
Data Centering in Feature Space

Marina Meilă
Department of Statistics

University of Washington
Seattle, WA 98195-4322

mmp@stat.washington.edu

Abstract

This paper presents a family of methods for data
translation in feature space, to be used in con-
junction with kernel machines. The translations
are performed using only kernel evaluations in
input space. We use the methods to improve the
numerical properties of kernel machines. Exper-
iments with synthetic and real data demonstrate
the effectiveness of data centering and highlight
other interesting aspects of translation in feature
space.

1 Introduction

Support vector machines (SVMs for short) classify data by
mapping it into a high (possibly infinite) dimensional fea-
ture space and constructing a maximum margin hyperplane
to separate the classes in that space. Operations in the fea-
ture space are rendered independent of its dimension by
what is commonly called now the “kernel trick”, the use
of an efficiently computable kernel function for the scalar
product in feature space.

The SVM classifier is learned from data by means of the
Gram matrix

�
consisting of the pairwise scalar products

of the data points in feature space. If, in the feature space,
the origin is far away from the convex hull of the data, then
the elements of

�
have about the same value and, as a re-

sult, the matrix
�

is ill-conditioned. Figure 1 illustrates
such a situation, showing that the performance of the re-
sulting classifier degrades.

The present work sets out to correct this problem, by shift-
ing the data so that the origin is located in the convex hull
of the data. While this is almost trivial for a linear clas-
sifier, it is not so for non-linear SVMs where the data are
mapped non-linearly into a high-dimensional space that is
not explicitly represented. Thus, the challenge is to per-
form the shift and to compute the resulting SVM using only
“allowed” operations, that is applying the kernel to points

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Figure 1: Original SVM classifier (dotted line) and classifier ob-
tained after translating the origin in feature space by � 500 units
(full line). The two classes are represented by “ � ” and “ � ” re-
spectively. The kernel used is the RBF kernel.

in the input space.

This paper presents kernel tricks that allow one to perform
a large variety of origin translations in the feature space of
a non-linear kernel machine. In its simplest version, this
method of data centering in feature space has been in use
for a long time (see e.g [4]). Here we show that one can
formulate data centering in the form of criterion to be opti-
mized by a translation in feature space, and that this trans-
lation can be performed entirely by “allowed” kernel oper-
ations.

There has been previous work on adapting kernels to the
data, notably that of [1, 5, 6]. The current idea differs from
the above in that it does not affect the geometry of the prob-
lem, it only affects its translation into a numerical task.

An origin placed far away from the data is not the only
cause of numerical problems in SVMs. Another com-
mon problem is the inappropriate choice of kernel width
(typical for RBF kernels) which can result into overfit-
ting/underfitting [8]. A related problem known as “ridge
effect” occurs in string kernels [13]: the data are almost or-

thogonal to each other in feature space. This can lead to
both numerical problems and overfitting. Such problems
are related to the geometry of the classifier, something that
cannot be modified by origin shift in feature space. There-
fore we do not address these problems in the current paper.

We start with a short introduction to support vector ma-
chines, then introduce a simple method of data centering
in section 3 and explain how to perform classification with
shifted support vectors in section 4. Next we present a gen-
eral method of shifting in feature space in order to optimize
some given centering criterion. Experiments are presented
in section 6 and the discussion in section 7 concludes the
paper.

2 Support Vector Machines

We start by briefly introducing the SVM; for more details
the reader is invited to consult [8]. In a classification task,
we are given a set of � data points

�������� ���	
���
�
� ������ , ele-
ments of an input space

��
. Each data point

���� is labeled
by � ��� ����� � . The task is to use the data and labels to
construct a classifier, i.e. to find a function � that predicts
the label � of a new point

�� .

Input space and feature space. We call the space of the
original data the input space. The data are mapped into a
space

�
called the feature space by a function ���� � � ��"!$#&%('*)
+,+ ��-� ��

(1)

We assume that the data is linearly separable in
�

, mean-
ing that a hyperplane that separates the two classes exists.
The feature space is a Hilbert space whose dimension . is
commonly much larger than the number of data points �
and can be infinity (e.g in the RBF kernel [8]). The input
space need not be a Hilbert space, it can be any set. The
trick that makes SVMs work is never to explicitly represent
points in feature space or � itself. The SVM only makes
use of scalar products of points in feature space, which are
computed by the function

� � ��/� �01!3254 � � ���!6� � � �07!98:�;4<�=�>0?8 (2)

called the kernel associated with � . It is assumed that� � ��=� �0(! can be computed efficiently for any pair of inputs.
To be represent a scalar product, a symmetric kernel

�
is

subject to the Mercer condition [8], namely that it induces
a positive definite integral operator on

��
.

Finding the optimal hyperplane. The separating hyper-
plane is described by the equation 4:@A�B�C8EDGFH�EI , with@ a vector in feature space and F a real number. The opti-
mal hyperplane is found by solving an optimization prob-
lem in the variables J �B�LKL� � �NMO���
��� � .PQ)�RSUT �VJ !XW
� Y�� J �LZ[I\)
]_^ �` �,a/� J � � �b�cI (3)

with

T �VJ !d� �` �,a/� J �=e �M �` �fa/�
�`g a/� J � J g � � � g 4<���>�B� g 8 (4)

The optimal hyperplane is then obtained from J � by

@h� �` �,a/� J � � �V��� (5)

FC� � �"e �`g a/� J g � g 4[���>�B� g 8i� #&%('jWB%(P?klK W
� Y J �Om�nI (6)

Note that although the optimization problem involves the
data images in feature space, the data points enter T only
via the pairwise scalar products 4;� � �>� g 8 which can be
computed using the kernel function. This is the celebrated
“kernel trick” of support vector machines. The matrix

� �po � � ����B� �� g !rq �ts g a/�uswvwvwv � (7)

is called the Gram matrix1. Throughout the rest of the pa-
per, we assume that a function SVM-SOLVER is given.
The function SVM-SOLVER takes as input a Gram matrix�

and a set of labels � returns the parameters F�� J �>�xKx�� ���
��� � of an SVM.

Classifying with SVMs. When a new point
�� is pre-

sented for classification, its label is computed by

� � �y� ���!C�zW>{,|}]3~ ` � J � � � � � ��=� �� � !=D[F>� (8)

If the kernel
�

is a non-linear function in each argument,
then the resulting classifier � is a non-linear classifier.

SVM extensions For the sake of simplicity, we have pre-
sented here only the most basic version of SVM. Many
other version exist that build upon the basics, some meant
to deal with the case of non separable data (C-SVM [3],� -SVM [11]), others adapted for classification from posi-
tive examples only [9], and others meant to deal with more
than two classes [10]. All SVM versions cited here have
in common the use of the Gram matrix as the only vehicle
by which the data enter the SVM training. Therefore, the
methods for data translation we present here should apply
to them as well.

3 A simple centering method

As shown in section 1, if in feature space the origin lies
far away from the data, then the matrix

�
will have almost

equal elements and will be ill-conditioned.
1We shall use the same notation � for both the Gram matrix

and the kernel; the distinction will be evident from the context.

How can we establish if, in the high-dimensional feature
space, the origin lies “between” the classes or far-away
from them? One way is to look at

� � �� � � �� g ! when data
points K � � belong to different classes. If this scalar prod-
uct is negative, it means that the points are seen from the
origin under an obtuse angle, in other words the origin lies
approximately between the two points. If we denote by

���
the kernel representing the scalar product with the origin
shifted in �

� � � �� � �01!d2 4<�=�>0?8 ����;4[�Qe � �>0ie � 8 (9)

then we can define the optimal position of the origin to be
the location � that minimizes� ��� !d� `	�
 a/� `	
� a���� � � � ����>� �� g ! (10)

Using4<�=�>0?8 � �;4 �=�N0Q8\e 4<�=� � 8Ee\4[0�� � 8nD;4 � � � 8
(11)

and letting ��� �&� � ! denote the number of data points withD � � e � ! labels, we can rewrite
� ��� ! as a quadratic criterion

in � whose (unique) minimum is at

� � �M � � `	�
 a/� ����D �M � � `	�
 a���� ��� (12)

Thus the optimal � according to (10) is positioned halfway
between the centers of gravity of the two classes in feature
space. The kernel

� �
for this position of the origin may not

be computable in closed form; nevertheless, we can obtain
the Gram matrix

� �
necessary to solve the SVM optimiza-

tion problem using only calls to the original kernel
�

. This
is a consequence of the fact that � is a linear combination
of data points in feature space. Denote

� � ��� ��� � M ��� !u� � � � ���� � M � � !u� � � �5e � (13)

and � �po � � ���
���O�1q�� , � � o � �
��� ��q . Then the “centered”
Gram matrix is given by

��� 2po ��� � �� � � �� g ! q � g � � e � � � e � � D � � � � (14)

Having obtained
� �

, a call to SVM-SOLVER � � � � � ! will
output the parameters F�� J � �LKL� � �
�
��� � of an SVM.

The optimal � obtained by the centering as in (12) may not
belong to the data manifold in feature space, hence it is
generally not representable by a point

�� in input space. In
the next section we show that this fact does not preclude us
us classifying new data points with the centered kernel.

The criterion (10) and its solution can be generalized to
problems that involve more than two classes. The details
are presented in the long version of the paper [7].

Both the criterion (10) and its multiclass extension guaran-
tee that the origin is contained within the convex hull of the
data after the shift. They are very similar to the “standard”
data centering method (e.g [4]) which moves the origin at
the center of gravity of the data. In terms of the � � coeffi-
cients above, moving the origin to the center of gravity of
all the data amounts to setting � � � �� for all K .
4 SVM classification with centered data

We explain now how to perform classification with cen-
tered data. Denote by F�� J � the output of SVM-
SOLVER � � � � � ! . According to equation (8), classifying
a new data point

�� is done by

� � � ���!d�cW>{f|(]d~ ` � J � � � ��� � ��/� �� � !=D[F>� (15)

Here, of course, we don’t have
� � � ��/� ���� ! in closed form.

This apparent obstacle can be overcome by using (3) and
(11) to obtain (see [7] for details)

� � � ���!3�zW>{f|(]C~ ` � J � � � � � ��/� �� � !ye ` � J � � � 4 � �B� � 8:DGF>�
(16)

In the above, only the first sum depends on
�� . We now

compute the second sum. Let� � �;4 � �B� � 8 #&%}'*Ky� � �
�
���6� � � � �;o � � � 	 ���
� � � q �
(17)

By (12, 13) the values
� � are

� �-�54 �`g a/� � g � g �>���L8 � �`g a � � g � � �� g � ���� ! (18)

Hence, a shift in the origin amounts to a constant correction
term in the classifier, having the value

� F[� �` �,a/�
�`g a � J � � � � g � � ����>� �� g ! (19)

If the J � ’s are sparse, then the computation of
� F is sub-

quadratic. Note that
� F is in general non-zero for � �Q��!� � , i.e in the case of the “standard” centering method.

This means that after centering the Gram matrix by the
standard method, one needs to make a correction to the final
classifier. This fact is sometimes overlooked in the litera-
ture [4]. The correction

� F is proportional to the norm of� , implying that if the origin is initially far away from the
data, the value of

� F can be quite large.

Equation (16) has a geometric interpretation illustrated in
figure 2. This result is a direct consequence of the fact that
the maximum margin hyperplane is invariant to transla-
tions in feature space. The SVM classification with cen-
tered data can be summarized as follows:

x
a

x’

a’
O

w

separating hyperplane

Figure 2: The geometry of origin shift and its effect on � .���������	�
are respectively the old origin, the new origin and a data

point;
��
����

are the projection of
�����

on the normal � to the sep-
arating hyperplane (this direction is invariant to translation). The
classification threshold � is the distance between the origin (old
or new) to the hyperplane, and the change ��� due to the change
in origin equals

���

the projection of

���
on � . The correction��� accounts for the fact that the origin was shifted during train-

ing while the new data are classified with the original, unshifted,
kernel � .

1. Preprocessing:

(a) Compute the Gram matrix � using definition (7)

(b) Compute the centered Gram matrix ��� by (9)

(c) Compute the scalar products ��� using (18)

2. Training: Call SVM-SOLVER �&� � ����� . This outputs� ��� � �����! "�$#%#%#'&
.

3. Postprocessing: �)(*�,+-��� from (19)

4. Classification: Classify new data points using the kernel � ,� ��� � �����! "�$#%#%#'&
according to (8).

In conclusion, centering in feature space only adds extra
work in the SVM training phase, being essentially trans-
parent in the classification phase.

5 A general centering method

We have shown how to perform an origin shift that opti-
mizes the criterion (10). Now we proceed to generalize this
method to optimizing any criterion

� � � � ! that is a function
of the Gram matrix only. Examples of such criteria are

. Minimizing the sum of the cosines between all pairs
of examples in different classes`	�
 a � `	
� a���� / %(W10 � ���B�>� g ! (20)

Since the cosine between two points in feature space
is a valid kernel (which places all the data points on
the unit sphere), this criterion is equivalent to simple
centering in a different feature space. Note however
that the relationship between the two feature spaces is
not straightforward.

. Maximizing the kernel alignment of [6] defined as

2 � ��� !d� � � ��� ��43 � � 3 5 (21)

with 3 ��� 3 5 being the Frobenius norm of
� �

.. Another apparently useful criterion is maximizing the
“unnormalized” alignment� � � � (22)

At a closer inspection however, it can be seen that,
unless ��� � � � � � � M this criterion has a maximum
for �76 8 in any direction so we do not recommend
its usage.

Let the centering criterion bePQ)�R� � � � � ! (23)

We assume that
�

is a suitably smooth function of elements
the Gram matrix, and in particular that its gradient is well
defined. We show how to optimize

�
by gradient ascent.

For this purpose, we first compute the gradient of
�

with
respect to � .

9 � � � � � !3� �` �,a/�
�`g a � : �
: � � � ����>� �� g ! 9 � � � � ����>� �� g ! (24)

From equation (11)

9 � � � � ����>� �� g !C�pe ���"eC� g D[M � (25)

The gradient is a vector in feature space and, by combining
the two formulas above, one easily sees that the gradient
is a linear combination of � and the data vectors. Taking a
step in the direction

9 � �
with step size ; means

�7< � D ; 9 � �
(26)

The step = � � ; 9 � �
is itself a linear combination of � and

the data vectors, hence

= � � ��> � D ` � �7�t��� (27)

with

��>b� e �` �fa/� �O� � �O� � exM ; �`g a/� : �
: ��� � �� � � �� g ! � #&%('LKy� � �
���
� �

(28)
All the coefficients � above can be easily computed using
only kernel evaluations. At each step of the iteration, we
update: the Gram matrix

���
, the scalar products

� � ��4� �B���x8i� KH� � �
���
� � and the squared length of � ,
� >Q��4� � � 8 as follows:

? � � �'�
@	A �CB�D'E � ? � � �F�
@GA � + ? � � �'H � A + ? �
@I�'H � A
�KJ ? H � �'�LA � ? H � �'H � A (29)

? H � �F� � A � ��� ? � � �'�LA �
`
���

� � � ? � � �'� � � A (30)

? H � �'� A � ��� ? ���'�LA �
`
�

� � ? ���F� � A (31)

? H � �'H � A � `
��� @ �

� � � � @ � ? � � � �F� @ � A (32)

�KJ ��� ` ��� � � � ? � � � �'�LA � ���� ? � �F� A
? � �

H � �'� �
H � A � ? ���'�LA �KJ ? � �FH � A � ? H � �'H � A? � �

H � �F� � A � ? ���'� � A � ? H � � � � A (33)

With the previous notation for � and � we can summarize
the gradient ascent algorithm as follows

1. Initialize � � � � , � �
	
, � � ��	

.

2. Compute � � for
� ��	��%#$#%#F&

by (28)

3. Update � � , � and � � by (29-33)

4. Go to step 2 until convergence

From the computational point of view, each gradient step
requires order � 	 computations: order � 	 derivative eval-
uations in step 2 and order � 	 update operations in step 3.
This is of the same order of growth with one whole evalua-
tion of the Gram matrix and affects only the training phase
of the SVM classification.

For large data sets, evaluating the whole
�

matrix is pro-
hibitive and state-of-the-art SVM implementations evaluate
only a subset of rows of

�
. In that case, the centering al-

gorithms presented here would be prohibitive as well. We
can easily fix this problem by using only a sample of the
data set for centering, in a way similar to [12, 14]. For
the simple centering method, we would sample e.g. �
� � M
data points from each class and represent � as the arith-
metic mean of this sample. This would still ensure that the
new position of the origin falls inside the convex hull of the
data, but the extra amount of computation per row of

���
will be of order � � 	 .
We can also use sampling to reduce the computational com-
plexity of the general centering method. In this case the
solution is to redefine the optimality criterion

�
to involve

only a submatrix of
� �

, depending on a subset of ��� 4i4 �
points. While the solution may not work for any criterion, it
is a reasonable approximation in the case of e.g optimizing
the kernel alignment [12].

6 Experiments

6.1 Shifting and recentering in feature space

In these experiments we used the SVMLIB [2] source code,
modified in order to accept a user-defined Gram matrix.

The first set of experiments was performed on artificial data
and aimed to show that (1) drastic origin shifts in feature

space harm the performance of an SVM classifier and (2),
that the simple centering algorithm is able to undo the ef-
fects of the shift. We generated data normally distributed
around two concentric circles as in figure 1 and computed
its Gram matrix

�
. Then we shifted the data in a ran-

dom direction in feature space by a predetermined distance
3 � 3 and computed the “shifted” Gram matrix

���
. We then

centered the shifted data by the simple centering method
described in section 3 and computed the “centered” Gram
matrix

���
. Finally we trained an SVM using each of the

three Gram matrices and evaluated it on test data from the
same distribution.

The experiment was repeated 10 times with different sam-
ples and shift directions for every value of 3 ��3 . We used the
degree 2 polynomial kernel

� � ��=� �01!*� � � D �� � �07! 	 and the
RBF kernel

� � �� � �01!*��� �����S �������� ��!"�
. The training (test) set

size was 300 (200) in all cases. The results are shown in
figure 3.

The second set of experiments was similar to the first, ex-
cept that now we used real data sets from the UCI reposi-
tory. The data set sizes are given in table 1. The shift length
was 1000 for all data sets. For each data set, the experiment
was run 10 times with different randomly sampled training
sets. The results are shown in figure 4.

From the two experiments we see first that a large shift is
detrimental to classification performance. The recentered
and original classifiers are almost identical for all the artifi-
cial data experiments and for all but one of the real data sets
(wdbc). This shows that recentering indeed has a restora-
tive effect on data placed far away from the origin in feature
space. The figures also show the effect on shifting and re-
centering on kernel alignment: the alignment of the shifted
kernel is practically 0 for the artificial data and drastically
reduced for the real data. Recentering brings alignment
back to near or above the original values. The number of
support vectors, an indirect indicator of generalization per-
formance, grows with the size of the shift in the polynomial
kernel and for all but the largest shift in the RBF kernel, but
drops elsewhere. The drop is very likely an artifact of the
SVM-SOLVER software for extremely ill-posed problems
(note that a shift of size 1000 is extremely large in the case
of the RBF kernel).

In the third set of experiments, we compared the centering
method described in section 3 with shifting the origin in the
center of weight of the data. To maximize the difference
between the two methods, in these experiments the num-
ber of examples in one class was 20 times larger than the
number of examples in the other class. Testing was done
on data generated from the same distribution as the train-
ing data. The experimental setup mimicked the one for the
first experiment.

For both centering methods, the recentered and the original
classifier are essentially the same for the whole range of

polynomial degree 2 kernel RBF kernel

 1000 5000 10000 20000
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

shift size

te
st

 e
rr

or

 10 50 100 500 1000

0

0.5

shift size

te
st

 e
rr

or

 1000 5000 10000 20000
0

0.02

0.04

0.06

0.08

0.1

0.12

shift size

al
ig

nm
en

t

 10 50 100 500 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

shift size
al

ig
nm

en
t

 1000 5000 10000 20000
0

10

20

30

40

50

60

70

shift size

su
pp

or
t v

ec
to

rs

 10 50 100 500 1000
−20

0

20

40

60

80

100

120

shift size

su
pp

or
t v

ec
to

rs

Figure 3: SVM classification with original (dotted line), shifted (full line) and recentered (dashed line) data for different values of the
shift length � � � . The original data are generated from the distribution shown in figure 1 (two concentric circles). These data are shifted
in a random direction by an amount � � � in feature space to obtain the shifted data. The shifted data are then recentered as in section 3 to
obtain the recentered data. The figures depict the test error, kernel alignment and number of support vectors for the resulting SVMs, in
the case of the polynomial degree 2 kernel (left) and of the RBF kernel (right). Results are averaged over 10 randomly sampled training
sets of size 300. The original and centered SVMs are identical in all cases. The alignment of the shifted kernel is practically 0.

digi01 digi02 digi26 wdbc glass
0

0.1

0.2

0.3

0.4

0.5

te
st

 e
rr

or

digi01 digi02 digi26 wdbc glass
0

0.2

0.4

0.6

0.8

1

al
ig

nm
en

t

digi01 digi02 digi26 wdbc glass
−50

0

50

100

150

200

250

su
pp

or
t v

ec
to

rs

a b c

Figure 4: Shifting and recentering on real data sets: (a) test error, (b) alignment, (c) number support vectors. Circles represent original
data, triangles – shifted data, squares – recentered data. The data sets are described in table 1. Each experiment was repeated 10 times
with random direction shifts. The shift length � � � was 1000 and the kernel was the RBF kernel in all cases. Note that the original and
centered results are superimposed in a, c.

 1000 5000 10000 20000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

shift size

al
ig

nm
en

t

Figure 5: Alignment of the Gram matrices vs shift value for 4
kernels: original (dotted), shifted (full), recentered by the center
of weight method (dash-dot) and recentered by the simple method
of section 3 (dashed).

shifts. (The detailed results are in [7]). Therefore we can
safely conclude that there is no practical difference between
the two centering methods.

An interesting phenomenon is revealed by the alignment
plots in figure 5. Unlike figure 3 the alignment is highest
for the shifted data, while centering drastically reduces it.
A quick analysis reveals the cause of this behavior: for a
sufficiently large origin shift in feature space, the value of
the alignment tends to

2 � � � ![e 6 �&� � e � � ! 	 � � 	 (34)

In our case, ��� is 20 times larger than � �
which yields the

value
2 � � � !*� I_� �1M , in perfect agreement with the experi-

ments. This strongly cautions us that optimizing the kernel
alignment may not always produce the best classifier.

6.2 Centering real data

In this set of experiments, we applied the simple centering
algorithm to real data. We computed the Gram matrices
before and after centering, denoted by

�
and

���
respec-

tively), trained an SVM for each of them, and evaluated its
performance on an independent test data set. The data sets,
training and test set sizes, kernel types and parameters are
given in table 1. The SVM parameters were chosen so as to
produce reasonable but not necessarily optimal classifica-
tion results on the original data. This was done before the
centering experiments, with one random training/validation
split of the original data.

The results are summarized in figure 6. Each point in the
figure represents the average of 10 random training/test
splits. The test error plot shows that, as expected, center-
ing has no effect in most cases but it improves performance
occasionally (for example, the wdbc data with polynomial
kernel). In none of the experiments did data centering hurt
performance. In most cases where performance wasn’t im-
proved, the SVM classifiers from the centered and original
data were virtually identical.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

original error

ce
nt

er
ed

 e
rr

or

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

original alignment

ce
nt

er
ed

 a
lig

nm
en

t

a b

Figure 6: SVM classification of original versus centered data in
12 experiments with 10 data sets: (a) test error, (b) kernel align-
ment. Each data point is the average of 10 random training/test
splits. The data sets are described in table 1.

The kernel alignment is slightly reduced in 2 of the 12 ex-
periments and dramatically increased in 8 others. Again,
we notice that improving the alignment per se does not nec-
essarily guarantee an improvement in the classification per-
formance.

7 Discussion

This paper has presented a family of methods for data shift-
ing and centering in feature space. They can be used in
conjunction with any kernel machine that incorporates the
information from the data in a Gram matrix. Data center-
ing in feature space does not, in theory, affect the resulting
classifier. We have shown that in practice, it can have a ben-
eficial effect when the Gram matrix is ill conditioned due to
a poor position of the origin relative to the data in feature
space. We have found no instances where data centering
hurt the classification performance.

When used for data centering, translation in feature space
requires extra work only in the training stage of the SVM.
The extra computations are of the order � 	 , but can be re-
duced by standard sampling schemes.

There have been many previous studies on kernel adapta-
tion [1, 5, 6]. Our centering methods differ from the pre-
vious as they do not attempt to obtain a more appropriate
kernel and they do not change the geometry of the prob-
lem. The aim of data centering is merely to hand the SVM-
SOLVER a problem instance with better numerical proper-
ties.

Additionally, we have shown that the “standard” center-
ing method present in the literature requires a correction
term for F . The experiments have also illustrated interest-
ing aspects of the (lack of) relationship between the kernel
alignment and classification performance in practice. In
particular, translation in feature space can greatly change
the alignment with no effect on the classifier performance.
We therefore experimented with factoring out the effects of

Table 1: The data sets used in the experiments.
Name Description # inputs # train # test SVM parameters
cmc Contraceptive data, UCI repository (class 1 vs all others) 9 400 523 RBF � � � �	 	
��� �! 	 	 	
glass Glass data, UCI repository (class 2 vs all others) 9 130 84 poly2, RBF � � � J ��� �! 	 	 	
wdbc Wisconsing breast cancer data, UCI repository 30 312 257 poly2, RBF � � �! 	 	 	
��� �! 	 	 	
digiab Handwritten digits from the USPS (digit a vs digit b

where a,b ��� 	��$ "� J �	��
) 64 200 400 RBF � � � �	 	 	���� �! �	 	 	

origin translation by first centering the data and then maxi-
mizing the alignment. The results are in the full paper.

Here, the results of the theoretical investigation into data
translation in feature space have been used solely for data
centering. We envisage however a more interesting realm
of applications: shifting the data in order to obtain new
kernels, parametrized by the shift. Obtaining a new ker-
nel by origin shifts is possible with composite kernel, such
as the ones used in the classification of string data (see e.g
[13]). If one shifts the element kernels before composition,
then the operation amounts to more than a translation at the
level of the composite kernel and it does affect the problem
geometry. Preliminary experiments in this direction are al-
ready under way.

Acknowledgments

The author thanks Deepak Verma for discussions and some
help with the code, Chris Watkins for discussions on string
kernels and Chih-Chung Chang and Chih-Jen Lin for writ-
ing and making available the LIBSVM software.

References

[1] S. Amari and S. Wu. Improving support vector machines by
modifying kernel functions. Neural Networks, pages 783–
789, 1999.

[2] C.-C. Chang and C.-J. Lin. LIBSVM: a library for
support vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

[3] C. Cortes and V. Vapnik. Support vector networks. Machine
Learning, 20:273 – 297, 1995.

[4] N. Cristianini. Support vector and kernel machines. Tutorial
at ICML, 2001.

[5] N. Cristianini, C. Campbell, and J. Shawe-Taylor. Dynam-
ically adapting kernels in support vector machines. Neu-
roCOLT Technical Report NC-TR-98-017, Royal Holloway
College, University of London, UK, 1998.

[6] N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. Kandola.
On kernel target alignment. In T. Dietterich, S. Becker, and
D. Cohn, editors, Neural Information Processing Systems,
number 14, Cambridge, MA, 2002. MIT Press.

[7] M. Meilă. Data centering in feature space. Technical Report
421, University of Washington, 2002.

[8] B. Schölkopf. Statistical learning and kernel methods. Tech-
nical Report MSR-TR-2000-23, Microsoft Research, Cam-
bridge, UK, 2000.

[9] B. Schölkopf, J. Platt, J. Shawe-Taylor, A. J. Smola, and
R. C. Williamson. Estimating the support of a high-
dimensional distribution. Technical Report 99-87, Microsoft
Research, 1999. To appear in Neural Computation, 2001.

[10] B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear com-
ponent analysis as a kernel eigenvalue problem. Neural
Computation, 10:1299–1319, 1998. Technical Report No.
44, 1996, Max Planck Institut für biologische Kybernetik,
Tübingen.

[11] B. Schölkopf, A. Smola, R. Williamson, and P. L. Bartlett.
New support vector algorithms. NeuroCOLT Technical Re-
port NC-TR-98-031, Royal Holloway College, University
of London, UK, 1998. Published in Neural Computation
12(5):1207–1245, 2000.

[12] J. Shawe-Taylor, N. Cristianini, and J. Kandola. On the con-
centration of spectral properties. In S. B. Tom Dietterich
and D. Cohn, editors, Neural Information Processing Sys-
tems, number 14, Cambridge, MA, 2002. MIT Press.

[13] C. J. C. H. Watkins. Dynamic alignment kernels. Techni-
cal Report CSD-TR-98-11, Royal Holloway, University of
London, 1999.

[14] C. Williams and M. Seeger. Using the Nyström method to
speed up kernel machines. In International Conference on
Machine Learning, number 17, 2000.

