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Abstract

We describe the use of the object-oriented
HUGIN 6 probabilistic expert system software
to structure the problem of estimating muta-
tion rates on the basis of family data when
paternity can not be regarded as certain.
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1 Paternity testing and mutation

When conducting paternity testing, we may have avail-
able DNA profiles from a triple consisting of the
mother m, child ¢, and putative father pf. Each pro-
file consists of a number of genotypes, one for each of
the genetic markers examined. In turn, the genotype
for a given individual on a given marker consists of an
unordered pair of alleles, one inherited from the in-
dividual’s mother, and one from the father (although
it is not possible to distinguish which is which). The
STR. (short tandem repeat) markers used in current
forensic practice have a finite number (up to 20 or
more) of values (alleles), each a small positive integer.

Application to a specific case involves two stages.
First, we check the DNA profiles of the triple to see
whether they are logically compatible with the hypoth-
esis Hy : “tf = pf”, that the putative father pf is the
true father tf, and the laws of Mendelian inheritance.
If not, this would be a prima facie exclusion, and nor-
mally the case would be dropped. In the case of com-
patibility, the specific data on the profiles would be
used as the basis of the calculation of an appropriate
likelihood ratio for comparing the hypothesis Hy at is-
sue with some alternative hypothesis H;: for example,
that the true father is an unknown person whose genes
can be regarded as drawn randomly from the gene-pool
of the relevant population.

One feature that can complicate this procedure is the
possibility of mutation at one or more of the mark-
ers observed. If this occurs, then even if in fact tf
= pf, we may obtain a seeming exclusion. Since the
STR markers used have relatively high mutation rates
(Brinkmann et al. 1998; Henke and Henke 1999; Sa-
jantila 1999), this possibility may need to be taken
seriously if, for example, the triple shows compatibil-
ity on all but one (or sometimes two) of the markers.
Dawid et al. (2001) describe the relevant calculations
in simple cases. For more complex cases, for example
when the putative father is not available for testing
but one can obtain data from a close relative or rela-
tives, one can make use of forensic Bayesian Networks
(Dawid et al. 2002b). See Cowell et al. (1999) for gen-
eral background on Bayesian networks, also known as
Probabilistic Expert Systems.

The above analyses are naturally sensitive to the mu-
tation rates assumed (indeed, to the specific rates of
mutation transitions from one allele to another). How-
ever, the data from which such rates are estimated
typically themselves consist of just such collections of
seemingly incompatible triples, for which the evidence
in favour of true paternity is regarded as strong. There
is then a danger of confounding between the two possi-
ble reasons for incompatibility, namely non-paternity,
and paternity plus mutation; and this complicates the
estimation problem.

Work in progress (Dawid et al. 2002a) analyses in de-
tail how this estimation problem can itself be struc-
tured and solved using Bayesian networks. The
present paper describes the use of the HUGIN 6 soft-
ware for this purpose.

2 HucIN 6

Version 6 of the Probabilistic Expert System soft-
ware HUGIN! supports object-oriented construction of
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Table 1: Glossary

mamg mother’s actual maternal gene

mapg mother’s actual paternal gene

mgt mother’s genotype

pfamg putative father’s actual maternal gene
pfapg putative father’s actual paternal gene

pfgt putative father’s genotype

tfamg true father’s actual maternal gene

tfapg true father’s actual paternal gene

comg child’s original maternal gene

copg child’s original paternal gene

camg child’s actual maternal gene

capg child’s actual paternal gene

cgt child’s genotype

comp? compatibility of genotypes

tf = pf? true father is putative father?

lambda  (approximate) average overall mutation rate
rho ratio of paternal to maternal mutation rate
h mixing parameter for mutation models

complex Bayesian networks (Koller and Pfeffer 1997).
Each network created defines a generic class of net-
works, instances of which can be used, as desired, in
place of atomic nodes in other networks. This facil-
ity is particularly convenient when identical or similar
modules recur in different parts of the same global net-
work.

2.1 Top-level network

Figure 1: Top-level network comp6

Figure 1 is the top-level network comp6 describing
our problem (for a single marker). The symbols are
decoded in Table 1. The colours/shadings are purely
mnemonic, and do not affect interpretation or calcula-
tions.

The oval nodes represent variables entering this net-
work alone; the rounded rectangular nodes are them-
selves instances of other network classes, to be de-

scribed below. Arrows between nodes of either kind
represent probabilistic dependence of the “child”?
node on its “parents”, roughly as described in Cow-
ell et al. (1999). However, for an instance node, itself
containing regular nodes, we need further to specify
the relevant interface nodes (input nodes for a “child”
instance, output nodes for a “parent” instance): These
are not shown in Figure 1, but can be displayed by
“expanding” an instance node — Figure 2 shows this
for nodes pfamg, pfgt, copg and tfamg. An arrow
into an input node represents a binding of that node
to its “parent” node, whereas an arrow out of an out-
put node (and into a non-input node) has the usual
probabilistic “parent-child” interpretation. Although
only interface internal nodes are displayed on expan-
sion of an instance node, there may also be further
internal “hidden” nodes in the corresponding network
class, which can be seen by opening that network.

lambda

Figure 2: Network comp6 with nodes pfamg, pfgt,
copg and tfamg expanded.

In any network we only need to specify probabilis-
tic “parent-child” tables for the oval nodes, since the
structure of the instance nodes is determined else-
where. In the present case, these are lambda, rho, h
and tf=pf?. As these have no “parents”, we just need
to specify their prior distributions; and as we shall
mostly be concerned with setting values or extracting
likelihoods at these nodes, we use uniform priors over
a suitable discrete set of values. For lambda we use 43
values between 0 and 0.01, and for rho and h, values
(0,0.5,0.7,0.9,1); node tf=pf? is binary, with values
1 and 0 to represent ‘yes’ and ‘no’ respectively.

*To avoid confusion with genuine biological relation-
ships, we use quotes when these terms are used with their
generic network interpretations.



2.2 Lower-level networks

In Figure 1, nodes mamg, mapg, pfamg and pfapg are
all instances of the class founder, represented by the
trivial network of Figure 3. This contains a single
node gene, specifying the distribution of the alleles for
the chosen marker in the relevant population. Table 2
shows this distribution for the marker VWA. This in-
formation thus needs to be entered only once. The
grey edging to the node gene signifies that it is an
interface node, and the solid boundary that it is in
fact an output node; input nodes have dashed bound-

aries.

Figure 3: Network founder for founder gene

Table 2: Allele distribution for marker VWA

allele frequency
12 0.0003
13 0.0018
14 0.1009
15 0.1004
16 0.1949
17 0.2834
18 0.2162
19 0.0866
20 0.0137
21 0.0015
22 0.0003

Figure 4: Network gt for genotype

Nodes mgt, pfgt and cgt are all instances of the class
gt, as shown in Figure 4. This destroys the informa-
tion on the origins of the parental alleles by forming
gtmin := min(apg, amg), gtmax := max(apg, amg).
These and later relations use the straightforward “ex-

pression” syntax of HUGIN, and can be simply entered
using its “expression builder” facility.

Nodes comg and copg are instances of the class cog,
as shown in Figure 5. This models Mendelian segrega-

Figure 5: Network cog for Mendelian inheritance

tion by regarding a child’s original (i.e. unmutated)
gene og as chosen at random from the two actual
parental genes, apg and amg, according to the out-
come of a fair coin toss fcoin. That coin toss is it-
self an instance of the trivial class faircoin shown in
Figure 6, containing a single binary node coin with
prob(1l) = prob(0) = 0.5. We thus define og :=
if(fcoin.coin == 1, apg, amg). Here the notation
fcoin.coin refers to the internal node coin in the net-
work class faircoin to which the instance node fcoin
belongs.

Figure 6: Network faircoin for fair coin toss

Figure 7: Network query for provenance of paternal
gene

Nodes tfamg, tfapg are instances of query, as in
Figure 7. Here otherg, an instance of founder, repre-
sents a gene contributed by another random member
of the population; and tfg (true father’s gene) is either
pfg (putative father’s gene), or otherg, according as
tf=pf? (true father is putative father?) is 1 or 0: tfg
:= if(tf=pf? == 1, pfg, otherg.gene).

Nodes camg and capg are instances of class ag, as in
Figure 8. This models the process whereby an orig-
inal gene og, as contributed by a parent, is possibly



Figure 8: Network ag for actual gene

altered by mutation to produce the actual gene ag re-
ceived by the child. We take ag:= if(bcoin == 1,
mutg.mutg, og), so choosing either the mutated or the
original gene according to the outcome of a biased coin-
flip, bcoin, whose bias is determined by the parame-
ters lambda (approximate overall mutation rate) and
rho (ratio of male to female mutation rates), with the
externally specified value of p_or m? deciding the ap-
propriate value: bcoin := Binomial(1l, 2 * lambda *
(rho * p_orm + (1 - rho) * (1 - p_or m))).

The node mutg in ag is an instance of class mutg, as
given in Figure 9. This uses a biased coinflip bcoin

Figure 9: Network mutg for result of mutation

:= Binomial(1, h) (where h is externally specified) to
mix over two different models for the mutation pro-
cess; the proportional model of propmutg, which is an
instance of founder, simply forgets the original gene
entirely, and resamples from the gene-pool; and the
biologically more realistic one-step model onemutg, an
instance of class onestep (Figure 10), in which we
take onemutg := if(og == 12, 13, if (og == 22, 21,
og + faircoin.coin)). This flips a fair coin to change
the allele value by +1, ignoring any out-of-range tran-
sitions.

Under the proportional model, there is a non-zero
probability that the result of “mutation” is no change.
This is accounted for by the following relationship be-
tween the parameter A = lambda and the true muta-
tion rate u:

p={a-n (1= ) +n} (1)

faircoin

Figure 10: Network onestep for one-step mutation
model

where the (m;) are the relevant allele freqencies (as
given for VWA in Table 2).

Finally in network comp6, node comp? describes the
compatibility status of the genotypes of the triple. It
is an instance of class compat (Figure 11), in which

Figure 11: Network compat for compatibility

cmgm, cpgm and cpgp are themselves instances of class
nuc_compat (Figure 12), which indicates the com-

Figure 12: Network nuc_compat for simple compati-
bility

patibility of individual actual genes of the putative fa-
ther, mother and child: comp? := or(cag == apg, cag
== amg). Then comp_cm [resp. comp_cpf] (instances
of a trivial ‘or gate’ class or, as shown in Figure 13,
having out := or(in_1, in_2)) indicate compatibility
of ¢ with m [resp. pf] in the absence of data on the
third individual; while comp_all (itself an instance of
or applied to auxiliary nodes c1lcomp and c2comp, in-
stances of the unshown trivial ‘and gate’ class and)
indicates compatibility of all three genotypes. These
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Figure 13: Network or for ‘or gate’

nodes are used for input of data when only compati-
bility is reported.

Note that if comp6 were regarded as a simple net-
work, in the associated junction tree the clique con-
taining comp? would have 7 nodes, and — if we take
comp? itself as binary — 2 x 116 = 3543122 entries.
In addition, the effects of moralisation and triangula-
tion involving “parents” of comp? would create further
large cliques — one of these, with 22 members, being
of size 7412493. In all, the total clique-table size in
this case would be 10981777, leading to serious com-
putational inefficiency.

However, with our internal structuring of node comp?,
there are (after moralisation and triangulation) 8
cliques involving its constituent nodes, having a max-
imum clique-table size of 234256 and total of 476328.
The total clique-table size for the whole network is
reduced, by a factor of about 13, to 828739, and com-
putation now proceeds speedily and efficiently.

3 Application

The use of the network comp6 to construct likeli-
hoods for inference about mutation rates will be de-
scribed in detail elsewhere. Briefly, at marker VWA
there are 4 incompatible triples in our dataset, for
which we have complete information on their geno-
types; as well as about 1000 triples (or occasionally
pairs, with one parent missing), known only to be com-
patible. For each case other evidence, including the
data on other markers, gives a high prior probability
of paternity. For each case we set capg.p-orm? := 1,
camg.p-or m? := 0, and set desired values for h, rho
and prob(tf=pf? = 1). We then enter the relevant
data, and use the software to “propagate”, so updat-
ing all probabilities in the network. Interrogating the
node lambda now gives the appropriate contribution,
for that case, to the overall likelihood function over
the values specified — very good approximations to
the continuous likelihood function can also be calcu-
lated. Finally, we conduct a sensitivity analysis to the
specification of rho and h.

As an illustration, suppose that we set h to 0 (propor-

tional mutation model), rho to 0.5 (equal mutation
rates in both germ-lines), and, for a certain case, the
prior probability of paternity to 0.97. We now enter
the evidence that the triple of genotypes is incompati-
ble. On propagating using the HUGIN software, inter-
rogating lambda, and adjusting using (1), we find that
the associated contribution to the likelihood function
for the overall mutation rate y increases, in an essen-
tially linear fashion, from 0.0180 at = 0 to 0.0295 at
© = 0.008
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