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Abstract

Consider a case where cause-effect relation-
ships among variables can be described by a
causal diagram and the corresponding linear
structural equation model. In order to bring
a response variable close to a target, this pa-
per proposes a statistical method for inferring
a joint causal effect of a conditional plan on
the variance of a response variable from non-
experimental data. Moreover, based on this
method, this paper formulates a conditional
plan, which can cancel the influence of co-
variates on a response variable. The results
of this paper could enable us to select an ef-
fective plan in linear conditional plans.
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1 INTRODUCTION

In quality control, it is important to clarify cause-effect
relationships in a process, in order to bring a response
variable close to a target by assigning values to treat-
ment variables. The required cause-effect relationships
must not only be appropriate to the production pro-
cess, but also enable us to estimate the effect of a con-
trol plan on the response variable reasonably. Statis-
tical causal analysis is one of the effective statistical
methods which can answer those kinds of problems.

The main purpose of statistical causal analysis is to
evaluate a causal effect through both qualitative causal
information and statistical data. Statistical causal
analysis started with path analysis (Wright (1923,
1934)), and advanced to structural equation models
(Wold (1954), Bollen (1989)). Recently, Pearl (2000)
has developed a new framework of causal modeling
based on a causal diagram and the corresponding non-
parametric structural equation model. In this frame-

work, there are two kinds of control plans: one is an
unconditional plan in which the values of treatment
variables are held constant, regardless of any values
of covariates; the other is a conditional plan in which
values of treatment variables are adjustable according
to the values of covariates.

Regarding an unconditional plan, Pearl (1995) defined
a causal effect of a treatment variable X on a response
variable Y. Galles and Pearl (1995) and Pearl (1995)
presented graphical criteria for ensuring the identifi-
cation of a causal effect. Moreover, Pearl and Robins
(1995) and Kuroki and Miyakawa (1999c) developed
graphical criteria for testing the identification of a
causal effect of a set X of treatment variables on Y.
This kind of causal effect is called a joint causal effect
in this paper. These studies enabled us to evaluate
the causal effect of an unconditional plan on Y from
nonexperimental data.

When a linear structural equation model is assumed
as the data generating process, Pear]l (1998) showed
that the regression coefficient of X on Y implies a to-
tal effect by selecting covariates according to his cri-
terion in the regression model. Kuroki and Miyakawa
(1999a) formulated a causal variance effect on Y and
presented guidelines for applying these results to pro-
cess analysis. Moreover, Kuroki and Miyakawa (2002)
gave explicit expressions of joint causal mean effects
and joint causal variance effects on Y.

Regarding a conditional plan, Kuroki and Miyakawa
(1999b) and Pearl (2000) discussed a graphical con-
dition for identifying a causal effect of a conditional
plan. In a linear structural equation model, Kuroki
and Miyakawa (1999b) formulated a causal variance
effect of an effective plan on Y and applied it to adap-
tive control in quality control.

However, it should be noted that the study of a joint
causal effect of a conditional plan is not sufficient. In
quality control, it is important to formulate the joint
causal mean effect and the joint causal variance effect



in order to select an effective plan from nonexperi-
mental studies. Robins (1986, 1987) and Pearl (2000)
formulated joint causal effects of a conditional plan
through a recursive factorization of a joint distribu-
tion, but there has been no formulation of both a joint
causal mean effect and a joint causal variance effect
of a conditional plan in a linear structural equation
model.

In this paper, joint causal mean effects and joint causal
variance effects of a control plan will be formulated in
a linear structural equation model. Moreover, an effec-
tive plan, which can cancel the influence of covariates
on a response variable, is suggested based on the for-
mulation. Further, the result will be applied to process
analysis. The results of this paper provide us with a
selecting criterion for an effective plan from nonexper-
imental studies.

2 CAUSAL DIAGRAM

A graph is a pair G = (V, E), where V is a finite set
of vertices and a set E of arrows is a subset of V' xV
of ordered pairs of distinct vertices. For the detailed
graph theoretic terminology used in this paper, see
Lauritzen (1996) and Pearl (2000).

Suppose that a set of variables V' = {V4,...,V,} and
a directed acyclic graph G = (V, E) are given. When
each child-parent family in the graph G represents a
deterministic function

Yo o Vite, i=1,2,...,n (1)
Vjepa(V;)

Vi =

and a set of equations (1) represents the data gener-
ating process, the graph G is called a causal diagram,
where pa(V;) denote parents of V; in G and stand for
sets of variables considered to be direct causes of V;,
and €7,...,€: are mutually independent random dis-
turbances. In addition, a,,,, is called a path coefficient
and ., 70 for Viepa(V;).

When cause-effect relationships among variables can
be represented by a set of equations (1), the joint dis-
tribution of V' generated by the process of equations
(1) can be factorized recursively according to the graph
G as follows (Pearl (1995)):

Fnev) = I fdpav)). @)

If the recursive factorization (2) of a joint distribu-
tion is given according to the graph G, conditional
independencies implied by the factorization (2) can be
obtained from the graph according to the following
criterion (Pear] (1988)):

Definition 1 (D-Separation)

Let X, Y, and Z be three disjoint subsets of vertices
in a causal diagram G. Then Z is said to d-separate X
from Y if along every path between a vertex in X and
a vertex in Y there exists a vertex w which satisfies
one of the following three conditions:

1. wis in Z, and one arrow on the path points to-
wards w and the other arrow on the path emerges
from w.

2. w is in Z, and both arrows on the path emerge
from w.

3. Neither w nor any descendant of w is in Z, but
both arrows on the path point towards w. a

If Z d-separates X from Y in a causal diagram, X is
conditionally independent of Y given Z (Geiger et al.
(1990)).

3 PROBLEM DESCRIPTION

Consider a sequential process model depicted in Fig.1.
In this model, X = (Xg,---,X;) stands for a set

Fig.1: Process Model

of treatment variables, which can be controlled. X;
is controlled before controlling X;,,(; > 0) for any
i(i=1,---,k). Y represents a response variable, such
as the final quality characteristic. U = (Ug,---,U1),
Z = (Zpm,-+,Z1) and W = (W,---,W1) represent
sets of covariates, such as environment factors, which
can be determined before assigning values to the treat-
ment variables. In this process, it is supposed that
the assignment of the treatment variables is not ran-
domized but can be conducted according to states of
environment factors. Consider a control plan in which
X;€X is set to be the following linear function of a
set W of observed variables:

Xi=z; + Z Cmiijjy 1=1,2,...,k, (3)
Wjend(Xi)\X



where W;eW, both z; and Cpw; are constants, and
nd(X;) denote nondescendants of X; in a causal di-
agram, which stand for sets of variables that can be
determined before assigning values to the treatment
variables. By using matrix expression, equation (3)
can be rewritten as follows:

X=x+CW, 4)

where XI = (XkHXIC—lv”";Xl)y WI = (I/Vl, VVl_l,
<o, Wh), @ = (2, Tk—1," -+, 1) is a constant vector,
and C = (cz;w,;) is a (k,I) constant matrix and cg;uw;
= 0, when W,;¢#nd(X;)\X. An external intervention
given in equation (3) is called a (linear) control plan,
denoted as set(X = z + CW), where W is called a
set of covariates used for control in this paper.

Here, when V represents a set of variables in the pro-
cess model, letting S = V\XU{Y} and

g(z + Cw|pa(X))
k

= I fzi+ D Cowywslpa(Xs)),
= wiEnd(X:)\X

the distribution of Y by the conditional plan is defined
based on equation (2) as follows (Spirtes et al.(1993),
Pearl and Robins (1995)):

flylset(X = = + CW))

/ fly,z + Cw,s) ds
s 9(z + Cwlpa(X))

(5)

Equation (5) is called a joint causal effect of a condi-
tional plan if C is a non-zero matrix; otherwise, it is
called a joint causal effect of an unconditional plan.
When equation (5) can be determined uniquely from
the joint distribution of observed variables, the joint
causal effect is said to be identifiable. In general, when
a set S is partitioned into three disjoint sets W, Z,
and U (S = WUZUU), equation (5) can be expressed
as depending on X,Y,Z and W, but not on U. Z is
called a set of covariates used for identification in this
paper. U is a set of covariates which may not be used
to identify the joint causal effect. In this case, we need
to observe not only XU{Y } and W but also Z in order
to identify equation (5).

In Fig.1, although covariates used for control may be
selected before assigning values to the treatment vari-
ables, the selection of covariates used for identification
is dependent on the selection of covariates used for
control. When the process model shown in Fig.1 can
be described by a causal diagram, we can establish a
criterion in order to select both covariates used for con-
trol and covariates used for identification. Moreover,
based on the selected covariates, the joint causal effect
can be inferred from nonexperimental data.

4 JOINT CAUSAL EFFECT OF
CONDITIONAL PLAN

4.1 IDENTIFIABILITY

Let G5 be the graph obtained by deleting from a
graph G all arrows pointing towards vertices in X
and all arrows emerging from vertices in Z. Pearl and
Robins (1995) discussed the identifiability for a joint
causal effect of an unconditional plan, and gave the
following graphical identifiability criterion:

DEFINITION 2 (ADMISSIBILITY)

Suppose that there exist directed paths from any ver-
tex in X to Y in a causal diagram G, where X; is a
nondescendant of X;,,;(j > 0) for any i(i = 1,---, k).
Ifaset T' = (Tg, Tk _1,- - -, T1) of variables satisfies the
following conditions, then T is said to be admissible
relative to an ordered sequence of variables (X,Y).

(1) For all i(i = 1,---,k), T; is a nondescendant of
{Xi7 o 7Xk:}
(2) In the graph Gxim, {le‘ - Xioq, Ty, -,

T;} d-separates X; from Y. O

The following theorem shows that Definition 2 is useful
as a graphical criterion for ensuring the identification
of a joint causal effect of a conditional plan:

THEOREM 1

If a set T of observed variables is admissible relative
to (X,Y) in a causal diagram G, then the joint causal
effect of a control plan set(X = x4+ CW)(WCT) on
Y is identifiable, and is given by the formula

fy|set(X =z + CW))

://f(y|x1+ Z Caoyw; Wiy
t1 tr

W;end(X1)\X
T + Z Czkwj’wjvtlvt?v'“vtk)
W end(Xp)\X

k
X‘ljlf(ti|t17t2a‘"7ti—17m1+ z Coyw; Wiy *
= W;end(X1)\X
Ti—1+ Z Czkijj)dtl- . -dtk. (6)
Wjiend(X;—1)\X
O
The proof, which is based on the inference rules (Pearl

(1995)), is omitted since it can be given by the similar
procedure in section 4.4 of Pearl (2000).

4.2 JOINT CAUSAL EFFECT IN LINEAR
STRCTURAL EQUATION MODEL

In practical studies, it is important to evaluate effects
of an external intervention on the mean and the vari-



ance of a response variable. In this section, consider
statistical inference problems of them in a linear struc-
tural equation model.

From equation (5),

E(Y|set(X =z + CW))
_ / yf(ylset(X =@+ CW))dy  (7)

is called a joint causal mean effect of a control plan
set(X =x + CW) onY in this paper. In addition,

Var(Y|set(X =« + CW))
= /(y ~ E(Y|set(X =z + CW)))?

Yy

x f(y|set(X = x + CW))dy (8)

is called a joint causal variance effect of a control plan
set(X =z +CW)onY.

Suppose that X, Y and T follow a multivariate nor-
mal distribution with mean 0 and variance 1. Then,
the integrand in equation (6) indicates a recursive fac-
torization of the joint distribution of {Y}UT, when
values of X are set to be linear functions  + Cw of
w by an external intervention. Consider the follow-
ing simultaneous regression models according to this
distribution.

(7)

X =

Y
B1<T>+B2X+€ (9)
z + DT, (10)

where € = (ey,€1,,- -, €,) is a vector whose compo-
nents are errors in the corresponding regression mod-
els. In addition, €y, €, -, €, are assumed to be
mutually independent. D = (ds,¢;) is a (k,k) con-
stant matrix and dy;; = 0, when T;¢Znd(X;)\X.
Moreover, I, is a p-dimensional identity matrix and
0, is a p-dimensional zero vector. Let (., and
ﬁtitj be the regression coefficients of z; and t; in
the regression model of T; on @y, -+, 2; 1,1, -, ;1
(2<i<k,1<j<i— 1), respectively. In addition, letting
Byz; and By, be the regression coefficients of z; and
t; in the regression model of Y on z1,---, 2k, t1,- - -, tk
(1<j<k), respectively, B; and By can be given as fol-
lows:

0 lBytk: ﬁytk71 e ﬂyt2 ﬁytl
0 e Btktk71 ﬁtktZ ﬂtkh
S0 By
By = . .

0 0 ’ Bisty  Bisty
0 0 0 hE ﬁtztl
0 0 cee 0 - 0
0 B

I
N
(=]
Eal
N——

,Bymk ﬁyzka o /89952 ﬁyﬂh
0 ﬂtk-’”k—l e ﬁtkzz /Btkml
By = 0 ﬁtﬂj : :
: 0 - ﬁtztz ﬂtam
0 0 - 0 /Btzwl
0 0 - 0 0

Btm 0’(} Bt:lik_l '

/!
Var(e) = ( T E‘l’; )
Then, the following theorem can be obtained:

THEOREM 2

Suppose that T is admissible relative to (X,Y) in a
causal diagram G. When X, Y and T follow a mul-
tivariate normal distribution with mean 0 and vari-
ance 1, the joint causal mean effect of a control plan
set(X =z + DT) on'Y is given by the formula

E(Y|set(X = x + DT))
= (ByzsBya, , + By + ByeD)F ™' Bis,_, )2, (11)

and the joint causal variance effect of a control plan
set(X =z + DT) on'Y is given by the formula

Var(Y|set(X =« + DT))
Oeye, + (:6;15 + IB;wD)FilzetftFlil
X(By: + D'Bya), (12)
where F = I}, — By — By D.
PROOF OF THEOREM 2

Note that the following property is well known regard-
ing the inverse matrix of the partitioned matrix:

M N\

P Q

_ M-'+ M-'NR-'PM~-' —M-'NR!

- _Rflprl Rfl ’
where R = Q — PM~'N. The above property will be
used in order to prove Theorem 2.

From equations (9) and (10),

<¥):B1<¥>+B2(a:+DT)+e.

Therefore,
-1
Y 0 ﬁ;mD
(7) = (wa-n-(o B2))
X(Bax + €)

_ 1 _ﬂ'/gt - ﬂ;mD -
0y F

X (Bax + €) (13)



Here, by taking expectation of both sides of equation
(13),

=((z)

set(X =z + DT))

Ok; Ok Btzk_l

= < ﬂymk ﬂ;mk_l + (ﬂ;t + ﬁ;mD)F_lBtmk71 ) T

Ok F_lBtwk71
From this results, equation (11) can be obtained.

On the other hand, from equation (13),

Var (( ¥ )
_ 1 (ﬂ;t + ﬂ;zD)F_l Uéyey 0;9
- Ok F_l Ok Eetet
1 0;,
X .
F,_l(ﬂyt + DIIByz) F,_l

From this result, equation (12) can be obtained.
Q.ED.

set(X =x + DT)>

By replacing the coefficients of all elements of T\W
in equation (10) with zeros, E(Y|set(X = ¢ + CW))
and Var(Y|set(X = @ + CW)) can be obtained.

4.3 JOINT CAUSAL EFFECT OF
OPTIMAL PLAN

In practical studies, a control plan which cancels the
influence of covariates on a response variable is often
conducted in order to bring a response variable close
to a target, where such a plan is achieved by choosing
values for the coefficient vector which can minimize
the variance of Y in the control plans. Therefore, it is
important to formulate the control plan. When T is
partitioned into disjoint subsets W and Z and set to
be T = (W', Z'), by permuting the elements of each
parameter matrix in equation (12) according to the
sequence of T', By, Bz, Ye,e, and 3, can be expressed
by the following partitioned matrices, respectively:

Bzz Bzw _ Bzw
Bu= ( Bu: Buw ) Bre = ( Bu )

Ee € Oml ) ( ﬂ >
Yee, = 7oz ;and = vz,
< ;nl Eéwﬁm ﬂyt ﬁyw

where 0, is an (m, ) zero matrix. Based on equation
(12), the following theorem concerning a joint causal
effect of an effective plan can be obtained.

THEOREM 3

Suppose that T' is admissible relative to (X,Y) in a
causal diagram GG. When X, Y and T follow a multi-
variate normal distribution with mean 0 and variance

(& BB Y (B B )
Ffl

1, , a control plan set(X = z + CW)(W CT'), which
cancels the influence of W on Y, is given by the for-
mula

C,(B,,za;(Im - B,lzz)_lﬁyz + IByz)
= 7B,Izw(Im - B,/zz)_lﬂyz - IByun (14)
where m is the number of elements of Z. Setting C' to

C*, the joint causal variance effect of the conditional
plan set(X = x4+ C*W) on Y is given by the formula

Var(Y|set(X = x + C*W))
Oeyey + ﬁ;z(I’ﬂL - Bzz)ilzezez
X(Im 7B,lzz)_1ﬁyz7 (15)
where Z = T\W. O

An external intervention satisfying equation (14) is
called an optimal plan in this paper.

PROOF OF THEOREM 3

When we replace the coefficients of all elements of Z =
T\W in equation (10) with zeros, D = (Ogm,C) can
be obtained. From equation (12), F = I — By —
BizD and F'~Y(8,, + D'B,,) can be expressed by the
following partitioned matrices, respectively:

F =1y — By — By D
_ ( Im - Bzz _Bzw - Bzmc

_B'wz Il - wa - szC > (16)

and

Fl_l(ﬂyt + DIIBym)

’— By _ Qy,
= 't < 8, —I—yC'ﬂym ) — ( b, ), (17)

where a,, and b; are an m dimensional constant vec-
tor and an [ dimensional constant vector, respectively.
Here, note that the second term of the right hand side
of equation (12) is the quadratic form and X, is a
positive definite diagonal matrix. Since equation (12)
can be rewritten as

Var(Y|set(X =z + CW))

== Ueyey + a:rnzezezam + b;E bl

€w €y

through the (a/,, b]), we can provide an external inter-
vention such as b; = 0; in order to cancel the influence
of W on Y. Therefore, from equation (17),

By
ﬁyw + C/ﬁyz‘

I, — B,
- —-B. —C'B’

x [ 4m
0;
_ (Im - B,Izz)am
B (—B., —C'Bl)am )’

-B
L-28,,—-CB, )



Fig.2 : Causal Diagram (Kuroki and Miyakawa (1999a))
Table 1 : The estimated correlation matrix based on Fig.2(Kuroki and Miyakawa (1999b))

X1 X2 X3 X4 X5 X6 X7 Xs Xo X0 Y
X1 1.000 | -0.736 | -0.152 | 0.148 | 0.028 | -0.042 | 0.324 | 0.216 | 0.283 | -0.496 | -0.091
Xa | -0.736 | 1.000 | 0.210 | -0.331 | -0.063 | 0.095 | -0.479 [ -0.684 | -0.635 | 0.684 | 0.326
X3 | -0.152 | 0.210 1.000 | -0.091 | -0.017 | 0.026 | 0.195 | -0.134 | -0.175 | 0.307 | 0.134
X4 0.148 | -0.331 | -0.091 | 1.000 | 0.191 | -0.286 | 0.184 | 0.397 | 0.521 | -0.298 | -0.614
X5 0.028 | -0.063 | -0.017 | 0.191 1.000 | 0.291 0.035 | 0.076 | 0.099 [ -0.057 | -0.277
X6 | -0.042 | 0.095 | 0.026 | -0.286 | 0.291 1.000 | -0.053 | -0.114 | -0.149 | 0.085 | -0.250
X7 0.324 | -0.479 | 0.195 | 0.184 | 0.035 | -0.053 | 1.000 | 0.396 | 0.353 | -0.146 | -0.044
Xs 0.216 | -0.684 | -0.134 | 0.397 | 0.076 | -0.114 | 0.396 1.000 | 0.761 | -0.435 | -0.493
Xo 0.283 | -0.635 | -0.175 | 0.521 0.099 | -0.149 | 0.353 | 0.761 1.000 | -0.571 | -0.475
X0 | -0.496 | 0.684 | 0.307 | -0.298 | -0.057 | 0.085 | -0.146 | -0.435 | -0.571 | 1.000 | 0.283
Y -0.091 | 0.326 | 0.134 | -0.614 | -0.277 | -0.250 | -0.044 | -0.493 | -0.475 | 0.283 1.000
the following equation can be obtained: Concerning this process, Kuroki and Miyakawa
(1999a) presented the graph shown in Fig.2, whose
A, = (I — B,/zz)_lﬂyz- constructing procedure is as follows: First, accord-
ing to the idea of Okuno et al.(1986) and the back-
Therefore, ground knowledge, an ordering of sets of variables
_ Vi = {Xo, X10}<V2 = {Xs}=<V3 = {X1, X4}V =
4 14 ! 1
C'(Bo(Im — B..) "By + Byz) {Xs, X3, X5, Xe}<Vs = {X7}<Ve = {Y} was pro-
= —B,'zw(Im—B;z)*lﬂyz = Byw (19)  vided, where < indicates that V; is precedent to

Setting C, which satisfies equation (19), to C*, the
joint causal variance effect of the control plan set(X =
z+ C*W) onY is given by equation (15). O

5 EXAMPLE

The above results are applicable to analyze the data
obtained from a study on setting up painting condi-
tions of car bodies, reported by Okuno et al. (1986).
The data was collected with the purpose of setting up
the process conditions, in order to increase transfer ef-
ficiency. The size of the sample is 38 and the variables
of interest are the following:

Painting Condition : Dilution Ratio (X71), Degree of
Viscosity (X2), Painting Temperature (Xg)

Spraying Condition : Gun Speed (X3), Spray Distance
(X4), Atomizing Air Pressure (Xj5), Pattern
Width (Xg), Fluid Output (X7)

Environment Condition : Temperature (Xg), Degree of
Moisture (X19)

Response: Transfer Efficiency (V)

Vig1(t = 1,---,5). Second, by applying graphical
modeling (e.g. Whittaker (1990)) based on this or-
der to the sample correlation matrix in the study of
Okuno et al.(1986), the graphical chain model was con-
structed by considering the simplicity (dev = 34.28,
df = 36, p-value= 0.55). In the graphical chain model,
the statistical dependencies between Xg and X719 and
between X5 and Xy were described as edges, and the
other dependencies between variables were described
as arrows shown in Fig.2. Finally, we substituted the
edge between X5 and Xg for an arrow, by referring
to painting conditions’ data. We did not substitute
the edge between Xg and Xy for an arrow, since the
essential discussion of this paper is not influenced by
the direction between Xg and Xig. In this paper, the
graph shown in Fig.2 will be asummed to be a causal
diagram in the production process.

Kuroki and Miyakawa (1999b) presented the estimated
correlation matrix based on the causal diagram as
shown in Table 1. Xj,---,Xg are considered to be
controllable variables according to Okuno et al.(1986).
Therefore, it is supposed that {X;, X} and {X4, X5}
are taken from the controllable variables and utilized



as treatment variables in order to evaluate their joint
causal mean effects and the joint causal variance effects
from nonexperimental data, whose results are given in
Table 2 and 3. The results in Table 2 and 3 are esti-
mated based on Table 1. Each variable in the causal
diagram has zero mean and variance one. In this anal-
ysis, any combination of Xg, X9 and Xjg is taken as
a set of covariates used for control.

Table 2 shows the estimated joint causal mean effect,
which is also provided in Kuroki and Miyakawa (2002).
In this analysis, a set of treatment variables is the first
column of Table 2. A set of variables satisfying the
admissibility is the second column of Table 2. The
estimated joint causal mean effect is the third column
of Table 2. In Table 2, the causal mean effect is also
given in the case where X7,X,,X5 and Xg are taken as
one treatment variable from the controllable variables,
respectively. It should be noted that the results in
Table 2 are not dependent on the plans. Consider a

Table 2:Causal Mean Effect
(Kuroki and Miyakawa (2002))

Treatment | Identification Mean

{Xl} {XIO} 00653?1

(X5t (X4} —0.1665
{Xl,XG} {X4,X10} 00651’1 — 0464$6
{X4, X5} {Xg} 704712?4 — 01661’5

case where a control plan of {X;, Xg} is conducted.
The coefficients of 21 and xg in the joint causal effect
are consistent with the coefficient of z1 in the causal
effect of X; and the coefficient of ¢ in the causal effect
of Xg, respectively, since X7 and Xg are not related as
ancestor-descendant.

On the other hand, in a case where a control plan of
{X4, X5} is conducted, the coefficient of x4 in the joint
causal effect is not consistent with the coefficient of x4
in the causal effect of X4, since X5 is on the directed
path from X4 to Y. However, the coefficient of x5 in
the joint causal effect is consistent with the coefficient
of x5 in the causal effect of X5, since no other treat-
ment variables are on the directed path from X5 to
Y.

Table 3 shows the estimated joint causal variance ef-
fect. A set of covariates used for control is the first
column of Table 3. A set of covariates used for identifi-
cation, whose selection is dependent on a set of covari-
ates used for control, is the second column of Table 3.
The estimated joint causal variance effect is the third
column of Table 3. Consider a case where an optimal
plan of {X1, Xg} is conducted. When a set of covari-
ates used for control is an empty set, the variance of Y’
exceeds 1. Regarding one treatment variable, such a

Table 3:Joint Causal Variance Effect

(a):{X1, Xe}

Control Identification | Variance
X1, X10} 1.002
{Xs} { X4, X10} 0.750
{Xo} {X4, X10} 0.685
{X10} {X4} 0.876
{Xg,Xg} {X4,X10} 0.644
{Xs, X10} {X4} 0.673
{Xg, X10} {X4} 0.683
{Xs, X9, X10} {X4} 0.642

(b):{ X4, X5}

Control Identification | Variance
{Xo} 0.609
{Xs} {Xo} 0.524
{Xo} 0.563
{X10} {Xo} 0.592
{ Xz, X9} 0.523
{Xs, X10} {Xo} 0.523
{Xo, X10} 0.563
{ X3z, X9, X10} 0.522

situation may occur in case where the total effect and
the spurious correlation have different signs (Kuroki
and Miyakawa (1999a)). It can be also shown that the
similar situation may take place, when we choose more
than two treatment variables (Kuroki (2002)). On the
other hand, when a set of covariates used for control
is not empty, the variance of Y is less than 1.

When a set of covariates used for control includes both
Xg and Xg, there is no noticeable difference between
the variances of Y in optimal plans. In addition, when
{Xg} or {Xg, X0} is used as a set of covariates used
for control, there is no noticeable difference between
the variances of Y in optimal plans. In other cases,
the noticeable difference between the variances of Y
can be observed.

Finally, consider a case where an optimal plan of
{X4, X5} is conducted. The variances of Y are less
than 1 regardless of the selection of covariates used
for control. Regarding one treatment variable, in case
where the covariates satisfying the back door criterion
are utilized as covariates used for control, the causal
variance effect is known to be less than 1 (Kuroki and
Miyakawa (1999b)). It can be also shown that the sim-
ilar situation takes place, when we choose more than
two treatment variables (Kuroki (2002)).

When the set of covariates used for control includes
Xg, the variances of Y are close to 0.523, since the
regression coefficients of the covariates used for identi-
fication in equation (15) take small values. Similarly,
when we use Xg or {Xo, X10} as a set of covariates
used for control, the variances of Y are close to each
other.



6 Conclusion

This paper showed that the admissibility condition is
useful as an identifiability criterion for the joint causal
effect of a conditional plan. In addition, it provided a
method for determining a set of control plans that can-
cel the influence of covariates used for control in linear
structural equation models. Furthermore, the results
were applied to quality control. In many situations, it
is necessary to adjust the value of a response variable
to a specific value by using a control plan. This paper
is helpful for evaluating the effect of the control plan
on the response variables, when the graph structure of
cause-effect relationships among variables is known.

In this paper, the described model does not involve
issues of dynamics, so the time to reach a steady state
is not modeled. As a practical matter, such dynamics
may be also important to model in real application.
Further investigation is necessary to deal with such
problems, including relaxing the assumption of linear
structural equation models.
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