
{F1, F2, . . . , FN} into one of various classes of inter-
est. A Bayesian network (BN) classifier is a probabilis-
tic model that accomplishes this goal by explicating
causal interactions/conditional independencies between
features in F . The simplest Bayesian network classifier
for this task is the naive classifier, which, without infer-
ring any structural information from the database, can

∗This work was partially performed during a summer
internship at the Machine Learning and Perception group,
Microsoft Research, Cambridge, UK.

still perform surprisingly well at the classification task
[Domingos and Pazzani, 1997]. More sophisticated al-
gorithms for learning BNs from data [Verma and Pearl,
1991, Cooper and Herskovits, 1992, Spirtes et al., 1993,
Heckerman et al., 1995, Friedman et al., 1997] can also
be used effectively to construct a BN model by extract-
ing information about conditional independencies from
D to build more accurate structural models. Classifica-
tion using a single Bayesian network model for a fixed
number of classes when the feature vector is completely
instantiated can be performed in O(N) time.

This procedure of selecting a single model for classi-
fication has the potential drawback of over-fitting the
data however, leading to poor generalization capabil-
ity. A strictly Bayesian approach, averaging classifica-
tions over all models weighted by their posterior prob-
ability given the data, has been shown to reduce over-
fitting and provide better generalization [Madigan and
Raftery, 1994]. Unfortunately, the space of network
structures is super-exponential in the number of model
variables, and thus an exact method for full model-
averaging is likely to be intractable.

In this paper we consider the possibility of performing
exact and approximate model-averaging (MA) over a
particular class of structures rather than over the gen-
eral space of DAGs. Recently Dash and Cooper [2002],
demonstrated that exact model averaging over the re-
stricted class of naive networks could be performed by a
simple re-parametrization of a naive network, and they
showed that this technique consistently outperformed
a single naive classifier with the standard parametriza-
tion. The present paper generalizes that result; in par-
ticular, we show that exact model averaging over the
class of BN structures consistent with a partial order-
ing π and with bounded in-degree k, despite its super-
exponential size, can be performed with relatively small
time and space restrictions.

Methods for approximate MA classification using both
selective pruning [Madigan and Raftery, 1994, Volin-
sky, 1997] and Monte-Carlo [Madigan and York, 1995]



techniques exist and have shown to improve prediction
tasks; however these methods do not possess the extent
of time efficiency of inference that we seek.

Friedman and Koller [2000] studied the ability to es-
timate structural features of a network (for example
the probability of an arc from Xi to Xj) by perform-
ing a MCMC search over orderings of nodes. Their
method relied on a decomposition, which they credited
to Buntine [1991], that we extend in order to prove
our key theoretical result. We discuss this issue in de-
tail in Section 3.3. Their work differs from ours in two
key respects: (1) Their approach does not capture the
single-network (and thus the efficiency of calculation)
approximation to the MA problem, and (2) They per-
form model averaging only to calculate the probabilities
of structural features, explicitly not for classification.

Meila and Jaakkola [2000] discuss the ability to perform
exact model averaging over all trees. They also use
similar assumptions and similar decompositions that
we use; however our calculation is more general in al-
lowing nodes to have more than one parent, but it is
less general in that it assumes a partial-ordering of the
nodes. Their approach also does not allow for O(N)
model-averaged classifications.

Our primary contributions in this paper are as follows:
(1) we extend the factorization of conditionals to ap-
ply to the task of classification, (2) we show that MA
calculations over this class can be approximated by a
single network structure S∗ which can be constructed
efficiently, thereafter allowing approximate MA predic-
tions to be performed in O(N) time, and (3) we demon-
strate empirically that, especially when the number of
records is small compared to the size of the network,
using this technique for classification can be beneficial
compared to (a) a single naive classifier, (b) single net-
works learned from data using a greedy Bayesian learn-
ing algorithm and (c) exact model averaging over naive
classifiers.

In Section 2 we formally frame the problem and state
our assumptions and notation. In Section 3 we derive
the MA solution and show that the MA predictions are
approximated by those of a single structure bearing a
particular set of parameters. In Section 4 we present
the experimental comparisons, and in Section 5 we dis-
cuss our conclusions and future directions.

2 Assumptions and Notation

The general supervised classification problem can be
framed as follows: Given a set of features F =
{F1, F2, . . . , FN}, a set of classes C = {C1, C2, . . . CNc},
and a labelled database D = {D1, D2, . . . , DR}, con-
struct a model to predict into which class future feature

vectors are most likely to reside.

We use the notation Xi to refer to the nodes when we
need to have a uniform notation; using the convention
that, Xi ≡ Fi and X0 ≡ C, and we use X to denote
the collective set of nodes in the network. A directed
graph G(X) is defined as a pair 〈X,E〉, where E is a
set of directed edges Xi → Xj , such that Xi, Xj ∈ X.

We assume that each node Xi is a discrete multino-
mial variable with ri possible states {x1

i , x
2
i , . . . , x

ri
i }.

We use P i to denote the parent set of Xi, and we
let qi denote the number of possible joint configura-
tions of parents for node Xi, which we enumerate as
{p1

i , p
2
i , . . . , p

qi

i }. We use θijk to denote a single param-
eter of the network: θijk = P(Xi = xk

i | P i = pj
i ), and

the symbol θ to denote the collective parameters of the
network. In general we use the common (ijk) coordi-
nates notation to identify the k-th state and the j-th par-
ent configuration of the i-th node in the network. We
take the common assumptions in BN structure learning
of Dirichlet priors, parameter independence, and pa-
rameter modularity [Heckerman et al., 1995]. We also
assume that database D consists of complete labelled
instances.

3 Theoretical Results

In this section we show how to efficiently calculate
the quantity P(X = x | D) averaged over the class of
structures we are considering.

3.1 Fixed Network Structure

For a fixed network structure S and a fixed set of net-
work parameters θ, the quantity P(X = x | S, θ) can
be calculated in O(N) time:

P(X = x | S, θ) =
N∏

i=0

θiJK , (1)

where all (j, k) coordinates are fixed by the configura-
tion of X to the value (j, k) = (J,K).

When, rather than a fixed set of parameters, a database
D is given, from an ideal Bayesian perspective it is
necessary to average over all possible configurations of
the parameters θ:

P(X = x | S, D) =

∫
P(X = x | S,�) · P(� | S, D) · d�

=

∫ N∏
i=0

θiJK · P(� | S, D) · d�

where the second line follows from Equation 1. Given
the assumption of parameter independence and Dirich-
let priors, this quantity can be written just in terms



of sufficient statistics and Dirichlet hyperparameters
[Cooper and Herskovits, 1992, Heckerman et al., 1995]:

P(X = x | S, D) =
N∏

i=0

αiJK + NiJK

αiJ + NiJ
, (2)

where we have used the notation that Qij =
∑

k Qijk
1.

Comparing this result to Equation 1 illustrates the well-
known result that a single network with a fixed set of
parameters θ̂ given by

θ̂ijk =
αijk + Nijk

αij + Nij
(3)

will produce predictions equivalent to those obtained by
averaging over all parameter configurations. We refer
to θ̂ijk as the standard parametrization.

3.2 Averaging Structural Features with a
Fixed Ordering

The decomposition by Buntine used by Friedman and
Koller was a dynamic programming solution which cal-
culated, with relative efficiency, the posterior proba-
bility of a structural feature (for example a particular
arc XL → XM ) averaged over all in-degree-bounded
networks consistent with a fixed ordering. Here we re-
derive the result.

The derivation required an additional assumption, la-
belled “structure modularity” by Friedman and Koller:

Assumption 1 (Structure modularity) The prior
of a structure S, P (S), can be factorized according to
the network:

P(S) ∝
N∏

i=0

ps(Xi,P i), (4)

where ps(Xi, P i) is some function that depends only on
the local structure (Xi and P i).

Obviously the uniform distribution which is O(1) will
satisfy this assumption, as will other common network
prior forms.

The posterior probability P(XL → XM | D) can be
written as:

P(XL → XM | D) =

κ
∑

S

δ(XL → XM ∈ S) · P(D | S) · P(S) (5)

where κ = 1/P(D) is a constant that depends only on
the database, and δ(X) is the Kronecker delta function:

δ(X) =
{

1 if X = true
0 otherwise

1More generally, we will use Qij =
∑

k
Qijk for a quan-

tity Q.

Given the assumptions of complete data, multinomial
variables, Dirichlet priors and parameter independence,
the marginal likelihood P(D | S) can be written just
in terms of hyperparameters and sufficient statistics
[Cooper and Herskovits, 1992, Heckerman et al., 1995]:

P(D | S) =
N∏

i=0

qi∏

j=1

Γ(αij)
Γ(αij + Nij)

·
ri∏

k=1

Γ(αijk + Nijk)
Γ(αijk)

. (6)

Given Assumption 1 and Equation 6, Equation 5 can
be written as:

P(XL → XM | D) = κ
∑

S

N∏

i=0

ρiLM (7)

where the ρiLM functions are given by:

ρiLM = δ[M 6= i ∨ XL ∈ P i] · ps(Xi,P i)·
qi∏

j=1

Γ(αij)
Γ(αij + Nij)

·
ri∏

k=1

Γ(αijk + Nijk)
Γ(αijk)

, (8)

and can be calculated using information that depends
only on nodes Xi and P i.

Buntine considered a total ordering on the nodes, but
generalization to a partial ordering is straightforward.
For a given partial ordering π and a particular node
Xi we want to enumerate all of Xi’s possible parent
sets up to a maximum size k. To this end, we will
typically use the superscript ν to index the different
parent sets. For example, four nodes partitioned as
〈{X1, X3}, {X2, X4}〉 and a maximum in-degree k = 2
might yield the following enumeration of parent sets
for X2: {P 0

2 = ∅, P 1
2 = {X1},P 2

2 = {X3}, P 3
2 =

{X1, X3}}, any of which we might refer to as P ν
2 . We

assume the hyperparameters αν
ijk for any parent set

P ν
i can be calculated in constant time. For example

the K2 scoring metric [Cooper and Herskovits, 1992],
which sets αijk = 1 for all (ijk), will satisfy this re-
quirement. The class of models consistent with π with
bounded in-degree of k we denote as Lk(π):

Definition 1 (Multi-level k-graphs, Lk(π)) For a
given integer k ≤ N and a given partial ordering π
of X, a DAG G = 〈X, E〉 is a multi-level k-graph
with respect to π (denoted as Lk(π)) if arcs are di-
rected down levels and no variable has more than k
parents: Xi → Xj ∈ E ⇒ Level(Xi) < Level(Xj),
and Xi ∈ X ⇒ |P i| ≤ k.

When model-averaging over the class Lk(π), each node
at level l can choose from all the nodes in layers l′ < l at
most k parents. For k < N/2, Equation 7 in the worst-

case includes a summation over Ω
[(

N/2
k

)N/2
]

network



structures (this worst-case corresponding to two layers,
each with N/2 nodes). However, the following theorem
shows that Equation 7 can be calculated with relative
efficiency:

Theorem 1 For N variables with a maximum number
of states per variable given by Nf and a database of
Nr records, the right-hand side of Equation 7 can be
calculated in O(

(
N
k

)·N ·Nr ·Nf
k) time and using O(

(
N
k

)·
N ·Nf

k) space if the summation is restricted to network
structures in Lk(π).
Proof: We use µi to denote the maximum number of
parent sets available to node Xi. Expanding the sum
in Equation 7 and using the notation ρν

iLM to denote
ρiLM for the νth parent set P ν

i , yields:

P(XL → XM | D) ∝
ρ0
0LM · ρ0

1LM · . . . · ρ0
NLM

+ ρ1
0LM · ρ0

1LM · . . . · ρ0
NLM

...
...

+ ρµ0
0LM · ρ0

1LM · . . . · ρ0
NLM

+ ρ0
0LM · ρ1

1LM · . . . · ρ0
NLM

...
...

+ ρµ0
0LM · ρµ1

1LM · . . . · ρµN

NLM





Ω

[(
N/2
k

)N/2
]

terms.

We define the symbol ΣLM
m to denote the structure sum

of the product up to and including the m-th node:

ΣLM
m ≡ ρ0

0LM · ρ0
1LM · . . . · ρ0

mLM

+ ρ1
0LM · ρ0

1LM · . . . · ρ0
mLM

...
...

+ ρµ0
0LM · ρµ1

1LM · . . . · ρµm

mLM

Using this notation, the following recursion relation can
be derived:

ΣLM
i = ΣLM

i−1 ·
µi∑

ν=1

ρν
iLM , ΣLM

−1 = 1

Finally, expanding out the recurrence relation yields
the expression for P(XL → XM | D):

P(XL → XM | D) = κ

N∏

i=0

µi∑
ν=1

ρν
iLM (9)

Once the ρν
iLM terms are calculated, the right-hand-

side of Equation 9 can be performed in O(N · (
N
k

)
)

time. Calculating the ρ terms themselves requires the
calculation of one hyperparameter αν

ijk and sufficient
statistic Nν

ijk for each parameter of the network, each
of which can be calculated in O(Nr) time. To calcu-
late the complete set for all (j, k) combinations thus
requires O(

(
N
k

) ·N ·Nr ·Nf
k) time and O(

(
N
k

) ·N ·Nf
k)

space (because there are O(Nk
f ) network parameters

per node). 2

In fact, the Nf
k characterization is a loose upper-

bound, and can likely be reduced by compressing con-
tingency tables.

3.3 Model Averaging for Prediction

Here we show that a similar dynamic program-
ming solution exists for model-averaging the quantity
P(X = x | D) over the class Lk(π).

This quantity can be written as:

P(X = x | D) = κ
∑

S

N∏

i=0

θ̂iJK ·P(D | S) ·P(S), (10)

where θ̂iJK are the standard parameters given in Equa-
tion 3. Given structure modularity and Equation 6,
Equation 10 can be written in a form very similar to
Equation 7:

P(X = x | D) = κ
∑

S

N∏

i=0

ρ̂iJS
x Kx

(11)

where here the ρ̂iJS
x Kx

functions are given by:

ρ̂iJS
x Kx

= θ̂iJS
x Kx

· ps(Xi,P i)·
qi∏

j=1

Γ(αij)
Γ(αij + Nij)

·
ri∏

k=1

Γ(αijk + Nijk)
Γ(αijk)

. (12)

We have taken the trouble to subscript the indices J
and K from Equation 1. Both are indexed with an x
to indicate that they are fixed by the particular config-
uration of X, and J is indexed by S to emphasize that
the value of the parent configuration index depends on
the structure of the network. Although this notation
may seem cumbersome, we hope it clarifies the analysis
later.

The ρ̂iJS
x Kx

functions again can be calculated using
only information local to node Xi and P i. Fol-
lowing a derivation identical to that for averaging
P(XL → XM | D) in Section 3.2, yields the result:

P(X = x | D) = κ

N∏

i=0

µi∑
ν=1

ρ̂ν
iJν

xKx
. (13)

Here the S index has been replaced with a ν indicating
which parent set for node Xi is being considered. Once
again this summation can be performed inO(

(
N
k

) · N ·
Nr ·Nf

k) time and O(
(
N
k

) ·N ·Nf
k) space.

3.4 Approximate Model Averaging

The derivation in the preceding section is an extension
of the concept underlying Buntine’s dynamic program-
ming solution. The functional form of the above solu-
tion allows us to easily prove the following theorem:



Theorem 2 There exists a single Bayesian network
model M∗ = 〈S∗, θ∗〉 that will produce predictions
equivalent to those produced by model averaging over
all models in Lk(π).
Proof: Let S∗ be defined so that each node Xi has
the parent set P ∗

i =
⋃µi

ν=1 P ν
i , and let θ∗ be defined

by:

θ∗ijk =
1

κ
√

N

µi∑
ν=1

ρ̂ν
iJν

j
k (14)

where the x subscript for Jν
x has now been replaced

with a j and Kx has been replaced with a k subscript,
because we are now considering a particular coordinate
(ijk). It can be seen by direct comparison that the
single network prediction using M∗ and Equation 1 will
yield Equation 13. 2

If we define functions f (Xi,P
ν
i | D) such that

f (Xi,P
ν
i | D) = ρ̂ν

iJν
j

k/θ̂ν
iJν

j
k, then Equation 14 can

be written as:

θ∗ijk =
1

κ
√

N

µi∑
ν=1

θ̂ν
iJν

j
k · f (Xi,P

ν
i | D) (15)

The functions f (Xi, P
ν
i | D) do not depend on the in-

dices Jν
j and k, and they are proportional to the lo-

cal contribution of the posterior probability that the
parent set of Xi is in fact P ν

i . Equation 15 thus pro-
vides the interpretation that M∗ represents a structure-
based smoothing where each standard parameter θ̂ν

ijk

is weighted based on the likelihood that P ν
i is the true

parent set of Xi.

Theorem 2 implies that, rather than performing the
O(

(
N
k

) ·N) summation in Equation 13 for each case to
be classified, in principle we need only construct a single
model M∗ and use standard O(N) Bayesian network
inference for each case.

A serious practical difficulty is that this approach
requires in the worst case the construction of a
completely-connected Bayesian network and is thus in-
tractable for reasonable size N . An obvious pruning
strategy, however, is to truncate the sum in Equation 14
to include no more than n parents. If we reorder the
possible parent sets for node Xi as OP ≡ {P 1

i , . . . , P
µi

i }
such that f (Xi, P

ν
i | D) > f (Xi,P

λ
i | D) only if ν < λ,

then a reasonable approximation for P ∗
i can be con-

structed by the following procedure:

Procedure 1 (Approximate P ∗i construction)
Given: n and OP .

1. Let P ∗
i = ∅

2. For ν = 1 to µi,
if |P ∗

i ∪ P ν
i | ≤ n, let P ∗

i = P ∗
i ∪ P ν

i ,
else continue.

We denote the class of structures being averaged over
using this procedure as Ln

k (π | D), and we call the
method Approximate Model Averaging (AMA). Obvi-
ously limn→N Ln

k (π | D) = Lk(π). Furthermore, we
empirically show in Section 4 that the loss in ROC area,
ε, due to this approximation for n ≥ 10 lies around
−0.6% ≤ ε ≤ 0.6% with 99% confidence for N ≤ 100
and for a wide range of other parameters.

4 Experimental Tests

In this section we describe several experimental inves-
tigations that were designed to test the performance of
(AMA) on distributions that do not necessarily fall into
Lk(π). We first generate synthetic data to allow us to
more extensively vary parameters and to generate sta-
tistically significant results, then we perform tests on
several real-world machine learning data sets.

4.1 Experimental Setup

There are at least five parameters for which we sought
to characterize the performance of AMA predictions:
the number of nodes N , the approximation limit n
on number of nodes, the maximum in-degree (“den-
sity”) K of the generating network, the maximum num-
ber of parents k allowed in Lk(π), and the number
of records Nr. It is beyond the scope of this paper
to present a comprehensive comparison over this full
five-dimensional space; however, here we sample their
settings to provide insight into the dependence of the
results on these parameters.

We compared AMA to three other Bayesian network
classifiers: a single naive network (SNN) with the stan-
dard parametrization [Domingos and Pazzani, 1997],
a model that model-averaged over all naive structures
(NMA) [Dash and Cooper, 2002], and a non-restricted
two-stage thick-thin greedy search (GTT) over the
space of DAGs. GTT starts with an empty graph and
repeatedly adds the arc (without creating a cycle) that
maximally increases the marginal likelihood P(D | S)
until no arc addition will result in a positive increase,
then it repeatedly removes arcs until no arc deletion
will result in a positive increase in P(D | S). GTT as-
sumes no ordering on the nodes.

All abbreviations and symbols are summarized in Ta-
ble 1 as a reference for the reader.

The inner-loop of each test performed basically
the same procedure: Given the five parameters
{N, Nr,K, n, k} and a total number of trials Ntrials,
we did the following:

Procedure 2 (Basic testing loop)
Given: N , Nr, Ntest, K, n, k, and Ntrials.



Symbol Description
N Number of nodes
Nr Number of training records
K Maximum in-degree of generating graphs
k Maximum in-degree in Lk

n Maximum in-degree in summary MA network.
SNN Single naive network
NMA Naive model averaging
GTT Greedy thick-thin
AMA Approximate model averaging

Table 1: Table of symbols.

Do:

1. Generate Ntrials random graphs G(N, K).

2. For each graph G(N, K) do:

(a) Generate Nr training records and Ntest test
records.

(b) Train two classifiers to be compared M1 (typ-
ically the AMA classifier) and M2 (the classi-
fier to be compared) on the training records.

(c) Test M1 and M2 on the test data, measur-
ing the ROC areas R1 and R2, respectively, of
each.

(d) Calculate the quantity δ = R1−R2
T−R2

, where T is
the ROC area of a perfect classifier (i.e., 1 if
the axes are normalized).

3. Average δ over all Ntrials.

The performance metric δ indicates what percentage of
M2’s missing ROC area is captured by M1.

For some experiments it was necessary to generate net-
works randomly from a uniform distribution over DAGs
with fixed K. We employed a lazy data generation pro-
cedure whereby node conditional probability distribu-
tions were generated only when they were required by
the sampling, a technique which allows generation of
data for arbitrarily dense networks.

In all cases we assume a uniform prior over non-
forbidden structures and thus allow ps(Xi, P i) = 1 for
all i. We also adopted the K2 parameter prior [Cooper
and Herskovits, 1992] which sets αijk = 1 for all (i, j, k).
This criterion has the property of weighting all local
distributions of parameters uniformly. All variables in
our synthetic tests were binary: Nc = Nf = 2, and
for all experiments Ntest = 1000. In many experiments
we sampled the density of generating graphs K uni-
formly from a set {1, 2, . . . , N}; we use the notation
K ←↩ {1, . . . , N} to denote this procedure.

In all experiments, π was chosen to be a fixed total
ordering of the variables. At least three heuristics were
used to generate π: (1) generate a random ordering, (2)
generate two opposite random orderings and average
predictions of each, and (3) use a topological sort of
the graph obtained by GTT. These methods produced
comparable results, but (2) and (3) performed a few

percent better. In all experiments performed below,
method (3) was used to generate π.

4.2 Experimental Results

The first experiment tested the degree of error incurred
by model averaging over the class Ln

k (π | D) instead of
the full class Lk(π). The degree of error was measured
in terms of the percent difference in ROC areas, ∆,
using k = 1, Nr = 100, Ntrials = 40, N varied over
the values {15, 20, 30, 40, 50, 60, 80, 100}, n varied over
the values {5, 7, 10, 12, 15}, and K ←↩ [1, . . . , N ]. The
compiled results are shown in Table 2a–c. In this and

(a) (b) (c)

n ∆ (%)
1 15± 2.4
5 .74± .55
7 .24± .42

10 .15± .29
12 −.01± .36
15 .12± .14

N ∆ (%)
20 .023± .067
30 .0016± .18
40 .036± .22
60 .10± .22
80 .17± .29

100 .23± .32

k ∆ (%)
1 .032± .09
2 .036± .11
3 .093± .23
4 .042± .32

Table 2: The percent difference (∆) in ROC area be-
tween model averaging over Lk(π) and model averaging over
Ln

k (π | D) as various parameters are varied, with the 99%
confidence intervals,.

all subsequent tables, the error bars denote the 99%
confidence interval of the mean.

Table 2a shows the dependence on n averaged over all
values of N , showing that for an approximation level
n >∼ 10 the difference in ROC area between the ex-
act MA and AMA is less than 0.5% with confidence
P > 0.99. Table 2b shows the dependence on N av-
eraged over the values of n ∈ {10, 12, 15}. This table
shows that with n set to reasonable values the approx-
imation error is bounded under 0.6% with 99% confi-
dence up to N = 100. Finally, one might expect the ap-
proximation error to increase as k was increased, since
for a fixed n, Lk(π) includes increasingly more struc-
tures than Ln

k (π | D) as k increases. Table 2c shows
the results of varying k in an experiment with N = 20,
Nr = 100, K ←↩ [1, . . . , N ], n = 12 and k varied from 1
to 4. For all values of k the error in terms of the differ-
ence in ROC area is below 0.4% with 99% confidence.

Next, we generated synthetic data to test the perfor-
mance of AMA relative to the other methods. For all
tests, the approximation parameter was fixed to n = 12.
We performed four tests, each varying one of the pa-
rameters in Table 1 while fixing the remaining param-
eters to particular values. These results are shown in
Table 3.

Due to space constraints we only report here the re-
sults for AMA versus GTT. However, we note that
both GTT and AMA achieved on average higher per-
formance than SNN for almost every experimental run



N δ (%) Q1 Q3
5 16± 1.3 7.7 27

10 11± 1.5 4.0 23
20 7.1± 1.6 .14 17
40 12± 1.4 .75 23
80 14± 1.5 1.8 28

160 20± 4.1 .17 44

k δ (%) Q1 Q3
1 .322± .72 -4.7 13
2 9.05± .46 2.7 16
3 10.5± .37 3.3 16
4 10.9± .38 3.5 17
5 10.9± .43 3.8 17
6 10.2± .45 3.1 16

K δ (%) Q1 Q3
2 7.6± 1.7 .43 13
4 14± 2.2 3.6 23
8 11± 2.1 2.4 18

16 7.2± 1.9 -.40 13
32 5.3± 1.8 -1.1 7.9
50 6.0± 1.6 -.50 9.7

Nr δ (%) Q1 Q3
25 9.4± 2.7 1.2 13
50 9.4± 2.5 1.6 16

100 11± 2.3 4.0 16
400 10± 2.2 3.6 16
800 5.5± 3.0 -.30 13

3200 −7.4± 5.2 -26 13

Table 3: The performance of AMA versus GTT as several
parameters are varied. The error terms indicate the 99%
significance level. Q1 and Q3 denote the first and third
quartiles, respectively.

performed. NMA performed comparably to AMA for
small Nr, but performed worse than both GTT and
AMA for large Nr. Later (Table 5) we present quanti-
tative comparisons of all four techniques on real-world
data.

The top-left quadrant of Table 3 shows the results of
varying the number of nodes N , while holding Nr =
100, k = 2, and with K ←↩ [1, . . . , N ]. For all val-
ues of N using this configuration of parameters, AMA
outperformed GTT at the 99% significance level, the
difference generally increasing as N grew very large or
very small. Probably the minimum in this curve around
N = 20 reflects the tradeoff that as N gets very small,
bounding the in-degree of the networks to k = 2 comes
closer and closer to the limiting case of k = N ; whereas,
generally as the ratio N/Nr increases we expect model
averaging to benefit over a single model.

In the bottom-left quadrant of Table 3, we varied the
density of generating graphs K while holding Nr = 100,
k = 2 and N = 50. Again, for this set of measure-
ments, AMA always outperformed GTT at the 99% sig-
nificance level. The results were most apparent when
K <∼ 10, an encouraging result since it is a common
belief that most real-world networks are sparse.

In the top-right of Table 3, we varied the maximum
number of parents allowed in Lk from 1 ≤ k ≤ 6, while
holding Nr = 100, N = 20, and K ←↩ [1, . . . , N ]. The
value of δ is surprisingly insensitive to the value of k
for k ≥ 2. Finally, in the bottom-right, we varied the
number of records Nr while fixing N = 20, k = 3 and
K ←↩ [1, . . . , N ]. As expected, for smaller values of
Nr model averaging performs well versus GTT. As Nr

grows GTT eventually outperforms AMA at the 99%
significance level. It was observed in other experiments
that the ability of GTT to outperform AMA at high
Nr depended strongly on the value of k. When it was
computationally feasible to set k ' N , AMA typically
would outperform GTT even at high Nr.

The performance of AMA was also tested by generat-

Nr δkt (%) Qkt
1 Qkt

3 δan (%) Qan
1 Qan

3
50 32± 13 24 55 2.6± 3.2 -9.2 17

100 23± 11 8.8 53 .66± 3.3 -11 16
200 13± 9.0 -1.2 32 −2.6± 4.2 -17 16
400 12± 6.9 -1.2 34 −3.3± 5.4 -21 18
800 3.7± 6.9 -8.5 23 2.0± 5.0 -11 21

3200 −.07± 14 -19 15 5.6± 7.1 -7.5 19

Table 4: AMA performance v.s. GTT on synthetic data
generated using the ALARM network and classifying on
kinked tube (kt) and anaphylaxis (an).

ing training and test data with the benchmark ALARM
network. In this case, N = 36 and K = 4 were fixed
by the network, and a test was performed with k = 3,
n = 10, and Nr systematically varied. The results in
Table 4 are shown for classification on the kinked tube
and anaphylaxis nodes. These results are of interest
because they demonstrate that the qualitative perfor-
mance of the AMA classifier depends not just on global
network features but also on features specific to the
classification node.

Finally, we performed measurements of the perfor-
mance of AMA, SNN, GTT and NMA on 21 data sets
taken from the UCI online database [Blake and Merz,
1998]. These results are shown in Table 5. Here the
score δi

d for classifier Ci was calculated according to
Procedure 2, where M2 = Ci and M1 was taken to be
the maximum scoring classifier for the data set d. For
example, in the monks-2 database, AMA was the high-
est scoring classifier and covered 48% of the remaining
area for SNN and GTT and 21% of the remaining area
for NMA. The ROC area will in general depend on
which state of the classification variable is considered
to be the “positive” state; therefore, the scores in Ta-
ble 5 are average scores for all ROC curves associated
with a particular classification variable; therefore some
data sets (e.g., wine) have no zero entries when two or
more classifiers score highest on different curves.

We have underlined the top two scoring classifiers for
each data set to emphasize the fact that AMA was typi-

Data set δSNN δGT T δNMA δAMA N k Nr

haberman 0.35 0.35 0 0 4 4 306
hayes-roth 0.32 0.32 0 0.01 6 6 132
monks-3 0.83 0.24 0.82 0 7 7 552
monks-1 0.98 0 0.98 0 7 7 554
monks-2 0.48 0.48 0.21 0 7 7 600
chess krk 0.54 0 0.54 0.32 7 7 28055
ecoli 0.03 0.01 0.02 0 8 8 336
yeast 0.04 0.11 0.04 0.07 8 8 1484
abalone 0.12 0.08 0.05 0 9 9 4176
cpu-perf 0.13 0.31 0.01 0.11 10 10 209
glass 0.10 0.04 0.15 0.13 10 10 214
cmc 0.01 0.07 0.01 0.04 10 10 1473
sol-flare-C 0.03 0.09 0.02 0.01 11 11 322
sol-flare-M 0 0.44 0.17 0.20 11 11 322
sol-flare-X 0.06 0.01 0.18 0.33 11 11 322
wine 0.14 0.01 0.16 0.06 14 7 177
credit-scrn 0 0.12 0.09 0.02 16 5 652
letter-rec 0.38 0 0.38 0.01 17 5 20000
thyroid 0.17 0.28 0 0.11 21 5 7200
brst-canc-w 0.28 0 0.29 0.23 32 3 569
connect-4 0.49 0 0.49 0.52 43 2 67557

Table 5: Experimental results for 21 UCI data sets.



cally more robust on these data sets than the other clas-
sifiers, scoring in the top two 15/21 times compared to
7/21, 10/21, and 11/21 for SNN, GTT and NMA, re-
spectively. The average difference ∆i between classifier
i and AMA: ∆i ≡ 1

21

∑
d(δ

AMA
d −δi

d), was calculated to
gauge the statistical significance of these experiments.
The results were: ∆SNN = 15.8 ± 6.7% (significant at
the 99% level), ∆GTT = 3.7± 5.3% (significant only at
the 75% level), and ∆NMA = 11.7± 6.3 (significant at
the 95% level). These results are promising, but need
to be extended to further investigate the performance
of AMA.

5 Discussion

We have shown that it is possible to construct a sin-
gle DAG model that will perform linear-time approxi-
mate model averaging over the Ln

k (π | D) class of mod-
els. We have demonstrated empirically that even with
relatively little effort in choosing a good partial order-
ing π, classifications obtained by model averaging over
Ln

k (π | D) can be beneficial compared to other BN clas-
sifiers. The benefits of AMA were not without cost;
although comprehensive measurements were not taken,
it was observed that the initial model construction time
typically was 3-10 times longer for AMA than it took
for the greedy search to converge for the values of k and
n used in our experiments.

The AMA technique is interesting because of its sim-
plicity of implementation. Existing systems that use
Bayesian network classifiers can trivially be adapted to
use model averaging by replacing their existing model
with a single summary model.

Future work includes finding a better method for opti-
mizing the ordering π, possibly by doing a search over
orderings as in [Friedman and Koller, 2000]. Also, our
experimental results should be expanded to more exten-
sively characterize the performance of AMA for classi-
fication on real-world data. Another possible extension
is to relax the assumption of complete data, possibly
by using the EM algorithm or MCMC sampling to es-
timate Equation 14 from data.

6 Acknowledgements

This work was supported in part by grant number S99-

GSRP-085 from the National Aeronautics and Space Ad-

ministration under the Graduate Students Research Pro-

gram, by grant IIS-9812021 from the National Science Foun-

dation and by grants LM06696 from the National Library

of Medicine.

References

[Blake and Merz, 1998] C.L. Blake and C.J. Merz. UCI
repository of machine learning databases, 1998.

[Buntine, 1991] W. Buntine. Theory refinement on
Bayesian networks. In Proceedings of the Seventh An-
nual Conference on Uncertainty in Artificial Intelligence
(UAI–91), pages 52–60, San Mateo, California, 1991.
Morgan Kaufmann Publishers.

[Cooper and Herskovits, 1992] Gregory F. Cooper and Ed-
ward Herskovits. A Bayesian method for the induction
of probabilistic networks from data. Machine Learning,
9(4):309–347, 1992.

[Dash and Cooper, 2002] Denver Dash and Gregory F.
Cooper. Exact model averaging with naive Bayesian clas-
sifiers. Proceedings of the Nineteenth International Con-
ference on Machine Learning (ICML 2002), to appear,
2002.

[Domingos and Pazzani, 1997] Pedro Domingos
and Michael Pazzani. On the optimality of the simple
Bayesian classifier under zero-one loss. Machine Learn-
ing, 29:103–130, 1997.

[Friedman and Koller, 2000] Nir Friedman and Daphne
Koller. Being Bayesian about network structure. In Un-
certainty in Artificial Intelligence: Proceedings of the Six-
teenth Conference (UAI-2000), pages 201–210, San Fran-
cisco, CA, 2000. Morgan Kaufmann Publishers.

[Friedman et al., 1997] Nir Friedman, Dan Geiger, Moises
Goldszmidt, G. Provan, P. Langley, , and P. Smyth.
Bayesian network classifiers. Machine Learning, 29:131,
1997.

[Heckerman et al., 1995] David Heckerman, Dan Geiger,
and David M. Chickering. Learning Bayesian networks:
The combination of knowledge and statistical data. Ma-
chine Learning, 20:197–243, 1995.

[Madigan and Raftery, 1994] David
Madigan and Adrian E. Raftery. Model selection and
accounting for model uncertainty in graphical models us-
ing Occam’s window. Journal of the American Statistical
Association, 89:1535–1546, 1994.

[Madigan and York, 1995] David Madigan and J. York.
Bayesian graphical models for discrete data. Interna-
tional Statistical Review, 63:215–232, 1995.

[Meila and Jaakkola, 2000] Marina Meila and Tommi S.
Jaakkola. Tractable Bayesian learning of tree belief net-
works. In Uncertainty in Artificial Intelligence: Proceed-
ings of the Sixteenth Conference (UAI-2000), pages 380–
388, San Francisco, CA, 2000. Morgan Kaufmann Pub-
lishers.

[Spirtes et al., 1993] Peter Spirtes, Clark Glymour, and
Richard Scheines. Causation, Prediction, and Search.
Springer Verlag, New York, 1993.

[Verma and Pearl, 1991] T.S. Verma and Judea Pearl.
Equivalence and synthesis of causal models. In Uncer-
tainty in Artificial Intelligence 6, pages 255 –269. Else-
vier Science Publishing Company, Inc., New York, N. Y.,
1991.

[Volinsky, 1997] C.T. Volinsky. Bayesian Model Averaging
for Censored Survival Models. PhD dissertation, Univer-
sity of Washington, 1997.


