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Abstract

We present various latent variable models for
the reduced rank approximation of transi-
tion matrices. Two main categories of mod-
els, termed Latent Markov Analysis(LMA)
models, are introduced. We first address the
case where the transition matrix is consistent
with a reversible random walk. A more gen-
eral case is subsequently addressed. Itera-
tive EM-type algorithms are presented for all
models. LMA is applied to clustering based
on pairwise similarities, where similarities be-
tween objects are described probabilistically.
In the model, relationships between the in-
ferred clusters are again described probabilis-
tically by the reduced rank transition ma-
trix. LMA simultaneously infers the clus-
ters and abstracts the relationships between
them, which can be represented in the form of
a weighted graph. Finally, a “targeted” LMA
model is introduced where a prior specifica-
tion of the transition between latent cluster
states is incorporated. This provides an al-
gorithm which searches for clusters satisfying
pre-specified relationships.

1 Introduction

Latent variable models fitted with the EM algo-
rithm, along with their non-negative matrix formu-
lations have been applied to many machine learning
tasks. Vardi and Lee(1993) formulated linear inverse
problems with positivity constraints probabilistically
and applied it to image reconstruction in tomogra-
phy and portfolio optimization. Saul et al.(1997), Lee
et al.(1999) and Hofmann(2001) presented latent vari-
able models with applications ranging from statistical
language processing and image processing to informa-
tion retrieval. More recently, Welling et al.(2001) pre-

sented a positive tensor factorization model which has
structural similarities to a naive Bayes model. The
conditional independence assumptions in these mod-
els are all expressible as graphical models. In contrast,
we investigate latent variable models specified explic-
itly through sets of conditional independence and ex-
changeability assumptions. Some of the resulting mod-
els presented are not graphical in nature. EM-type
iterative I-projection based algorithms are formulated
for fitting the models.

In this paper we present various latent variable mod-
els, termed Latent Markov Analysis (LMA), for the re-
duced rank approximation of a transition matrix. The
LMA model is applied to clustering based on pairwise
similarities. Following the treatment in graph parti-
tioning and spectral clustering communities (eg. Shi
et al. 2000, Weiss 1999, Meila et al. 2001, Ng et al.
2002), we normalize the affinity matrix into a transi-
tion matrix, and re-formulate the clustering problem
as one of finding cluster groupings with similar within
cluster and between cluster transitions.

2 Latent Markov Analysis

The Latent Markov Analysis approach to finding re-
duced rank approximations of transition matrices is
summarized in Fig. 1. We begin with discrete ran-
dom variables X and Y, and either a specified con-
ditional probability or data sufficient for an empiri-
cal conditional probability p(z|y). Let the number of
states in X be n, and Y be m, where both n and m
are large. Let 8™ denote the n — 1 dimensional sim-
plex defined by Y 7' p(z;) = 1, z; > 0. This is the
simplex over all possible n state multinomial distribu-
tions. The conditional probability, or transition ma-
trix p(z|y) is an operator which maps 8™ to 8" by
p(x) = 32, p(zlyi)p(y:)- Thus, p(z|y) maps a distri-
bution of Y into a distribution of X. For added clar-
ity, both the random variables and the corresponding
simplices representing all possible distributions of the



random variables are used as labels in the diagram in
Fig. 1. We seek reduced rank approximations of this
mapping via mappings to and between low dimensional
simplices S*' and S*2. This is accomplished in a la-
tent variable model framework where discrete latent
variables G with k; states and H with k, states are
introduced. For the case where the n x m transition
matrix p(z|y) can be permuted into k; x kz blocks with
elements within each block being identical, the com-
mutative diagram drawn in Fig. 1 can be made exact
with suitably chosen mappings. However, in general
the commutative diagram is only approximate. The
diagram also shows that the latent variable model finds
a reduced rank approximation of the transition matrix
by grouping similar states in X together via the map-
ping p(z|g) and clustering similar states in Y together
via p(y|h). For the special case where the transition
matrix is consistent with a reversible random walk, the
mapping is from S™ to S™. This case is presented in
this section, while the general case shown in the dia-
gram in Fig. 1 is presented in Section 3.
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Figure 1: Approximate commutative diagram show-
ing the relation between the specified high dimensional
mapping from the simplex §™ to §™, and its reduced
rank counterpart which maps S*t to Sk2.

The LMA model is applicable to the analysis of
two-way contingency table data (eg. Agresti 1990)
consisting of either co-occurence (Hofmann 2001) or
conditional-occurence data. For co-occurence data,
the data is sampled from the full joint distribution
over two random variables X and X'. Conditional-
occurence data, on the other hand, consists of sam-
ples from the various conditional distributions of
one random variable given all the states of the sec-
ond random variable. Co-occurence and conditional-
occurence data specify the empirical joint and condi-
tional distributions respectively. We consider the more
general case of conditional-occurence data since the
joint distribution fully specifies the conditional distri-
bution.

2.1 Model and Algorithm: Reversible Case

In this section we consider the case where the spec-
ified empirical transition matrix p(z'|z) is consistent
with a reversible random walk. This is the case when
the transition matrix is consistent with a symmetric

joint distribution matrix, and leads to a model is ap-
plicable to the analysis of symmetric affinity matrices.
The more general model without the reversibility as-
sumption is presented in the Section 3. The “sym-
metric” LMA model consists of latent variables H and
H', along with the following exchangeability and con-
ditional independence assumptions:

1. X and X' exchangeable given H
2. H and H' exchangeable given X
3. X L X'|H,

4. H L H'|X

where X 1 X'|H denotes that X and X’ are condi-
tionally independent given H. It should be empha-
sized here that this is not a graphical model, since the
assumptions above cannot be expressed in either a di-
rected or undirected graph.

Where there will be no confusion, we will use short-
hand notations p(z,z') = P(X = z,X' = z'), where
order of the arguments is explicitly maintained. As-
sumption (1) implies

P(X=2z,X'=2'|H=h)=P(X =2',X' = z|H = h).

This assumption also implies that p(x,z',h) is sym-
metric with respect to  and z’. Note that conditional
exchangeability of X and X’ given H is a stronger
condition than exchangeability of random variables X
and X'. Denoting P(X = z|H = h) = g(z|h), we
have P(X' = z'|H = h) = g(2'|h) from the symmetry
assumption. Similarly, assumption (2) implies

P(H=h|X =z)=P(H' = h|X =1z) = w(h|z).

Assumption (3) justifies the relation p(z,z',h) =
p(h)g(z|h)g(z'|h), while assumption (4) implies
p(h, ', z) = p(x)w(h|z)w(h'|x).

Since p(h, ) = w(h|z)p(x) = g(z|h)p(h), the param-
eters in the model are specified by the distributions
g(z|h) and p(h). Without loss of generality we begin
with a specified symmetric empirical joint distribution
p(x',z"), since with the reversibility assumption the
joint can be constructed after computing the station-
ary distribution under the transition matrix p(z'|z).

The maximum likelihood estimation problem boils
down to the minimum information divergence prob-
lem of finding g(z|h) and p(h) which minimizes

D@, 2)|| Y g(z|h)g(a'|h)p(h)).
h



The EM algorithm for this model results in the itera-
tions:
E-step

N glelh)g(|R)p(h)
plhle, o) = S ) g (e [)p(R)

M-step
p(h) = p(h|z,z')p(z’, z)

glal) = 3 PHRE A1),

After convergence, the reduced rank transition matrix
p(h'|h) is computed by:

2. P(@)w(h|z)w(h'|z)
2w P@w(hlz)w(h|z)”

x!

p(k'|h) =

Structurally, this model is analogous to the spec-
tral decomposition of a symmetric matrix with non-
negative constraints on the the eigenvalues and eigen-
vectors. Here the distributions over the hidden states
g(z|h) take the place of eigenvectors, while probabili-
ties of the hidden states p(h) play the role of the eigen-
values.

2.2 Numerical Examples

We apply symmetric LMA to clustering based on
a pairwise affinity matrix. From a set X =
{#,...,Z,}, the affinity matrix is defined as A;; =
exp (—||1Z; — %;||?/20?), where o is a specified length
scale. Following Meila et al.(2001) and treating the
observations as states in a random walk, we construct
two discrete n-state random variables X and X', with
the joint distribution proportional to the affinity ma-
trix, p(z;, z}) = kA;; for all 4,5 € {1,...,n}. Since the
affinity matrix is symmetric, p(z'|z) is consistent with
a reversible random walk.

The LMA clustering framework is summarized as fol-
lows. First similarities between objects are quantified
probabilistically in the form of a transition probability
between “object-states”. Second, a reduced rank ap-
proximation of the transition matrix is constructed via
the LMA model. In the LMA clustering framework,
similarities between clusters are again quantified prob-
abilistically by the reduced rank transition matrix. In-
tuitively, similar “object-states” will have similar tran-
sitions to and from other states. This intuitive notion
is demonstrated numerically in Fig. 2 for the simple
example of three well separated clusters. The clus-
tering of the objects is in accordance with the MAP
assignment of each object to the states of the latent
variable H. It should be noted that specification of

the number of states in the latent variable H does not
directly specify the number of clusters, since p(h) can
be very close to zero for a state, giving rise to a null
cluster with no MAP assigned objects.
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Figure 2: Latent Markov Analysis of self-transition
matrix generated from the pairwise similarity matrix
as described in the text. The well separated data is
plotted on the left. The transition matrix, permuted in
accordance with MAP assignment clustering is shown
in the center. The reduced rank transition matrix is
shown on the right.

The 3 well separated clusters are shown in Fig. 2(a).
The transition matrix permuted in accordance with
the MAP clustering assignment is shown in Fig. 2(b),
and the 3 x 3 reduced rank transition matrix in
Fig. 2(c). The algorithm is run for 100 iterations start-
ing at random initial conditions with o = 2 in A;;.
Since the reduced rank transition matrix is very close
to the identity matrix, LMA approximately block-
diagonalizes the transition matrix.

In Fig. 3, we show the latent Markov analysis of a
more complex configuration of observations. Since
the observations are no longer well-separated, a block-
diagonalization of the transition matrix cannot be ac-
complished by a re-permutation of the transition ma-
trix. Here, LMA constructs a block uniform approxi-
mation of the transition matrix. The LMA algorithm
is run for 100 iterations, with o = 1. The cluster-
ing of the observations into ten states is depicted in
Fig. 3(a) through the use of different plot symbols and
colors. In addition, numerical labels of the correspond-
ing latent variable states are superimposed over the
observations. The transition matrix, re-organized in
ascending order with respect to the cluster number is
shown in Fig. 3(b). Transition matrices are shown in
the figures with all columns summing to one.

In Fig. 3(c), the reduced rank transition between the
ten states of the latent variable are shown. The block
uniform transformation is apparent. The LMA block
uniform transformation captures the relationships be-
tween the clusters, as quantified probabilistically in
the reduced rank transition matrix. For example,



Figure 3: Latent Markov Analysis clustering based on a normalized affinity matrix. The observations are plotted
on the left. The transition matrix, permuted according to LMA clustering is shown in the center. The reduced

rank transition matrix is shown on the right.

from the first column in Fig. 3(c), one can see that
cluster 1 is near clusters 2 and 4. Similarly, from
the second column, one infers that cluster 2 is near
clusters 1, 5, 7 and 10. This structural relationship
is supported by the underlying transition matrix in
Fig. 3(b). The probabilistically quantified cluster sim-
ilarity is represented in Fig. 3(a) in the superimposed
weighted graph, where the widths of the edges con-
necting the cluster numerical labels are proportional
to (p(hilh;) + p(hjlhi)).-

It should be noted that since the relevant cost function
is Kullback-Leibler information divergence instead of
least squares, the reduced rank transition matrix is not
simply the average of all the corresponding transition
probabilities between the respective cluster observa-
tions.

3 Latent Markov Analysis: General
Case

Here we present the Latent Markov Analysis model
for the general case where no reversibility assump-
tions are made. We begin with a data in the form
of a conditional-occurence table n(z|y), which is spec-
ifies the empirical conditional distribution (z|y). In
the bag-of-words model for text information retrieval,
this conditional-occurence table consists of the word
counts for each given document. The LMA model
is a graphical model with latent variables G and H,
as depicted in the approximate commutative diagram
in Fig. 1, with conditional independence assumptions
G LY|H and X 1L {H,Y}|G. The corresponding
graphical model is depicted in Fig.4. The parame-
ters of the model are p(z|g), p(y|h) and p(g,h). A
similar model has been investigated by Hofmann and

Figure 4: Directed graphical model for the general case
LMA model.

Puzicha (1998) for the fitting of an empirical joint dis-
tribution. In Section 3.1 we present a modified EM
algorithm for the fitting of an empirical conditional
distribution. Section 3.2 describes a combinatorially-
inspired iterative I-projection algorithm for fitting the
model with significantly faster convergence speed. Ad-
ditional conditional independence assumptions which
lead to a non—graphical model is discussed which seem
to improve clustering in our numerical experiments.

3.1 Modified EM Algorithm

A modified EM algorithm for maximum likelihood pa-
rameter estimation results in the following iterative
scaling algorithm:

az,y) =7 (@y) 2a,9,0 P(219)P(g; W)P(yR)
T > 0.1 P(@|9)P(g, M)p(Y|h)

plg: W)™ =p(g,h) > a(z,y)p(z|g)p(y|h)

p(y, )" = p(ylh) D _ a(z,y)p(g, h)p(z|9)
z,g

p(w,9)"" = p(xlg) Y_ alz,y)p(g, h)p(y|h),
y,h

where all parameters on the right hand side are es-
timates from the previous iteration. The conditional



distribution parameters are computed by normalizing
the joint distributions given above. The I-projection
corresponding to the E-step in the EM algorithm has
been modified since the data is in the form of a
conditional-occurence instead of a co-occurence table.
Equivalently, the constraint is in the form of a speci-
fied conditional distribution p(z|y) instead of a joint.
A brief motivation of this I-projection step is given in
the Appendix.

To test out this model, we synthesized a 297 x 227 block
uniform transition matrix out of a 20 x 16 matrix with
elements uniformly chosen between 1 and 5. The full
block uniform matrix is first normalized into a tran-
sition matrix, then i.i.d normally distributed noise of
amplitude .003 is added, and the matrix renormalized.
The rows and columns of this matrix were then sepa-
rately permuted. A correct re-permutation of this ma-
trix using a cyclic algorithm described below is shown
in Fig. 5(c).

The modified EM algorithm presented in Section 3.1
was experimentally found to be very slow to converge.
In Fig. 5(b), the cluster permutation of the transition
matrix is shown after 2000 iterations of the EM steps,
with the latent variables G and H having 40 and 36
states respectively. The run-time in Matlab was 185
seconds on a P-IIT 550MHz PC.

3.2 Cyclic I-projection Algorithm

Since the performance of the modified EM-algorithm
was not encouraging, we pursued a more combinato-
rially motivated model and algorithm to try to find
the 20 and 16 clusters of the states in X and Y re-
spectively. Instead of iterative projections of the full
joint p(x,y, g,h), we construct the following cyclic I-
projection algorithm of various marginals. Given ini-
tial values for p(z|g), p(y|h) and p(g, h):

e cycle A:

L. p(z,y,h) = p(ylh) 3=, p(z|9)p(g, h)
2. Tterative scaling of p(z,y,h) subject to the
constraints p(z|y) and X L Y|H.

e cycle B:

L. p(z,g,h) = p(z|9)p(g, h)
2. Tterative scaling of p(z,g,h) subject to con-
straints p(z, h) and X L H|G.

e cycle A’:

L. p(z,y,9) = p(=|g) >, p(y|h)p(g, h)

2. Tterative scaling of p(z,y,g) subject to the
constraints p(z|y) and X 1 Y|G.

e cycle B’

1. p(y,g9,h) = p(y|h)p(g, h)

2. Tterative scaling of p(y, g, h) subject to con-
straints p(y,9) and Y L G|H.

The iterative scaling algorithms in the cycles with
specified joint distributions are similar to algorithms
for probabilistic latent semantic analysis (Hoffman
2001) and non-negative matrix factorization (Lee and
Seung 1999). The cycles with specified conditionals are
implemented with the modified E-step I-projection, as
detailed in the Appendix. Convergence of this cyclic
algorithm was much faster than for the algorithm given
in Section 3.1.

In numerical experiments, many latent variable states
under MAP assignment represented null clusters with
no assigned observations. These states have very
small corresponding probabilities in p(h) or p(g). We
augmented the cyclic I-projections algorithm with a
trimming step where these null-cluster states were
removed. For p(z|g), p(y|h), and p(g,h), a simple
trimming and renormalization accomplished this task.
This added trimming significantly improved the clus-
tering. Finally, we found that the additional as-
sumptions G L Y|H and X L {H,Y}|G. which
provide a nice symmetry amongst the random vari-
ables greatly improved the clustering. It should be
noted that these additional conditional independence
assumptions lead to a model which is not graphi-
cal. These additional model assumptions seem to in-
troduce additional regularization which greatly helps
the convergence. In the trimming step, these con-
ditional independence assumptions are used to com-
pute p(glh) = >,  p(glz)p(z|y)p(y|h). The cluster-
ing and reduced rank approximation result using this
algorithm is shown in Fig. 5(c,d). The resulting clus-
tering in Fig. 5(c) is in exact accordance with the con-
structed block uniform mosaic structure. The approx-
imate block uniform structure of the transition matrix
after permutation (Fig. 5(c)) visually justifies its re-
duced rank approximation (Fig. 5(d)). The algorithm
was run for 40 iterations of the 4 cycles, with trim-
ming and regularization of p(g|h) after every 10 iter-
ations. Within each cycle, 20 iterative scalings were
performed. The run-time in Matlab was 93 seconds
on a P-IIT 550MHz PC.

4 Targeted LMA: specification of
prior p(h', h)

The LMA model can be extended to the case where
the latent variables are jointly observed. Here we fo-
cus on the symmetric LMA model, though this can be
extended to the more general case. The scenario is
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Figure 5: Latent Markov Analysis of a synthetic approximately block uniform transition matrix. (a) Specified
transition matrix. (b) Re-permuted transition matrix using modified EM algorithm. (c) Re-permutation using
cyclic I-projection algorithm. (d) Reduced rank transition matrix.

as follows: transition pairs between H and H' are ob-
served in addition to transition pairs between X and
X'. The goal of targeted LMA is to relate the variables
through probabilistic mappings between both X, H,
and X', H'. Targeted relational LMA clustering looks
for a clustering solution which respects the probabilis-
tic relationships between clusters as specified by the
observed empirical distribution p(h', h). Here we seek
a maximum entropy solution for the full joint distribu-
tion, subject to the constraints given by the empirical
distributions of p(z',z) and p(h’',h). The algorithm
we implemented is again an I-projection based algo-
rithm consisting of repeated iterations of first the EM
step presented in Section 2.1, followed by its symmet-
ric dual obtained by mapping z,z’ < h, b’

E’-step

bl |z)p(a)
p(z|h, h') = > pw(hlz)wh |z)p(z)

M’-step
p(z) = p(a|h, k)p(h', h)
h',h

(w|h, B)B(M', h)
(hlo) = B TPR. 2
e hZ p()

where p(h, ) = w(h|z)p(z) = g(z|h)p(h) is used to re-
late the parameters between the two EM steps. This
algorithm consists of a sequence of I-projections in
each cycle.

In Fig. 6, numerics for targeted LMA relational clus-
tering is shown. The specified relation p(h'|h) in
Fig. 6(c) corresponds to a root cluster attached to
three leaf clusters. State 1 for the latent variable cor-
responds to the root cluster state which has significant
transition probabilities to the other three leaf cluster
states. Observations in the root cluster are drawn with

Figure 6: Hierarchical targeted relational clustering.
The two-dimensional data is plotted on the left. The
target reduced rank transition matrix is shown on the
right. The re-permuted transition matrix is shown in
the center.

circles in Fig. 6(a), while the leaf cluster observations
are drawn with crosses, triangles and diamonds. In the
numerics, we also implemented a second stage cluster-
ing where the observations in the leaf cluster drawn
with crosses were further decomposed into a root clus-
ter surrounded by three leaf clusters. These subse-
quent clusters are drawn in Fig. 6(a) in various col-
ors/grey scales, with the root cluster in black.

5 Discussion

EM-type iterative I-projection based algorithms (Dar-
roch et al. 1972, Csiszar 1989, Cramer 2000) are pre-
sented in this paper for the reduced rank approxima-
tion of transition matrices. In the reversible random
walk case, the symmetric LMA clustering results in
a single permutation of both the rows and columns
of the transition matrix, applicable to the analysis of
symmetric affinity matrix data. For the general LMA



model, the latent variables provide separate permu-
tations of the rows and columns. Related work in-
clude Friedman et al.(2001), where the clustering was
presented in an “information bottleneck” framework
specified via two networks G;, and Goyt, and Lee et
al.(1999) and Hofmann (1998, 2001) who applied their
latent variable models to the clustering of words and
documents. There are a few contributions of this work
in the context of latent variable clustering models. The
symmetric LMA has the benefit of a reduced number of
parameters, as well as an additional conditional inde-
pendence assumption which allows for the extraction
of the transition matrix between the latent variables.
In contrast with most other latent variable clustering
models, the symmetric LMA model is not a graphical
model. We also presented a targeted symmetric LMA
model which allows for the targeted extraction of clus-
ters with pre-specified inter-cluster relationships. For
the general LMA model, we presented fast, iterative
I-projection based algorithms for fitting and empirical
conditional distribution.

In the LMA formalism, the reduced rank transition
matrix naturally arises out of conditional indepen-
dence and exchangeability assumptions. In the clus-
tering application, since relations between clusters are
again described by a transition matrix, clusters can
again be clustered in the LMA formalism. The ap-
proximate commutative diagram for the latent variable
reduced rank model is shown in Fig. 7. Preliminary nu-
merical results show improved clustering performance
- in particular, the ability to naturally merge clusters
in the previous level of the hierarchy.

YS”l M} Xsng
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Figure 7: Approximate 2-layer commutative diagram
motivating a latent variable model for hierarchical
clustering.

In summary, the main contributions of this paper are
as follows. First, LMA provides a model and algorithm
for the reduced rank approximation of transition ma-
trices. The latent variable models are introduced us-
ing approximate commutative diagrams which detail
the approximations via mappings through lower di-
mensional simplices. Second, the clustering formalism

provided by LMA intuitively groups together states
which have similar transitions to other states. Cluster
relationships are directly encoded probabilistically by
the reduced rank transition matrix. This provides a
natural and direct representation of cluster relation-
ships by a weighted graph. Finally, combinatorially-
inspired variants of the EM algorithm in the form of
iterative I-projections are introduced for LMA. The al-
gorithms are motivated combinatorially and their per-
formance demonstrated numerically. They motivate
further research into enhanced convergence properties
of combinatorial I-projection based algorithms.

6 Appendix: Modified E-step
I-projection

Instead of the conventional E-step I;-projection con-
sisting minimization with respect to the first argu-
ment of the Kullback Liebler information divergence,
we use the Ir-projection, minimizing with respect to
the second argument. These projections are equiv-
alent when constraints are in the form of specified
marginals but different for specified conditional dis-
tributions (Cramer 2000).

Let p and ¢ be two joint distributions over the random
variables X,Y, Z. Consider the problem of minimizing
D(pl||q) with respect to g, subject to the constraint

q(y|z) = w(y|z). Writing p = p(2)p(y|2)p(x|y, z) and
q = q(2)w(y|z)q(x|y, 2), we have

D(pllq)
= /plog(%)d:cdydz

_ p(2) p(y|2)
= [pnoe iz + [ sl s 5L

+ [ p@nl)ptal. ) log<%)dwyda
= DO)4() + Doly, 2)|[(s]2)p(=))

+D(p(z,y, 2)|lq(z|y, 2)p(y, 2))

All three terms above are non-negative, and only
the first and third terms have a dependence on gq.
Those terms vanish when ¢(z) = p(z) and ¢(z|y, 2) =
p(z|y,z). These are the conditions which minimize

D(pllg), with min(D(p||q)) = D(p(y, 2)||@(y|2)p(z))-
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