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Abstract

The transformed hidden Markov model is a
temporal model that captures three typical
causes of variability in video - scene/object
class, appearance variability within the class,
and image motion. In our previous work,
we showed that an exact EM algorithm can
jointly learn the appearances of multiple ob-
jects and/or poses of an object, and track the
objects or camera motion in video, starting
simply from random initialization. As such,
this model can serve as a basis for both video
clustering and object tracking applications.
However, the original algorithm requires a sig-
nificant amount of computation that renders it
impractical for video clustering and its off-line
nature makes it unsuitable for real-time track-
ing applications. In this paper, we propose a
new, significantly faster, on-line learning al-
gorithm that enables real-time clustering and
tracking. We demonstrate that the algorithm
can extract objects using the constraints on
their motion and also perform tracking while
the appearance models are learned. We also
demonstrate the clustering results on an exam-
ple of typical unrestricted personal media - the
vacation video.

1 Introduction

In our previous work, we introduced transformed mix-
tures of Gaussians (TMG) [1, 2], and their tempo-
ral extensions for video analysis, transformed hidden
Markov models (THMM) [3]. These algorithms per-
form joint normalization and clustering of the data.
Transformation-invariant clustering models are suitable
for video clustering, because they account for the vari-
ability in appearance and transformation in the objects
and scenes. Therefore, one application of TMG/THMM
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Figure 1: Application of THMM for clustering a 20-
minute long vacation video (see also Fig 7 and 6). The
mean (best seen in color) and the variance of one of the
43 clusters in the Gaussian mixture are shown in the up-
per row. The central part of the mean contains and out-
line of a baby’s face in skin color. For this region, the
variance is low, while the various backgrounds against
which the face appeared are modeled with high variance
around the face. Lengths and positions of four video
segments found in the first 9 minutes of the video are il-
lustrated on the timeline. These 9 minutes were captured
over the period of several days.

is video clustering and indexing (Fig. 1).

A frequently mentioned drawback of the transformation-
invariant clustering methods is the computational bur-
den of searching over all transformations. In order to
normalize for translations of an object over the cluttered
background in video sequences, a large number of possi-
ble translational shifts should be considered. For exam-



ple, there are M x N possible integer shiftsinan M x N
pixel image. Since the computation time is proportional
to the number of pixels and the number of transforma-
tions, O(M?N?) operations are used for inference, for
each component in the Gaussian mixture. It takes one
hour per iteration of the batch EM algorithm to cluster a
40-second long 44x28 pixel sequence into 5 clusters [2].

The temporal extension of the TMG - transformed hid-
den Markov models (THMM) - use a hidden Markov
chain to capture temporal coherence of the video frames.
The size of the state space of such an HMM is CMN
where C'is the number of components in the Gaussian
mixture, and MN is the number of translations consid-
ered. In [3], the forward-backward algorithm is used
to estimate the transition probabilities and the parame-
ters of a THMM, but it adds additional computational
time to the TMG, because the transition matrix of the
transformations is large. It is also numerically unsta-
ble, due to the large number of state-space sequences
(CMN)T for a C-class model of M x N frames), and
the high dimensionality of the data. Only a few state-
space paths carry a significant probability mass, and the
observation likelihood has a very high dynamic range
due to the number of pixels modeled in each sample.
This makes the forward-backward algorithm sensitive to
the machine precision issues, even when the computa-
tion is done in the log domain.

To tackle the computational burden of shift-invariant
models, in the past work [4], we proposed to reduce
all computationally expensive operations to image cor-
relations in the E step and convolutions with the prob-
ability maps in the M step, which made the computa-
tion efficient in the Fourier domain. There, the com-
plexity of repeatedly evaluating the likelihood at each
stage through I iterations of EM is of the order of
O(CIMN log(MN)), thousands of times faster than
the technique in [2]. The issues present in the tempo-
ral model, THMM, however, still remained.

In this paper, we explore the structure of the model and
the structure of the video to derive learning algorithms
that run at real-time, which is up to ten thousand times
faster than the method in [3].

2 Learning THMM using a Variational
Approximation and the M-paths Viter bi
algorithm

Under the THMM model, frames in the video sequence
are generated from a probability model Fig. 2. The prob-
ability density of the vector of pixel values z for the la-
tent image corresponding to the cluster c is

p(zle) = N(z; ., @.), 1)

P(c.lpast)

t-1 t

Figure 2: Transformed Hidden Markov Model. Pair
¢ — z is Gaussian mixture. Gaussian mixture class in-
dex (¢), and translation index (¢) are together the state of
an HMM. Observation x is obtained by translating latent
image z by translation indexed by £.

where ., is the mean of the latent image z, and ®. is a
diagonal covariance matrix that specifies the variability
of each pixel in the latent image. The probability density
of the vector of pixel values x for the image correspond-
ing to transformation ¢ and latent image z is

p(x|l,z) = N(x; Tz, ¥), (2)

where W is a diagonal covariance matrix that specifies
the noise on the observed pixels.

The joint likelihood of a single video frame x and latent
image z, given the state of the Markov chain s = (¢, ¢),
is

p(x,2|s = (¢,0)) = N(x; Tz, ®)N (z; ., ) (3)

Note that the distribution over z can be integrated out in
the closed form

p(X|S = (Ca f)) = N(X; I‘Z“’cv ]'-‘Z@Cl-‘; + ‘Il)v (4)
and then from (3) and (4)
p(z|xcl) =N (z; Qe T)¥ '+ Qe @, 1, Q) (5)

where Q. = (®, ' + T, ¥T,)"".

The joint log likelihood of a video sequence X =
{Xt}t=1,...,7, hidden states of THMM S, and latent im-
ages Z is

logp(X,Z,S) =
T T-1
log 7Tc4+z log p(x4,2¢[st) + Z log as,s (6)
t=1 t=1



The initial state probabilities are depicted as 7.,. The
statistical properties of the sequence dynamics are cap-
tured in parameters as, s,., = p(Se41]s¢). It is rea-
sonable to assume that class index c¢ at time ¢ + 1 de-
pends only on class index at time ¢, whereas position
index ¢ depends both on previous position and class
indices due to the different motion patterns of differ-
ent objects in the scene. Hence p(¢i41, cty1|le, ct) =
p(es1|€t, ct)p(ceq1|ct). Furthermore, the transforma-
tion transition coefficients can be heavily constrained by
choosing the small motion, or the motion in certain di-
rection for given class.

Instead of maximizing log-likelihood of the data, we in-
troduce auxiliary probability density function over hid-
den variables, ¢(¢, c,z), and using Jensen’s inequality
obtain the lower bound on log-likelihood [6]

logZ/dsz{zcﬁ})

{e.t}

Z /dzq {z,¢,0})logp(X,{z,¢,l})—
{e.0}

$ / dz q({z,c, £}) log a({z, ¢, 0} @)
{0}

log p(X

The second term in the lower bound is the entropy of ¢
and it does not depend on the model parameters. The
notation {c, ¢} depicts the series of all transformation
indices {ct, 4+ },t = 1,...,T. We implicitly understand
that the variational posterior ¢ depends on X. Distribu-
tion ¢ can be factored as ¢({c, £})q({z}|{c, ¢}), where
the first term corresponds to the distribution over states
of an HMM.

Therefore, the lower bound on log likelihood is

= Y [ anatte thattaite. )
(et}
T
[log 7ee + Z log p(xt, zt|ce, r) +
T-1 =
> logp(err, c)log(liallicr)]  (8)
t=1

Learning can now be defined as optimizing the above
bound with respect to the parameters of the posterior q
and the model parameters.

2.1 Inference (posterior optimization)

By integrating out the hidden variable z, the model re-
duces to a standard HMM with state s = (¢, ¢) and the
Gaussian observation likelihood given by Eq. (4). Then
the posterior ¢({c,¢}) can be computed exactly using
the forward-backward algorithm as in [3]. However, as

mentioned in the Introduction, the cost of this operation
is not justified as most of the (C'M N)7 state paths in the
trellis actually have very low probability. Furthermore,
the range of the observation likelihood and the size of the
state space cause significant problems with numerical
precision for sequences longer than a few seconds, even
when the path strengths are stored in the log domain. In
this paper, we approximate the posterior ¢({c, ¢}) over
all possible paths as the mixture of a small number (M)
of possible state sequences

q({e, 0}) = Z rmd({e. 0} = {&.03™), (9)
m=1
where SN =1

One can easily show that to optimize the bound F" with
respect to the M paths and their strength, it is necessary
to find the M best paths in the trellis and set r,,, param-
eters proportional to their likelihoods.

For a given state-space sequence, the distribution
q(z¢|ct, £1) over the latent image at each time step ¢ can
be performed exactly as in Eqg. (5) for all M paths.

2.2 Parameter optimization
Defining uc,c, = plct+1 = caler = c1), and vy}, =

p(lir1 = loll; = f1,¢; = c1), and finding the con-
strained derivatives of the bound F

Z dz q({z}|{c, (}) x
3uc1cQ { /

b
C
Z uCtCt+1)i|

ct+1=1

q({c, E}) Z Ucierpr — Al —
t=1
(10)
gives the optimal transition coefficients assuming the
distribution ¢({z, £}))
ey Q(Ct = C1,Cr41 = C2)
Ucico =
Zt 1 q(ct = c1)
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(12)

Intuitively, we expect the matrix of coefficients .., ., to
have large diagonal elements, since we favor the new



frame to remain in the same cluster as the previous.
Also, it is possible to severely constrain transformation
transition coefficients ©;", and in that fashion set the
motion prior for the class for example, favoring the
small motion or the motion in one direction.

Finding the derivatives with respect to the cluster means,
we get

%ED/dmﬁhM@%DX

(5% (o~ ) =0 (13)

Due to the nature of the Markov chain, given the pair
(ct, £+), z: does not depend on any other (¢, ¢), nor on
any other x apart from x;. Therefore, E(z;|X, {¢, ¢}) =
E(Zt|Xt,Ct,€t), where E(Zt|Xt,Ct,€t) is giVen by (5),
and thus,

T
&' > qle=k ()E
t=1 ¢,
@, ZQ(Ct = k). (14)
t

Subsequently, if the posterior is known, the means g,
can be set in the batch EM update,

iy, = Zthl th q(er = k, L) Elzg|xi, ¢ = K, 4]
p =
iz dler = k)

kagt] =

[z|x¢, ¢t =

(15)

where the summationin ), is only over the paths that
pass through class & at time ¢. Even though the number
of transformations is equal to the number of pixels we
limit the search only to the transformations that yield a
non-zero term ¢(c; = k, ¢;), which in turn is computed
by simply looking-up those of M paths in ¢ that pass
through class & at time ¢

E rrn

—k, l)= — k)™ — €), (16)

and

Ct—k'

Z ) —k) (17)

Similarly, covariance matrix update is

(i)k 7]{ Zchtkat

Zt 1(I(Ct t=1 ¢,

[(E[z¢|xpce =kle] — py,) o (Elze[xp,c0 = K le] — py ) + e

(18)

The variational approximation of the posterior distribu-
tion over the states of an HMM with M best sequences
significantly reduces the computational burden in EM
update.

3 Recursive, on-lineEM

While improving somewhat the computational effi-
ciency and solving the problems that the exact learning
algorithm of [3] had with the machine precision, the M-
best paths learning described in the previous section still
suffers from two drawbacks: a) the need to preset the
number of classes C, and b) the need to iterate. For a typ-
ical 20-minute sequence, the needed number of classes
C can range anywhere from five to fifty (see Fig. 6 and
Fig. 7), and more extreme values are possible, as well.
While the number of iterations needed to converge also
depends slightly on the number of classes, it is typically
sufficient to run the algorithm for ten or twenty itera-
tions. The computational cost is proportional both to the
number of iterations and the number of classes, but the
structure of realistic video allows development of more
efficient algorithms. Frames in video typically come in
bursts of a single class which in principle means that
the algorithm does not need to test all classes against all
frames all the time, and also that there is an abundance
of data to learn the class model from, thus opening room
for an on-line learning algorithm that adapts to the new
data and slowly forgets the old.

In this section we propose an on-line algorithm that
passes through the data only once and which intro-
duces new classes as the new data is observed. Most
of the time, the algorithm is simply inferring the trans-
formations under only one class, and only during the
possible class transition periods it evaluates all classes.
This makes the algorithm’s performance equivalent to a
single-iteration, single-class THMM learning, which for
the typical numbers we gave above for a twenty-minute
sequence leads to an improvement of a factor 300 against
ten iterations of the batch learning of a 30-class THMM.

To derive the on-line learning algorithm, we reconsider
Eq. (14) and define

T
Sk £ @] Z Z q(ce=kt)E

t=1 ¢

k, 4] (19)

[z|x:, ci =

and

T
Rer 2 &) gl = k). (20)
t=1

Then, batch update of g, using T data samples is

" = Ry 7Sk.r, as in (15). If we rewrite (14) for
T + 1 data samples

Spr+®; " Z g(eri1, br11)Elz|xXr41, erg1, brga] =
lr41

Ry oy + @y tq(erii =k, (21)



Figure 3: Three frames from the Walk sequence, corresponding to the beginning, middle part, and the end of the

sequence.

Figure 4: Means and variances for three classes learned using variational THMM for the Walk sequence. For vari-
ances, black implies very low variance and white very high variance. First column corresponds to learned background,
second to the object moving to the right, and third to the object moving to the left.

Multiplying (21) from the left with R.."

(T

Hy, )+R;;1T‘I’;;1 Z q(ern, brp)E[z|X14, ey, b =

Loy

I+ R 3@ q(crs=k)|uy Y, (22)

and assuming the term in the square brackets on the RHS
is close to 1, and using the matrix equivalents of HLI ~
l—zand {5 =@

i V== Ry @ talern = k)i +
Rep®, 'Y alern, brn)Elzlxrn, e, o] (23)

L1y

The statistics Ry, 7 as it is defined is increasing and ulti-
mately diverges to infinity. It could be rewritten in terms
of its time average. If we define the short-time average
as

T
- 1 _
Rirar = AT Z &, 'g(cri1=k), (24)
t=T—-AT+1
then
T <& _ 1 -
Ry = T ; @, 'g(cri1=k) =TRyr7 = aRk,T,T

(25)

where we define o = % to be the learning rate. By
taking o = ﬁ instead, we perform learning with for-
getting.

It is not difficult to prove using the definition that
Ry, a7 is updated using the recursion

Rirar = (1 —a)Ryr—1.ar +a®) 'qler=Fk)
(26)

Note that this update is different than the update based
on taking a step in the direction of the bound or likeli-
hood gradient, as suggested in [7]. The gradient-based
approach produces small steps for unlikely classes, thus
rendering learning of multi-class models slow. This does
not happen in the batch learning, due to the normaliza-
tion with the total responsibility of the class & in the
video. Thus, even if the class was initialized far from
the data, after the very first iteration of EM it will jump
close to it, as the update becomes an average of the data
points. The gradient-based on-line learning, on the other
hand, due to the small value of the posterior for each data
point, moves the parameters very slowly.

In our update, the additional quantity Rk,T,AT plays the
role of the average responsibility of the class k in the
previously seen frames. This quantity is also tracked
through time in addition to the model parameter, and so
rather than making a step scaled by the responsibility of
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Figure 5: The most likely object position for the three clusters in the 44-frame long 240x320 Walk sequence. Transla-
tions are defined as being wrapped around the image boundaries, therefore the downward shift of 239 corresponds to
the upward shift of 1. The upper row represents tracking of the horizontal coordinate, while the lower row represents
the tracking of the vertical coordinate. Class 2 and 3 slightly oscillate in the vertical direction, hence the detected

displacement of a few pixels.

the class, what matters in the update equation is the ra-
tio of the class responsibility for the new data point and
the average class responsibility for the previously seen
points.

Substituting (25) in (23) we get the final update rule for
. (and similarly for ®,)

T+1 ~_ _ T
p Y = 1 aR )y A @3 (e =) pg ) +

OKRIQ%AT‘I’? Z q(eri, b ) Elz|xr,crn,lra] (27)

Loy

where the change of Rk,T,AT is governed by (26). Note
that setting o = = we achieve the same update as in
Eq.(15), when the posterior is fixed and exact. In on-line
learning we set AT to be smaller, and also allow the pos-
terior to change. In our experiments we kept o = 0.01,
thus updating parameters using only approximately pre-
vious 100 data samples (frames).

Note that in Eq. (26) the average class responsibility
is combined with the current class variability model (by
keeping (I),jl). In batch learning, since the covariance
matrix is assumed fixed in one iteration, it can be divided
out of the update equation (14) for the mean. However,
since we change the parameters through the time, includ-
ing <I>,;1 in (26) helps refine parts of the class mean at
different speeds depending on the uncertainty.

To deal with the introduction of the new classes in the
video, we observe first of all that the problem is ill-
posed, i.e., it needs to be constrained. For example,
model selection in on-line learning is sometimes con-
strained by specifying the prior on the model param-
eters [10]. Since our goal is data summarization, we
constrain the class number selection by specifying the

lowest allowable data likelihood. Such constraint sim-
ply states that all data needs to be explained reasonably
well (with the likelihood above some threshold), while
the classes should be introduced as rarely as possible.
The temporal structure in the THMM and the structure
of a realistic video (alternating bursts of frames from
each class) suggest that if the likelihood of the current
frame under the class associated with the previous frame
is reasonably high, there is no need to evaluate the like-
lihood under the previous classes, as the current class
provides a good model. So, we use two thresholds on
the likelihood 7, > ~2. When the log-likelihood of the
observed frame under the class from the previous frame
is above -1, we classify it as belonging to the same class.
When this likelihood is smaller than ~1, the full posterior
is computed and the likelihood of the data re-estimated,
leading often to classifying the frame as belonging to
some other, previously seen class. However, if the data
likelihood under the full model is still lower than -, a
new class is introduced and initialized to the problem-
atic frame. This is similar to stability-plasticity dillema
of Grossber’s ART [8], whose unsupervised version iter-
atively clusters data, and introduces a new cluster if none
of the existing clusters can explain the new sample well.

This approach guarantees that the likelihood of the data
will be limited from below, since during the learning the
likelihood of the current frame never drops below some
threshold, and the subsequent possible drop in the like-
lihood due to the model update is limited by the slow
learning rate.

However, due to the sensitivity of the number of in-
troduced classes to the threshold s, it is possible for
the single-pass learning algorithm to introduce several



Figure 6: The summary of a 20-minute long whale
watching sequence. Interesting events (whale, people)
are buried in the video of the ocean and the mountains.
The video is clustered into six classes, whereas most of

the frames are clustered into clusters 3, rightmost in the
top row, and 4, leftmost in the bottom row.

classes modeling similar frames. This can be detected
without looking back at the data, by finding the expected
likelihood of the frames from one class under the proba-
bility model of the other,

N
. 1
L= ngnoo N Zlogp(yn|cl) =

n=1

EI—"21‘1’2[10gp(yn|N15@1)}:
1 P, 1 B
Euzfﬁz[_51Og|g|_E(yn—lil)lq’ll(yn_ﬂl)]:
1 P, 1 _1
— =log|—| — =tr(®7 ®5)—
3 logl gy |~ (@ ®2)

%(uz — 1) ®7 (B2 — 1) (28)
To achieve a more compact representation, class 1 and 2
in this example can be merged into one when both L »
and Lo ; are larger than the likelihood level required in
the video summary. The Gaussians for two classes are
merged into one in a straight-forward manner.

4 Experimental Results

4.1 Extracting objectsusing motion priors

We demonstrate object extraction from the scene by set-
ting motion priors in coefficients a, s, ., = e, e, Vg4, -
The difference between two consecutive transformation
indices ¢; = ¢; and ¢4, 1 = /5 corresponds to the inter-
frame motion. The direction or the intensity of the mo-
tion for class ¢; can be constrained by setting appropri-
ate elements in vy, to zero. We demonstrate the use of
motion templates for extracting the background and two
objects that move in the different directions. We trained
a THMM on a 44 frames long 320 x 240 Walk sequence
(Fig. 3), using M-paths batch learning described in sec-
tion Section 2. Training was performed at the rate of 3

fps, and it took 8 iterations of EM algorithm to obtain
results in Fig. 4. We trained the model using a three-
component mixture of Gaussians, and we set the motion
priors for each of the components. One of the compo-
nents was allowed horizontal and vertical shifts of up to
one pixel. Second and third components were allowed
horizontal shifts of no less than two and no more than
eight pixels to the left and right, respectively. The algo-
rithm was able to pull out the two objects and the back-
ground scene into three classes (Fig. 4). Without motion
priors, both TMG and THMM in its approximate or ex-
act forms, only learn the classes similar to the first class
in Fig. 4(the background image), and are never able to
track and learn the two people. The maotion priors, how-
ever, help set the position inference on the right track
(Fig. 5), and lead to reasonable template learning results,
even though the class means were initialized to random
images. The effect of the temporary occlusion of the per-
son in white shirt is reduced in the mean image (Fig. 4),
due to the integration with other frames where the per-
son was fully or partially visible. In both person ap-
pearance models, the background is suppressed and the
class variance is mostly lower on the pixels belonging
to the appropriate person. Despite the slight blemishes
on the appearance models, for all three classes the track-
ing is very precise. By modeling the data as a mixture,
rather than a composition of the objects, THMM is un-
able to learn perfect object appearance or perform good
segmentation as in [11]. But, THMM can be used as an
initial approximation for the layered model, and it is an
order of magnitude faster. It can be also used for object
tracking, and as a motion detector.

4.2 On-ling, real timevideo clustering

In the first example we use a 20-minute long 90x60, 15
fps color Hawaii sequence. This typical vacation se-
guence was shot during the period of several days, at
different locations, but with the same group of people.
We train THMM using on-line learning, starting with
the Gaussian mixture with one component. Learning
and subsequent class introduction is performed at the
average rate of 10 frames per second on 2.2GHz P4.
We show learned cluster means in Fig. 7. The com-
mercial video shot detection software, like Microsoft’s
MovieMaker, usually detects only a few shots in this
type of video, as most of the visual diversity in the video
is caused by camera wipe rather than by camera cut.
Without any clear shot cuts, the traditional software sim-
ply represents the video with thumbnails for several long
video segments. These thumbnails, however, only show
one frame from the shot, hiding all the other content.
Our clustering provides a much richer presentation, and
beyond the video segmentation task, it groups similar
scenes and objects together as illustrated in Fig. 1. After



Figure 7: The summary of a 20-minute long Hawaii se-
quence: cluster means for 43 classes learned using on-
line algorithm at 10 frames per second.

the cluster merging step, our model consists of 43 clus-
ters (Fig. 7).

In the last example, we illustrate the scalability of our
approach to class introduction based on the minimum
allowable likelihood. In a 20-minute long video from
a whale watching trip, most of the video is jerky and
contains the same scene consisting of the mountains and
the ocean, while the exciting segments, containing whale
breaches and people, are less than a minute long in to-
tal. In this sequence, our algorithm was able to jointly
stabilize the sequence and find nine clusters that were
in the end merged in the six clusters shown in Fig. 6.
Most of the sequence was explained with only two clus-
ters, while much shorter and content-rich parts were ex-
plained by four clusters. After learning a summary like
this, it is easy to find interesting shots in the video.

Review [9] surveys the recent studies in the area of con-
tent based video analysis. Although there is no agreed
standard to compare different algorithms, our approach
unifies several stages of video analysis: video partition-
ing, cut detection, motion characterization, scene repre-
sentation, and definition of scene similarity measure.

5 Conclusions

We presented a fast variational on-line learning tech-
nique for training a transformed hidden Markov model.
We demonstrated that learning a realistic video can be
performed in real time, a 10000-fold improvement in
computation over the method in [3]. We believe these
techniques would prove useful in video clustering, sum-
marization and indexing.
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