Fast Robust L ogistic Regression for L arge Spar se Datasetswith Binary Outputs

Paul R. Komarek
Dept. of Mathematical Sciences
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Although popular and extremely well established
in mainstream statistical data analysis, logistic
regression is strangely absent in the field of data
mining. There are two possible explanations of
this phenomenon. First, there might be an as-
sumption that any tool which can only produce
linear classification boundaries is likely to be
trumped by more modern nonlinear tools. Sec-
ond, there is a legitimate fear that logistic re-
gression cannot practically scale up to the mas-
sive dataset sizes to which modern data mining
tools are applied. This paper consists of an em-
pirical examination of the first assumption, and
surveys, implements and compares techniques
by which logistic regression can be scaled to
data with millions of attributes and records. Our
results, on a large life sciences dataset, indi-
cate that logistic regression can perform surpris-
ingly well, both statistically and computation-
ally, when compared with an array of more recent
classification algorithms.

1 Introduction
This paper asks a simple question:

Given the wide variety of recent classification al-
gorithms (such as support vector machines) how
does one of the oldest—Ilogistic regression—
measure up?

We investigate logistic regression’s (LR) performance as
a statistical method, in which the first concern is accurate
modeling of the monomial PDF of binary-valued output
conditioned on a set of inputs. We also investigate LR as a
data mining method, in which the first concern is computa-
tional tractability on large datasets with millions of records
and hundreds of thousands of attributes.

Andrew W. Moore
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This paper concludes that there are circumstances in which
LR equals or exceeds the predictive performance of more
recent algorithms. We show how the application of well-
established sparse conjugate gradient approaches in the in-
ner loop allows the scaling of LR to sparse datasets with the
aforementioned dimensions, as well as large dense datasets
with thousands of dimensions.

2 Terminology

When discussing datasets in this paper, each record belongs
to or is predicted to belong to either the positive or negative
class. A positive row is a row belonging to, or predicted to
belong to, the positive class. A similar definition holds for a
negative row. The number of rows in a dataset is denoted R,
while the number of attributes is M. The sparsity factor of
a dataset is the proportion of nonzero entries, and is written
F. The total number of nonzero elements in a dataset is the
product MRF.

3 Logistic Regression

Logistic regression gets its name from the logistic curve
it uses to model the expected value of zero-one outputs.
Suppose our data X has R rows and M attributes. Let X;
denote row i from the dataset, 3 denote the M + 1 model
parameters, and let |; be the model’s expected value for the
output associated with row x;. Then the logistic curve may
be written as

_exp(Bo+ Bixia+ - -BumXim)

~ 14exp(Bo+PBixXi1+ - BumXim)

and in a single variable appears as in figure 1. Notice that
W is strictly between zero and one. Let y be the vector of R
outputs. The maximum likelihood equations for this model
are

R

_;(Yi—ui) =0 @

R
leij()’i“i) = 0,j=1...M)

0.8
0.6 [
0.4
0.2
0 ‘ exp(bp + b1*x) 4 (l+exp(bp + bl*x))‘
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Figure 1: Logistic Model

It is common to use an Iteratively Re-weighted Least
Squares (IRLS) algorithm to solve the above maximum
likelihood equations. In such an algorithm there is an
outer loop which evaluates the current expected values
U= (Ug,...,um)T and prediction errors (y —), and cre-
ates linear models which approximate the logistic model.
These linear models have a diagonal weight matrix W with
diagonal entries y; (1 — ;) and adjusted dependent variables
R | Yi —Hi
n=xip Mi(1— i)’

where [3 is the previous guess for the parameters. From this
model a new guess for 3 is computed using weighted linear
regression, as shown in equation (3).

B = (XTWX) "X wn ?)

The new parameter vector 3 is then used to update the ex-
pected values p and prediction errors (y —). This is the
end of the outer loop.

The residual errors in the logistic regression model are bi-
nomially distributed with variance changing throughout the
domain. This may be seen in figure 2. Suppose the model
assigns to a point x in the domain the probability p of be-
longing to the positive class. The observed class for this
point will be positive or negative, yielding a residual error
of (1—u) or prespectively. Thus the residual error depends
on X.

The outer loop of the algorithm described above may be
terminated on any of several conditions, depending on nu-
merical characteristics of the data and personal preference.
Perhaps the most common convergence criterion is stabi-
lization of an error measurement known as deviance. The
deviance DEV may be computed as

DEV = gyi In (&) +(L—y)In (i%i:)

0.8 -
err=1-mu

0.6

0.4
n mu(x)
0.2 , X0 - - -
, err=mu mu(x0) @
. yo=0 ¥
yo=1 A
0 v L L L L
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Figure 2: Logistic Model Residuals Vary With x

It may also be desirable to check for the stabilization of the
expected values p. With some datasets, it is possible for
excessive iterations to create numerical problems (Mcln-
tosh 1982 [8], McCullagh 1989 [7]). For this reason one
might create customized termination criteria for the logis-
tic regression outer loop.

It is important to note the difference between logistic re-
gression and least-squares methods with a sigmoid or logis-
tic model. Logistic regression is a type of generalized linear
model with an error function chosen to reflect the changing
variance of the binomially-distributed residual errors. Ap-
plications which use a least-squares or similar criterion for
such models ignore the nonuniform error variance across
the domain. This may or may not matter for the perfor-
mance of an ad-hoc function estimator like neural networks
(Watrous 1986 [13], Kramer 1989 [6]). However, such an
approach eschews the statistical foundations that give cred-
ibility to logistic regression.

Logistic regression is well-studied and is supported by a
rich body of literature. For more details, one might wish
to read McCullagh 1989 ([7]) or Hosmer 2000 ([4]). Both
theoretical and numerical issues are covered in these works.

4 Fast Robust Logistic Regression

When applying logistic regression to large, sparse real-
world data, we’ve encountered two principal problems.
The first problem is numerical instability and the second
is scalability or speed. Below we present four simple ap-
proaches to these problems.

4.1 Simple Algorithm

Solving the weighted linear model in the IRLS algorithm
discussed in section 3 requires direct or indirect evalua-
tion of (XTWX)~1XTWn. Because the weight matrix W is
nonnegative and diagonal, if X" has full column rank then

XTWX is symmetric positive definite (SPD). This suggests
an obvious method for computing the parameters 3, which
will be called the Simple Algorithm:

1. Remove linear dependencies from the data X
2. Rewrite equation (3) as XTWXB = XTWn

3. In each outer loop iteration, compute the Cholesky
factorization LLT of XTWX

4. Solve for B using an efficient back-substitution.

This approach is attractive because of the stability of the
Cholesky decomposition on a wide variety of matrices.

It is an assumption of this paper that the structure of the
sparsity in the data cannot be exploited to prevent fill-in in
the course of an algorithm such as Gaussian elimination.
For this reason, preprocessing is likely to require approx-
imately O (min(M?R,R?M)), using the notation from sec-
tion 2.

Suppose the data has no linear dependencies and has di-
mensions R x M. If the data is sparse, the complexity of
this approach is O (M?RF +M3). The second term, M3,
represents a standard Cholesky decomposition of XTWX.
If the data is dense, the complexity of the Simple Algo-
rithm is O (M?R+M?3). To use a standard Cholesky de-
composition, the input data must have full column rank and
hence M < R. Therefore the complexity is O (M?RF), with
F = 1.0 for dense datasets.

Simple optimizations can be made which improve the
speed but not the complexity. For instance, if the data is
sparse then the construction of the XTWX on each LR iter-
ation can be made more efficient by pre-caching the inter-
sections of all columns x;,x; of the data X. Such an “inter-
section cache” can require large amounts of storage; for a
5000 attribute dataset with an average of 25 common val-
ues between columns, the intersection cache will be over
one gigabyte. This cache effectively eliminates the cost of
constructing XTWX. Typically there are ten iterations of
the LR outer loop per fold while doing 10-fold cross vali-
dation.

It should be clear that the Simple Algorithm will not scale
well as dataset size grows. It does not fully exploit sparse-
ness during the Cholesky decomposition. Use of a limited
fill-in Cholesky decomposition which did not require con-
struction of the X" WX matrix would reduce the time com-
plexity of the Simple Algorithm, though simultaneously
making it an approximate algorithm. However, in our ex-
periments numerical issues made the XTWX matrix appear
indefinite to the Cholesky decomposition, preventing solu-
tion of equation (3).

4.2 Robust Cholesky Algorithm

It is possible to combine linear dependency removal and
Cholesky decomposition. Just as the Cholesky decompo-
sition can be used to test if a matrix is SPD, a small mod-
ification allows it to *find’ a SPD submatrix of a symmet-
ric input matrix. Suppose we are computing the Cholesky
decomposition of a symmetric matrix A to produce the
lower triangular Cholesky factor L. For logistic regression,
A = XTWX. The off-diagonal entries of the Cholesky fac-
tor L may be written in closed form as

Aij — Jkej LikLjk
Li,j
while the diagonal entries may be written as

Lii= [Aiji— k; L7 (4)

The input matrix A is SPD, if and only if all the diagonal
entries of L are well-defined and positive.

Li’j: ,j<i

Our modification to the standard Cholesky decomposition,
above, is nearly as simple as discarding rows and columns
from the input matrix A when the associated diagonal entry
is zero or not defined. Note that discarding row i and col-
umn i of A or L is equivalent to discarding attribute i from
the data X. Suppose that A is SPD, but numerical problems
cause the diagonal entry L;; to be nonpositive. This indi-
cates that the numerator of the right-hand-side of equation
(4) is negative, hence the summation term in the numerator
is too large. Every element of L in this errant summation
has been used successfully in previous rows, except the val-
ues from row i — 1. Therefore we recompute row i of L as if
row and column i — 1 of A did not exist. If the newly com-
puted diagonal entry is positive, we mark row and column
i — 1 of the input matrix as bad and continue. If the newly
computed diagonal entry is negative, we assume that row i
is bad and discard it instead.

We developed this robust Cholesky decomposition because
removing linear dependencies from the columns of our
datasets did not prevent numerical problems in a standard
Cholesky decomposition of XTWX. We observed that this
robust Cholesky decomposition removed nearly the same
set of attributes as did Gaussian elimination, and the result-
ing predictions were better. The use of this robust Cholesky
implementation inside our LR outer loop on the original
unprocessed data will be called the Robust Cholesky Algo-
rithm.

The time complexity of this method is similar to that of the
Simple Algorithm in section 4.1. The only difference is
that there is no need for preprocessing. However, the cost
of removal of linear dependencies has only been shifted to
the first iteration of LR when the robust Cholesky decom-
position is run. In fact, this occurs in the first LR iteration
of every fold. The Robust Cholesky Algorithm overcomes
numerical issues but fails to exploit sparseness.

4.3 Stepwise Logistic Regression

Another approach to handling problematic datasets is step-
wise logistic regression. This procedure wraps LR’s outer
loop with a basis-choosing loop. The basis-choosing step
creates a subset Xo of the data X, runs the LR outer loop
on this subset, and uses the result to choose a new data sub-
set X1. This repeats until the basis-choosing loop has met
some termination criterion. This algorithm will be called
the Stepwise Algorithm. The Stepwise Algorithm is attrac-
tive because no preconditioning of the data is needed, and
numerical problems are handled dynamically by the basis-
choosing loop. The basis-choosing step can make use of
prior knowledge about the attributes, or use generic mea-
sures like information gain.

The complexity of this algorithm depends on the basis-
choosing step and the number of basis-choosing iterations.
Once a basis is chosen, the solution to the logistic regres-
sion problem for that basis must be found. We believe that
attractiveness of logistic regression for large sparse datasets
is not materially affected by the Stepwise Algorithm.

4.4 Conjugate Gradient as an Inner Loop

Nearly all of the time spent in LR iterations is on solv-
ing the linear regression. In particular, that time is spent
constructing A = XTWX and finding its Cholesky factors.
By using a conjugate gradient (CG) iterative linear solver
for equation (3), we avoid construction of A = XTWX al-
together. The algorithm based on this technique will be
called the CG Algorithm.

A thorough explanation of conjugate gradient and related
methods can be found in Greenbaum 1997 ([3]), Nash 1996
([10]), or Bishop 1995 ([1]). Briefly, solving a linear sys-
tem Ax = b, where A is SPD, using conjugate gradient is
similar to minimizing the quadratic expression

%XTAX +b'x (5)

using Newton’s method with a specially chosen set of di-
rection vectors. CG can be thought of as a specialization of
Newton’s method for quadratic functions with SPD matri-
ces, but this ignores the features most important to our ap-
plication. Those features are that conjugate gradient does
not require explicit computation of the Hessian of expres-
sion (5), as Newton’s method does, that CG can perform
well when the matrix A is rank deficient and hence SPD,
and that typically few CG iterations are necessary. With
perfect arithmetic, the exact solution to a linear system with
SPD matrix A having dimensions M x M can be found in
exactly M iterations.

In practice, a termination parameter is used to control the
quality of approximation. We will refer to this parameter
later as epsilon. The CG algorithm runs until an error mea-
surement is smaller than epsilon. This error measurement

is the distance between the current solution and the optimal
solution, under the assumption that one is finding minima
of expression (5). Therefore this error measurement is also
appropriate for the equivalent problem of solving a linear
systems with SPD matrix A.

Like Newton’s method, CG is well-studied. A modified CG
method known as the biconjugate gradient method is de-
signed for matrices A in expression (5) which are not SPD.
To reduce the number of iterations needed for convergence
of the CG method, or speed up each iteration, a precon-
ditioning matrix can be applied to both sides of the linear
system Ax = b. There is a significant literature on choosing
these preconditioners for use with the CG method, some-
times using the name preconditioned conjugate gradient.
A good reference on the application of iterative methods to
linear systems is Greenbaum 1997 ([3]). We have had sig-
nificant success in our work with the basic CG algorithm,
and hope for improved speed and predictive performance
with greater sophistication in our inner loop.

The time complexity of the CG Algorithm is
O(MRF -maxiters), where maxiters is an upper-
bound placed on the number of CG iterations used to
approximate a solution to the linear system (3). In the
experiments found in this paper, fewer than 500 CG
iterations were used. If we fix maxit ers independent of
the number of attributes, the CG Algorithm scales linearly
with the dimensions of the data. This is a tremendous
improvement over the Robust Algorithm’s O (M2RF)
complexity.

5 Data

In this paper we report results on two large and significant
datasets being used in the life sciences. Within this pa-
per these dataset are referred to as ds1 and ds2. dsl has
approximately 6,000 binary-valued attributes and 27,000
rows, while ds2 has approximately 1,000,000 binary-
valued attributes and 90,000 rows. Both datasets are sparse.

At the time of submitting we do not have permission to dis-
close further details about these datasets. Qualitatively, one
may think of these datasets as containing information sim-
ilar to a combination of the publicly available Open Com-
pound Database and associated biological test data, as pro-
vided by the National Cancer Institute ([11]).

We also present results on three additional datasets de-
rived from ds1 and ds2. Two datasets, ds1. 100pca and
dsl. 10pca are linear projections of ds1 to 100 and 10 di-
mensions, using principle component analysis (PCA). Be-
cause of the expense of PCA, the projection of ds2 to
100 dimensions uses an approximate linear projection al-
gorithm known as Anchors (Moore 2000 [9]). The result-
ing dataset is called ds2. 100anchors. Note that in both
PCA and Anchors we are reducing the number of attributes

while the number of rows remains the same. These datasets
allow comparison of predictive performance on the orig-
inal large sparse datasets to the same on smaller dense
datasets. These datasets further allow comparison of LR
to more computationally expensive algorithms such as k-
nearest neighbor (K-NN) which cannot reasonably be run
ondsl and ds2.

The dataset ds1 has sparsity factor F = 0.0220, while ds2
has sparsity factor F = 0.0003. The PCA- and Anchors-
based datasets are dense and can be imagined to have a
sparsity factor F = 1.0. We assume that the sparsity of the
input data has no exploitable structure.

6 Analysis

We have run experiments with all four algorithms men-
tioned in section 4. The Simple Algorithm always had nu-
merical problems, and never produced results. The Step-
wise Algorithm was used in early experiments on ds1. Be-
cause the basis-choosing step in our implementation added
only one attribute at a time to the basis, it was very slow
to accumulate even 500 attributes. The Robust Cholesky
algorithm, on the other hand, was able to run on all ap-
proximately 6,000 attributes of ds1 faster than the Step-
wise Algorithm could accumulate 500. For these reasons,
this section will focus on the Robust Cholesky Algorithm,
abbreviated Robust LR, and the CG Algorithm, abbreviated
CG LR.

To evaluate and compare the predictive performance of our
LR implementations and other traditional machine learn-
ing algorithms, we used 10-fold cross-validation. To vi-
sualize the predictive performance, we use Receiver Op-
erating Characteristic (ROC) curves (Duda 1973 [2]). To
construct these curves, we sort the dataset rows according
to the probability a row is in the positive class under the
logistic model. Then, starting at the graph origin, we step
through the rows in order of decreasing probability, mov-
ing up one unit if the row is positive and right one unit oth-
erwise. Every point (x,y) on an ROC curve represents the
learner’s *favorite’ x+y rows from the dataset. Out of these
favorite rows, x are actually positive, and y are negative.

Suppose a dataset had P positive rows and R — P nega-
tive rows. A perfect learner on this dataset would have
an ROC curve starting at the origin, moving straight up to
(0,P), and then straight right to end at (R — P,P). Random
guessing would produce, on average, an ROC curve which
started at the origin and moved directly to the termination
point (R — P,P). Note that all ROC curves will start at the
origin and end at (R — P,P) because R steps up or right
must be taken, one for each row. As a crude summary of an
ROC curve, we measure the area under the curve relative to
area under a perfect learner’s curve. The result is denoted
AUC. A perfect learner has an AUC of 1.0, while random
guessing produces an AUC of 0.5. In order to compute

Table 1: Computer Specifications

Name CPU RAM

liver Alpha EV67 667 MHz 4GB
4MB cache

t ux Athlon XP 1900+ 768MB

confidence intervals, we compute one AUC score for each
fold of our 10-fold cross-validation. We report the mean of
these scores and a 95% confidence interval. When compar-
ing two learning algorithms we use the same set of 10-fold
partitions for each. This allows a pairwise test to determine
whether one algorithm is significantly better or worse than
the other according to the AUC measure.

The results presented below include several machine learn-
ing algorithms. Not every one of these algorithms is present
in every comparison, due to computational complexity. CG
LR, Bayes Classifier (BC), and a decision tree learner (D-
Tree) can reasonably be run on the largest of our datasets,
ds2. D-Tree utilizes chi-squared pruning with a threshold
of 10%. Because of implementation details, D-Tree was
not used on projected datasets. Special effort was required
to make K-Nearest Neighbor (K-NN) fast on ds1. 100pca
and ds2. 100anchor s with K = 9. Support vector machine
results used either a linear (Linear SVM) or radial basis
function (RBF SVM) kernel, as implemented in svmlight
(Joachims 1999 [5], [12]). The data input format for

svmlight pas a sparse format, and we believe that sparse
instance vectors are exploited.

Our results were obtained on two different machines. Ex-
periments with ds1, dsl.100pca and dsl1. 10pca were
performed on t ux, a somewhat typical modern desktop.
Experiments with ds2 and ds2. 100anchors used | i ver,
an old Alpha Server. We believe that no experiment ever al-
located over two gigabytes of memory. The specifications
of these machines can be found in table 1.

Our analysis begins by comparing several learners on the
ds1 dataset. The ROC curves for BC, D-Tree, Robust LR,
CG LR, Linear SVM and RBF SVM can be seen in the
rather crowded figure 3. Summarizing this graph is table
2. We see that the LR methods’ predictive performance is
competitive with more recent learning algorithms. While
RBF SVM performed on par with CG LR, CG LR was over
fifteen times faster. It is curious that CG LR performed
better than Robust LR. The next experiment hints how that
could happen.

Using PCA to reduce the dimensionality of the ds1 dataset
to 100 attributes changes the situation somewhat, as shown
in table 3. Robust LR is doing better despite the reduction
in available information. We interpret this as a sign that
Robust LR was overfitting in the experiment on ds1. Per-
haps the approximate solutions to equation (3) used by CG

Table 2: Predictive Performance for Several Learners, 10-
Fold, ds1, Machine=t ux

Learner Time (sec.) AUC

BC 18 0.805+0.021
D-Tree 355 0.893+0.011
Robust LR 25290 0.869+0.019
CGLR 234 0.931+0.012
Linear SVM 303 0.918+0.010
RBF SVM 3689 0.927+0.013

Comparing Learners on ds1, 10 fold

True positives

300 ff

BC

D-Tree
Robust-LR
CG-LR 4
Linear-SVM
REF-SVM

§ |
0 5000 10000 15000 20000 25000 30000

200 ;

100 |

OMIX X+

False positives

Figure 3: Predictive Performance for Several Learners, 10-
Fold, ds1, Machine=t ux

LR reduce overfitting. This explanation is similar in spirit
to that used to support early stopping when training neural
networks (e.g. Bishop 1995 [1]). Linear SVM suffer sig-
nificantly with the projection, but BC, RBF SVM and the
LR methods are less affected. From this we conclude that
ds1. 100pca contains useful information.

Though ds1. 100pca is dense, it is now small enough for
a fast K-NN algorithm to be run with K = 9. Note that
CG LR required 255 seconds for this dataset. Given its
complexity (c.f. section 4.4), we expect CG LR will scale
to dense datasets with thousands of attributes and perhaps
hundreds of thousands of rows.

Once we project the approximately 6000 attributes of ds1

Table 3: Predictive Performance for Several Learners, 10-
Fold, ds1. 100pca, Machine=t ux

Learner Time (sec.) AUC

BC 42 0.891+0.012
K-NN 386 0.862+0.017
Robust LR 707 0.914+0.010
CG LR 255 0.91440.010
Linear SVM 288 0.87440.010
RBF SVM 1528 0.920+0.014

Comparing Methods on ds1.100pca, 10 fold
900 : : : : :

True positives

BC

K-NN
Robust-LR
CG-LR 4
Linear-SVM
REF-SVM

I
0 5000 10000 15000 20000 25000 30000

200

100

OMIX X+

False positives

Figure 4: Predictive Performance for Several Learners, 10-
Fold, ds1. 100pca, Machine=t ux

Table 4: Predictive Performance for Several Learners, 10-
Fold, ds1. 10pca, Machine=t ux

Learner Time (sec.) AUC

BC 6 0.863+0.013
K-NN 155 0.817+0.028
Robust LR 13 0.795+0.015
CG LR 16 0.795+0.015
Linear SVM 90 0.569+0.076
RBF SVM 554 0.852+0.011

to the 10 attributes of ds1. 10pca, the predictive perfor-
mance of the algorithms spreads out as seen in table 4 and
figure 5. The LR methods and RBF SVM fall significantly
while Linear SVM plummets. BC and K-NN are still able
to find useful information in the dataset. Almost certainly
this is a special property of this dataset. Experiments on
ds2 and ds2. 100anchors support this hypothesis. Al-
though using PCA to project to the ten best dimensions
is inexpensive and hence attractive, we must conclude that
ds1. 10pca contains too little information to be useful.

Our final comparison uses the ds2 and ds2. 100anchor s
datasets. This data proved problematic for every algorithm
we used. It is very sparse, has few positive rows, and
of course is noisy. Because ds2 has over one million at-
tributes, only BC, D-Tree and CG LR were run on the full
dataset. In addition to these algorithms, K-NN, RBF SVM
and Linear SVM were run on the 100 dimensional Anchors
projection ds2. 100anchors. The results can be seen in
table 5 and figure 6. While general performance is better
than random guessing, only CG LR and D-Tree on the full
dataset manage to step above the 60% AUC of the other
algorithms, with CG LR doing significantly better than D-
Tree. BC does not benefit from exposure to the full dataset,
and K-NN did not distinguish itself with a steep ascent as
it did in figures 4 and 5. This supports our hypothesis that

Comparing Methods on ds1.10pca, 10 fold

True positives

BC

K-NN
Robust-LR
CG-LR 4
Linear-SVM
REF-SVM

200 ff /

100 ff

OMIX X+

il L L L L
0 5000 10000 15000 20000 25000 30000
False positives

Figure 5: Predictive Performance for Several Learners, 10-
Fold, ds1. 10pca, Machine=t ux

Table 5: Predictive Performance for Several Learners, 10-
Fold, ds2. 100anchor s except CG-ds2 and BC-ds2, which
were run on the full ds2 dataset; Machine=l i ver.

Learner Time (sec.) AUC

BC 151 0.61440.030
K-NN 3905 0.62040.028
CGLR 3795 0.572+0.021
Linear SVM 6364 0.583+0.029
RBF SVM 145781 0.561+0.030
BC-ds2 644 0.599+0.026
D-Tree-ds2 68224 0.643+0.032
CG-ds2 99738 0.712+0.028

BC and K-NN were exploiting peculiarities of ds1. 100pca
and ds1. 10pca in a manner which may not generalize to
other datasets.

Perhaps we should call attention to our concept of “scal-
able”. Although CG LR required approximately 27.7 hours
of cpu time on an old 667MHz Alpha, or a guessed 12.25
hours on an Athlon XP 1900+, we believe the superior pre-
dictive performance more than justifies the expense.

We have established the potential of LR, and in particular
CG LR, as a machine learning tool. Note that most of the
ROC curves shown for CG LR are initially fairly steep, in-
dicating that LR’s “favorite” rows are, by and large, mem-
bers of the positive class. This property makes LR attrac-
tive in data mining scenarios where the goal is discovering
“promising” rows in a dataset, with low false positive rate.

To summarize the performance of Robust and CG LR on
dsl, dsl1.100pca, and dsl. 10pca, we provide figure 7.
There is no new material here. It can be seen clearly here
that CG LR is not a second-class LR implementation, espe-
cially given its superior performance over Robust LR. Al-
though satisfactory and clearly competitive results can be

Comparing Methods on ds2 and ds2.100anchors, 10 fold
450 : : : : : ‘ ‘ ‘

400
350
300
250

200

True positives

Linear-SVM A
RBF-SVM
BC/ds2 4
i D-Tree/ds2

- CG-LR/ds2
ok | | | | | | | h

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
False positives

POOMIXX+

Figure 6: Predictive Performance for Several Learners, 10-
Fold, ds2 and ds2. 100anchor s, Machine=l i ver

Applying LR to ds1 and derivatives, 10 fold
900 ‘ ‘ ‘ ‘ ‘

True positives

ds1/CG-LR
ds1/Robust-LR
ds1.100pca/CG-LR
ds1.100pca/Robust-LR
ds1.10pca/CG-LR
ds;.lOpca/Robgst-LR

0 5000 10000 15000 20000 25000 30000

200 |/

100

B
OmMOXX+

False positives

Figure 7: Comparing Robust LR and CG LR on ds1,
dsl. 100pca, and ds1. 10pca.

obtained on the projected datasets, CG LR can be run on
the original sparse datasets. Given CG LR’s speed and re-
sistance to overfitting, and the expense of reducing dataset
dimensionality, there is no reason not to run CG LR on the
original sparse datasets.

Finally, it is interesting to explore the effects of the conju-
gate gradient epsilon parameter used to terminate conjugate
gradient iterations. Earlier, we hypothesized that finding
approximate solutions to equation (3), as done in CG LR,
helped prevent overfitting. Figure 8 makes it clear that the
best value for epsilon is not necessarily the smallest. While
this is not enough to conclude that an epsilon of 0.01 causes
less overfitting than an epsilon of 0.001, we must acknowl-
edge that looser approximations when solving equation (3)
can result in better LR predictions.

Changing CG Conv. Epsilon on ds1, 10 fold

800 - - .
e =y
/""
0 7
Q
2
E= e
8
o ,'"‘ 7,_,"’
g 400 e
= i o
300 ><‘X
: e + epsilon=0.5
200 H ,>< X epsilon=0.3
; X epsilon=0.2
[[0 epsilon=0.1
100 ¢ A B epsilon=0.01
o i ‘ ‘ ‘ ,© epsilon=0.001
0 5000 10000 15000 20000 25000 30000

False positives

Figure 8: Varying CG Epsilon on ds1.

7 Conclusions

We have demonstrated that logistic regression, when accel-
erated by a conjugate gradient approximate linear solver,
can surpass several well-known modern machine learn-
ing algorithms on two large sparse modern life sciences
datasets. Our implementation provided superior predictive
performance on a sparse dataset with over one million at-
tributes and approximately 90,000 rows, and appears able
to scale to millions of attributes with millions of rows. We
have further demonstrated that conjugate gradient based lo-
gistic regression is suitable for use with dense datasets hav-
ing thousands of attributes and tens of thousands of rows.

This is not the first paper to explore the combination of lo-
gistic regression and conjugate gradient algorithms. MclIn-
tosh (Mclntosh 1982 [8]) clearly articulated and demon-
strated the promise of this combination twenty years ago.
We have independently rediscovered this combination,
demonstrated its value, and are surprised that logistic re-
gression does not have a more prominent place in the mod-
ern machine learning and data mining toolbox.

8 FutureWork

Our chief aim is a larger empirical study of the techniques
in this paper, including further exploration of CG and re-
lated methods. In particular, we will explore CG precondi-
tioners and other performance enhancing techniques, such
as those in Mclntosh 1982 ([8]). We will also investigate
semidefinite iterative methods, such as biconjugate gradi-
ent and others discussed in Greenbaum 1997 ([3]). We also
intend to compare the performance of CG used in IRLS
verus the more common technique of applying CG directly
to the maximum likelihood equations (1) and (2).

Acknowledgements

The authors wish to thank Ting Liu of the School of Com-
puter Science, Carnegie Mellon University, for her work
implementing, debugging, and benchmarking the non-LR
algorithms in this paper.

References

[1] C. M. Bishop. Neural Netowrks for Pattern Recogni-
tion. Oxford University Press, 1995.

[2] R. O. Duda and P. E. Hart. Pattern Classification and
Scene Analysis. John Wiley & Sons, 1973.

[3] A. Greenbaum. Iterative Methods for Solving Linear
Systems, volume 17 of Frontiers in Applied Mathe-
matics. SIAM, 1997.

[4] D. W. Hosmer and S. Lemeshow. Applied Logistic
Regression. Wiley-Interscience, 2 edition, 2000.

[5] T. Joachims. Making large-Scale SVM Learning
Practical. In Advances in Kernel Methods — Support
Vector Learning. MIT Press, 1999.

[6] A. H. Kramer and A. Sangiovanni-Vincentelli. Ef-
ficient Parallel Learning Algorithms for Neural Net-
works. In D. S. Touretzky, editor, Neural information
Processing Systems, volume 1, pages 40-48. Morgan
Kaufmann, San Mateo, 1989.

[7] P. McCullagh and J. A. Nelder. Generalized Lin-
ear Models, volume 37 of Monographs on Statistics
and Applied Probability. Chapman & Hall, 2 edition,
1989.

[8] A. Mcintosh. Fitting Linear Models: An Application
of Conjugate Gradient Algorithms, volume 10 of Lec-
ture Notes in Statistics. Springer-Verlag, New York,
1982.

[9] A. W. Moore. Anchors Hierarchy: Using the Trian-
gle Inequality to Survive High Dimensional Data. In
Proceedings of UAI-2000: The Sixteenth Conference
on Uncertainty in Artificial Intelligence, 2000.

[10] S. G. Nash and A. Sofer. Linear and Nonlinear Pro-
gramming. McGraw-Hill, 1996.

[11] National Cancer Institute Open Compound Database,
2000. http://cactus. nci.ni h. gov/ nci db2.

[12] svmh9nt 2002, http: //svniight. j oachi ns. org.

[13] R. L. Watrous. Learning Algorithms for Connection-
ist Networks: Applied Gradient Methods of Nonlin-
ear Optimization. Technical Report MS-CIS-87-51
LINC LAB 72, University of Pennsylvania, Philidel-
phia, June 1986.

