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Abstract

Stochastic complexity of a data set is defined as
the shortest possible code length for the data ob-
tainable by using some fixed set of models. This
measure is of great theoretical and practical im-
portance as a tool for tasks such as model selec-
tion or data clustering. Unfortunately, comput-
ing the modern version of stochastic complexity,
defined as the Normalized Maximum Likelihood
(NML) criterion, requires computing a sum with
an exponential number of terms. Therefore, in
order to be able to apply the stochastic complex-
ity measure in practice, in most cases it has to
be approximated. In this paper, we show that for
some interesting and important cases with multi-
nomial data sets, the exponentiality can be re-
moved without loss of accuracy. We also intro-
duce a new computationally efficient approxima-
tion scheme based on analytic combinatorics and
assess its accuracy, together with earlier approx-
imations, by comparing them to the exact form.
The results suggest that due to its accuracy and
efficiency, the new sharper approximation will be
useful for a wide class of problems with discrete
data.

1 INTRODUCTION

From the information-theoretic point of view, the most
plausible explanation for a phenomenon is the one which
can be used for constructing the most effective coding of
the observable realizations of the phenomenon. This type
of minimum encodingexplanations can be applied in sta-
tistical learning for building realistic domain models, given
some sample data. Intuitively speaking, in principle this
approach can be argued to produce the best possible model
of the problem domain, since in order to be able to pro-
duce the most efficient coding of data, one must capture
all the regularities present in the domain. Consequently,

the minimum encoding approach can be used for construct-
ing a solid theoretical framework for statistical modeling.
Similarly, the minimum encoding approach can be used for
producing accurate predictions of future events.

The most well-founded theoretical formalization of the
intuitively appealing minimum encoding approach is the
Minimum Description Length (MDL)principle developed
by Rissanen (Rissanen, 1978, 1987, 1996). The MDL prin-
ciple has gone through several evolutionary steps during
the last two decades. For example, the early realization
of the MDL principle, the two-part code MDL (Rissanen,
1978), takes the same form as the Bayesian BIC crite-
rion (Schwarz, 1978), which has led some people to incor-
rectly believe that MDL and BIC are equivalent. The lat-
est instantiation of MDL discussed here isnot directly re-
lated to BIC, but to a more evolved formalization described
in (Rissanen, 1996). For discussions on the theoretical ad-
vantages of this approach, see e.g. (Rissanen, 1996; Barron,
Rissanen, & Yu, 1998; Grünwald, 1998; Rissanen, 1999;
Xie & Barron, 2000; Rissanen, 2001) and the references
therein.

The most important notion of MDL is theStochastic Com-
plexity (SC), which is defined as the shortest description
length of a given data relative to a model classM. Unlike
some other approaches, like for example Bayesian meth-
ods, the MDL principle does not assume that the model
class chosen is correct. It even says that there is no such
thing as a true model or model class, which in Bayesian
methods is sometimes acknowledged in practice. Fur-
thermore, SC is an objective criterion in the sense that
it is not dependent on any prior distribution, it only uses
the data at hand1. This means that the objectives of the
MDL approach are very similar to those behind Bayesian
methods with so-called reference priors (Bernardo, 1997),
but note, however, that Bernardo himself expresses doubt
that a reasonably general notion of “non-informative” pri-

1Unlike Bayesian methods, with SC the possible subjective
prior information is not used as an explicit part of the theoretical
framework, but it is expected to be used implicitly in the selection
of the parametric model class discussed in the next section.



ors exists in Bayesian statistics in the multivariate frame-
work (Bernardo, 1997).

It has been shown (see (Clarke & Barron, 1990; Grünwald,
1998)) that the stochastic complexity criterion is asymptot-
ically equivalent to the asymptote of the Bayesian marginal
likelihood method with the Jeffreys prior under certain con-
ditions, when the Jeffreys prior also becomes equivalent to
the so-called reference priors (Bernardo & Smith, 1994).
Nevertheless, with discrete data this equivalence does not
hold near the boundary of the parameter space in many
models (Chickering & Heckerman, 1997; Xie & Barron,
2000), and in applications such as document or natural lan-
guage modelling some parameters are expected to lie at the
boundary. The implicit use of the Laplace approximation in
the Bayesian derivations severely strains the approximation
or completely anulls it on the boundaries, as discussed in
(Bernardo & Smith, 1994; Bleistein & Handelsman, 1975).
Consequently, it can be said that the stochastic complexity
approach aims to achieve the goal of objectivity in a way
not demonstrated in the Bayesian approach due to technical
difficulties.

All this makes the MDL principle theoretically very ap-
pealing. However, the applications of the modern, so
called Normalized Maximum Likelihood (NML) version
of MDL, at least with multinomial data, have been quite
rare. This is due to the fact that the definition of SC in-
volves a sum (or integral) over all the possible data matri-
ces of certain length, which are obviously exponential in
number. Some applications have been presented for dis-
crete regression (Tabus, Rissanen, & Astola, 2002), linear
regression (Barron et al., 1998; Dom, 1996), density es-
timation (Barron et al., 1998) and segmentation of binary
strings (Dom, 1995). In this paper, we will present meth-
ods for removing the exponentiality of SC in several im-
portant cases involving multinomial (discrete) data. Even
these methods are, however, in some cases computationally
demanding. Therefore we also present three computation-
ally efficient approximations to SC and instantiate them for
the cases mentioned. The approach is similar to our pre-
vious work in (Kontkanen, Myllym̈aki, Silander, & Tirri,
1999), but it was based on an earlier definition of MDL,
not on the modern version adopted here. The ability to
compute the exact SC gives us a unique opportunity to see
how accurate the approximations are. This is important as
we firmly believe that the results extend to more complex
cases where exact SC is not available.

In Section 2 we first review the MDL principle and discuss
how to compute it for a single multinomial variable and
a certain multi-dimensional model class. The techniques
used in this section are completely new. Section 3 presents
the three SC approximations for multinomial data. In Sec-
tion 4 we study the accuracy of these approximations by
comparing them to the exact stochastic complexity. Finally,
Section 5 gives the concluding remarks and presents some

ideas for future work.

2 STOCHASTIC COMPLEXITY FOR
MULTINOMIAL DATA

2.1 INTRODUCTION TO MDL

Let us consider a data set (or matrix)xN = (x1, . . . ,xN )
of N outcomes (vectors), where each outcomexj is an el-
ement of the setX . The setX consists of all the vectors of
the form(a1, . . . , am), where each variable (or attribute)ai

takes on valuesv ∈ {1, . . . , ni}. Furthermore, we assume
that our data is multinomially distributed.

We now consider the case with a parametric family ofprob-
abilistic candidate models(or codes)M = {f(x|θ) | θ ∈
Γ}, whereΓ is an open bounded region ofRk and k is
a positive integer. The basic principle behindMinimum
Description Length (MDL)modeling is to find a code that
minimizes the code length over all data sequences which
can be well modeled byM. Here a data sequence being
“well-modeled byM” means that there is a modelθ in M
which gives a good fit to the data. In other words, if we
let θ̂(xN ) denote the maximum likelihood estimator (MLE)
of the dataxN , thenxN is well modeled byM means that
f(xN |θ̂(xN )) is high. Thestochastic complexityof a data
sequencexN , relative to a family of modelsM, is the code
length ofxN when it is encoded using the most efficient
code obtainable with the help of the familyM.

In the above, stochastic complexity was defined only in
an implicit manner — as discussed in (Grünwald, Kontka-
nen, Myllymäki, Silander, & Tirri, 1998), there exist sev-
eral alternative ways for defining the stochastic complexity
measure and the MDL principle explicitly. In (Rissanen,
1996) Rissanen shows how the two-part code MDL pre-
sented in (Rissanen, 1978) can be refined to a much more
efficient coding scheme. This scheme is based on a notion
of normalized maximum likelihood (NML), proposed for fi-
nite alphabets in (Shtarkov, 1987). The definition of NML
is

PNML(xN | M) =
P (xN | θ̂(xN ),M)∑
yN P (yN | θ̂(yN ),M)

, (1)

where the sum goes over all the possible data matrices of
lengthN . For discussions on the theoretical motivations
behind this criterion, see e.g. (Rissanen, 1996; Merhav &
Feder, 1998; Barron et al., 1998; Grünwald, 1998; Rissa-
nen, 1999; Xie & Barron, 2000; Rissanen, 2001).

Definition (1) is intuitively very appealing: every data ma-
trix is coded using its own maximum likelihood (i.e. best
fit) model, and then a penalty for the complexity of the
model classM is added to normalize the distribution. This
penalty, i.e., the denominator of (1), is called theregret.
Note that usually the regret is defined as a logarithm of the



denominator. In this paper, however, we mostly use the
language of probability theory rather than information the-
ory and thus the definition without the logarithm is more
natural.

2.2 COMPUTING THE NML:
ONE-DIMENSIONAL CASE

We now turn to the question of how to compute the NML
criterion (1), given a data matrixxN and a model classM1.
Let us first consider a case with only one multinomial vari-
able withK values. The maximum likelihood term is easy
and efficient to compute:

P (xN | θ̂(xN ),M1) =
N∏

j=1

P (xj | θ̂(xN ))

=
K∏

v=1

θ̂hv
v =

K∏
v=1

(
hv

N

)hv

, (2)

where θ̂v is the probability of valuev, and(h1, . . . , hK)
are thesufficient statisticsof xN , which in the case of
multinomial data are simply the frequencies of the values
{1, . . . , K} in xN .

At first sight it may seem that the time complexity of com-
puting the regret, i.e., the denominator in (1), grows expo-
nentially with the size of the data, since the summing goes
overKN terms. However, it turns out that for reasonable
small values ofK it is possible to compute (1) efficiently.
Since the maximum likelihood (2) only depends on the suf-
ficient statisticshv, the regret can be written as

R1
K,N

def.=
∑

xN

P (xN | θ̂(xN ),M1)

=
∑

h1+···+hK=N

N !
h1! · · ·hK !

K∏
v=1

(
hv

N

)hv

, (3)

where in the last formula the summing goes over all the
compositionsof N into K parts, i.e., over all the possible
ways to choose non-negative integersh1, . . . , hK so that
they sum up toN . We use the notationR1

K,N to refer to this
subsequently, i.e., the regret for one multinomial variable
with K values andN data vectors. The time complexity
of (3) is O(NK−1), which is easy to see. For example,
take caseK = 3. The regret can be computed inO(N2)
time:

R1
3,N =

N∑

h1=0

N−h1∑

h2=0

N !
h1!h2!(N − h1 − h2)!

·
(

h1

N

)h1
(

h2

N

)h2
(

N − h1 − h2

N

)N−h1−h2

. (4)

2.3 COMPUTING THE NML : THE RECURSIVE
FORMULA

It turns out that the exact regret for a single multinomial
variable can also be computed with a computationally very
efficient combinatoric recursive formula. ConsiderR1

K,N

as before. Using standard combinatorics we get the follow-
ing recursion:

R1
K,N =

∑

h1+h2=N

N !
h1!h2!

(
h1

N

)h1
(

h2

N

)h2

·R1
k1,h1R

1
k2,h2, (5)

wherek1 + k2 = K.

This formula allows us to compute the exact NML very ef-
ficiently by applying a common doubling trick from com-
binatorics. Firstly, one computes the tables ofR1

2m,n for
m = 1, . . . , blog Kc andn = 1, . . . , N . Secondly,R1

K,N

can be built up from these tables. For example, take the
caseR1

26,N . First calculateR1
K,n for K ∈ {2, 4, 8, 16}

and n = 1, . . . , N . Then apply (5) to calculate the ta-
bles ofR1

10,n from R1
2,n andR1

8,n. Finally, R1
26,N can be

computed from the tables ofR1
16,n andR1

10,n. It is now
easy to see that the time complexity of computing (5) is
O(N2 log K).

2.4 COMPUTING THE NML :
MULTI-DIMENSIONAL CASE

The one-dimensional case discussed in the previous sec-
tions is not adequate for many real-world situations, where
data is typically multi-dimensional. Let us assume that we
havem variables. The number of possible data vectors
is

∏m
i=1 ni. It is clear that even the methods presented in

the previous sections do not make the NML computation
efficient in the multi-dimensional case. We are forced to
make some independence assumptions. In this article, we
assume the existence of a special variablec (which can be
chosen to be one of the variables in our data matrix or it
can be latent), and that given the value ofc, the variables
(a1, . . . , am) are independent. That is, denoting the model
class resulting from this assumption byMT ,

P (c, a1, . . . , am | θ,MT )

= P (c | θ,MT )
m∏

i=1

P (ai | c, θ,MT ). (6)

Although simple, this model class has been very successful
in practice in mixture modeling (Kontkanen, Myllym̈aki, &
Tirri, 1996), cluster analysis, case-based reasoning (Kon-
tkanen, Myllym̈aki, Silander, & Tirri, 1998), Naive Bayes
classification (Gr̈unwald et al., 1998; Kontkanen, Myl-
lymäki, Silander, Tirri, & Gr̈unwald, 2000) and data vi-
sualization (Kontkanen, Lahtinen, Myllym̈aki, Silander, &
Tirri, 2000).



We now show how to compute NML forMT . Assumingc
hasK values and using (3), Equation (1) becomes

PNML(xN |MT )

=

∏K
k=1

(
hk

N

)hk ∏m
i=1

∏K
k=1

∏ni

v=1

(
fikv

hk

)fikv

Rm
MT

, (7)

wherehk is the number of timesc has valuek in xN ,
fikv is the number of timesai has valuev whenc = k,
andRm

MT
is the regret:

Rm
MT

=
∑

h1+···+hK=N∑

f111+···+f11n1=h1

· · ·
∑

f1K1+···+f1Kn1=hK

· · ·
∑

fm11+···+fm1nm=h1

· · ·
∑

fmK1+···+fmKnm=hK

N !
h1! · · ·hK !

K∏

k=1

(
hk

N

)hk

·
m∏

i=1

K∏

k=1

hk!
fik1! · · · fikni !

ni∏
v=1

(
fikv

hk

)fikv

. (8)

The trick to make (8) more efficient is to note that we can
move all the terms under their respective summation signs,
and replace the inner term with the one-dimensional case,
which gives

Rm
MT

=
∑

h1+···+hK=N

N !
h1! · · ·hK !

K∏

k=1

(
hk

N

)hk

·
m∏

i=1

K∏

k=1

R1
hk,ni

. (9)

This depends only linearly on the number of variablesm
making it possible to compute (7) for cases with lots of
variables provided that the number of value counts are rea-
sonably small. On the other hand, formula (9) is clearly
exponential with respect toK. This makes it infeasible for
cases like cluster analysis, where typicallyK can be very
big.

It turns out that the recursive formula (5) can also be gen-
eralized to the multi-dimensional case. There are, how-
ever, cases where even this recursive generalization is too
inefficient. One important example is stochastic optimiza-
tion problems, where typically one must evaluate the cost
function thousands or even hundreds of thousands of times.
It is clear that for these cases efficient approximations are
needed. This will be the subject of the next section.

3 STOCHASTIC COMPLEXITY
APPROXIMATIONS

In the previous section we discussed how the NML can be
computed efficiently for both one- and multi-dimensional
cases. However, we usually had to assume that the vari-
ables in our domain do not have too many values. Although
the recursive formula (5) is only logarithmic with respect
to the number of values, it is still quadratically dependent
on the number of data vectors. Therefore, it is necessary
to develop approximations to the NML. In this section,
we are going to present three such approximations, two of
which are well-known (BIC, Rissanen’s asymptotic expan-
sion) and a new one based on analytic combinatorics. For
each approximation, we instantiate them for both the sin-
gle multinomial case and the multivariate model classMT

defined by Equation (6). Furthermore, since we are able to
compute the exact NML for these interesting and important
cases, it is possible for the first time assess how accurate
these approximations really are. This will be the topic of
Section 4.

3.1 BAYESIAN INFORMATION CRITERION

TheBayesian information criterion (BIC)(Schwarz, 1978;
Kass & Raftery, 1994), also known as the Schwarz crite-
rion, is the simplest of the three approximations. For the
single multinomial variable case, we get

− log PBIC(xN |M1) = − log P (xN | θ̂(xN ))

+
K − 1

2
log(N), (10)

whereK is the number of values of the multinomial vari-
able. As the name implies, the BIC has a Bayesian inter-
pretation, but it can also be given a formulation in the MDL
setting, as showed in (Rissanen, 1989).

In the multi-dimensional case, we easily get

− log PBIC(xN |MT ) = − log P (xN | θ̂(xN ))

+
(K − 1) + K ·∑m

i=1 (ni − 1)
2

· log(N). (11)

As can be seen, the BIC approximation is very quick to
compute and also easy to generalize to more complex
model classes. However, it is known that BIC typically
favors too simple model classes.

3.2 RISSANEN’S ASYMPTOTIC EXPANSION

As proved in (Rissanen, 1996), for model classes that sat-
isfy certain regularity conditions, an asymptotic expansion
can be derived. The most important condition is that the
Central Limit Theorem should hold for the maximum like-
lihood estimators for all the elements in the model class.



The precise regularity conditions can be found in (Rissa-
nen, 1996). The expansion is as follows:

− log PRIS(xN |M) = − log P (xN |θ̂(xN ))

+
k

2
log

N

2 π
+ log

∫ √
|I(θ)|dθ + o (1) , (12)

where the integral goes over all the possible parameter vec-
tors θ ∈ M, andI(θ) is the (expected) Fisher informa-
tion matrix. The first term is the familiar negative log-
arithm of maximum likelihood. The second term mea-
sures the complexity that is due to the number of param-
eters in the model. Finally, the last term measures the
complexity that comes from the local geometrical proper-
ties of the model space. For a more precise discussion,
see (Gr̈unwald, 1998).

Rissanen’s asymptotic expansion for a single multinomial
variable is discussed in (Rissanen, 1996), and with our no-
tation it is given by

− log PRIS(xN |M1) = − log P (xN | θ̂(xN ))

+
K − 1

2
log

(
N

2 π

)
+ log

(
πK/2

Γ
(

K
2

)
)

+ o (1) , (13)

whereΓ(·) is the Euler gamma function.

For the multi-dimensional case, we have earlier (Kontka-
nen et al., 2000) derived the square root of the determinant
of the Fisher information for model classMT :

√
|I(θ)| =

K∏

k=1

α
1
2 (
Pm

i=1(ni−1)−1)
k

m∏

i=1

K∏

k=1

ni∏
v=1

θ
− 1

2
ikv , (14)

whereαk = P (c = k) andθikv = P (ai = v|c = k).
To get (12), we need to integrate this expression over the
parameters. Fortunately, this is relatively easy since this
expression is a product of Dirichlet integrals, yielding

∫ √
|I(θ)|dθ

=
∫ K∏

k=1

α
1
2 (
Pm

i=1(ni−1)−1)
k ·

m∏

i=1

K∏

k=1

ni∏
v=1

θ
− 1

2
ikv dθ

=
∏K

k=1 Γ
(

1
2 (

∑m
i=1 (ni − 1) + 1)

)

Γ
(

K
2 (

∑m
i=1 (ni − 1) + 1)

)

·
m∏

i=1

K∏

k=1

πni/2

Γ
(

ni

2

) , (15)

and after simplifications we get

− log PRIS(xN |MT ) = − log P (xN | θ̂(xN ))

+
(K − 1) + K

∑m
i=1 (ni − 1)

2
log

(
N

2 π

)

+ K · log Γ

(
1
2

(
m∑

i=1

(ni − 1) + 1

))

− log Γ

(
K

2

(
m∑

i=1

(ni − 1) + 1

))

+ K ·
m∑

i=1

(ni

2
log π − log Γ

(ni

2

))
+ o (1) . (16)

Clearly, Rissanen’s asymptotic expansion is efficient to
compute, but for more complex model classes than
ourMT , the determinant of the Fisher information is no
longer a product of Dirichlet integrals, which might cause
technical problems.

3.3 SZPANKOWSKI APPROXIMATION

Theorem 8.32 in (Szpankowski, 2001) gives the redun-
dancy rate for memoryless sources. The theorem is based
on analytic combinatorics and generating functions, and
can be used as a basis for a new NML approximation. Re-
dundancy rate for memoryless sources is actually the regret
for a single multinomial variable, and thus we have

− log PSZP (xN |M1) = − log P (xN | θ̂(xN ))

+
K − 1

2
log

(
N

2

)
+log

( √
π

Γ
(

K
2

)
)

+

√
2Γ

(
K
2

)

3
√

N Γ
(

K
2 − 1/2

)

+

(
3 + K(K − 2)(2K + 1)

36
− Γ2

(
K
2

)
K2

9Γ2
(

K
2 − 1/2

)
)
· 1
N

+O
(

1
N3/2

)
. (17)

For the multi-dimensional case we can use the factorized
form (9) of the exact NML. LetR̂1

K,N denote the regret
approximation in (17) withN data vectors andK possible
values. Now we can write

− log PSZP (xN |MT ) = − log P (xN | θ̂(xN ))

+ log
∑

h1+···+hK=N

(
N !

h1! · · ·hK !

K∏

k=1

(
hk

N

)hk

·
m∏

i=1

K∏

k=1

R̂1
ni,hk

)
+O

(
1

N3/2

)
. (18)

The time complexity of this approximation grows exponen-
tially with K. However, we believe that similar approxima-
tion to (17) can be derived for model classMT so that this
exponentiality could be removed. This is a topic for future
work.



4 EMPIRICAL RESULTS

As noted in the previous section, since we are able to com-
pute the exact NML for model classes discussed in this pa-
per, we have a unique opportunity to test how accurate the
NML approximations really are. The first thing to notice
is that since all three approximations presented contain the
maximum likelihood term, we can ignore it in the compar-
isons and concentrate on the (log-)regret. Notice that since
the regret is constant given the model class (i.e., it does not
depend on observed data), we avoid the problem of trying
to choose representative and unbiased data sets for the ex-
periments.

We conducted two sets of experiments corresponding to
the single multinomial case and the multivariate model
classMT . In the following, we will use the following ab-
breviations for the approximations:

• BIC: Bayesian information criteria presented in Sec-
tion 3.1.

• RIS: Rissanen’s asymptotic expansion presented in
Section 3.2.

• SZP: Szpankowski-based approximation presented in
Section 3.3.

We start with the one-dimensional case. Figures 1, 2 and 3
show the differences between the three approximations and
the exact log-regret as a function of the data sizeN with a
differentK, i.e., with a different number of values for the
single variable. Cases withK = 2, K = 4 andK = 9 are
shown.
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Figure 1: NML approximation results with a single multi-
nomial variable having 2 values.

From these figures we see that the SZP approximation is
clearly the best of the three. Furthermore, it is remarkably
accurate: just after a few vectors the error is practically
zero. The second best approximation is RIS, which takes
about 100 data vectors or so to converge to a level near zero.
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Figure 2: NML approximation results with a single multi-
nomial variable having 4 values.
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Figure 3: NML approximation results with a single multi-
nomial variable having 9 values.

However, unlike SZP approximation, the convergence of
RIS seems to get slower with increasingK. From figures 2
and 3 we see that when the test setting becomes more com-
plex (with K = 4 andK = 9), BIC starts to overestimate
the regret, and thus favors too simple models.

For the multidimensional case we tested with several values
for the number of variablesm. The results were very sim-
ilar, so we show here only the case with 30 variables and 2
or 4 values. The special (clustering) variablec was taken
to be binary in all tests. The results are shown in Figures 4
and 5.

From the results we can conclude that the SZP approxi-
mation is the best and prominently accurate approximation
also in the multivariate case. Furthermore, it converged
only after few data vectors also in this more complex set-
ting. Rissanen’s asymptotic expansion works still reason-
ably well, but the converge is slower than in the single
multinomial case. The BIC approximation overestimates
the regret in both cases, and becomes very inaccurate in
more complex cases (as can be seen in Figure 5).
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Figure 4: NML approximation results with 30 multinomial
variables having 2 values.
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Figure 5: NML approximation results with 30 multinomial
variables having 4 values.

5 CONCLUSION AND FUTURE WORK

In this article we have investigated how to compute the
stochastic complexity both exactly and approximatively in
an attempt to widen the application potential of the MDL
principle. We showed that in the case of discrete data the
exact form of SC can be computed for several important
cases. Particularly interesting was the multi-dimensional
model class case, which opens up several application pos-
sibilities for the MDL in problems like data clustering.

In addition to exact computation methods, we presented
and instantiated three stochastic complexity approxima-
tions, and compared their accuracy. The most interesting
and important observation was that the new approximation
based on analytic combinatorics was significantly better
than the older ones. It was also shown to be accurate al-
ready with very small sample sizes. Furthermore, the accu-
racy did not seem to get worse even for the more complex
cases. This gives a clear indication that this approxima-
tion will also be useful for the cases where exact SC is not

efficiently computable.

In the future, on the theoretical side, our goal is to extend
the SZP approximation to more complex cases like gen-
eral graphical models. Secondly, we will research super-
vised versions of SC, designed for supervised prediction
tasks such as classification. On the application side, we
have already conducted preliminary tests with MDL clus-
tering by using proprietary real-world industrial data. The
preliminary results are very encouraging: according to do-
main experts we have consulted, the clusterings found with
MDL are much better than the ones found with traditional
approaches. It is likely that the methods presented here can
be used in several other application areas as well with sim-
ilar success.
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