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Abstract

How does one model data with the aid of la-
bels, when the labels themselves are noisy, un-
reliable and have their own dynamics? How does
one measure interactions between variables that
are so different in their nature that a direct com-
parison using, say cross-correlations, is mean-
ingless? In this paper these problems are ap-
proached using Coupled Hidden Markov Models
which are estimated in the Variational Bayesian
framework. Signals can be diverse since each
chain has its own observation model. Signals
can have their own dynamics and may tempo-
rally lag or lead one another by allowing link-
ing edges in the network topology to be esti-
mated and chosen according to the most prob-
able posterior model. Integrated feature extrac-
tion and modelling is accomplished by provid-
ing the Markov models models with linear ob-
servations models. We derive Coupled Hidden
Markov Models estimators, apply and compare
them with sampling based approaches found in
the literature.

1 Motivation

When describing signals, ideally the models should mimic
the underlying processes that are thought to generate them.
The advantage is that the results are easily interpretable and
applicable. In the absence of such models, or if such mod-
els are mathematically or numerically intractable, simpler
models are used, which might have the disadvantage of pro-
ducing results that do not easily relate to our understand-
ing. One can, however use markers or scores (manual or
otherwise) which guide the model in the desired direction.
How one chooses to apply such labels varies. In classifi-
cation, labels are frequently assumed to be noise-less and
exact. They are given almost dictatorial power which might
be appropriate depending on the mechanism that generated

the class labels. Human scores, on the other hand, are ev-
erything but noiseless. Humans are subjective in their inter-
pretation of the system they study. This frequently requires
the combination of several human scores to a consensus
score. Human scores even have their own dynamical prop-
erties. In the case of human sleep stage scoring, it is typical
for the human scorers to lag somewhat behind a sleep state
change before they label it as such, as if to make sure the
state has indeed changed. To complicate matters even fur-
ther, scores might have a different sampling rate than the
actual signal and might characterise a state based only on a
short event which occurred within the sampling period.

We believe therefore, particularly when dealing with manu-
ally generated “class labels”, one should really avoid treat-
ing labels as such and instead consider them as manifesta-
tions of the same underlying system which also produced
the observed time series - only with a different mapping
onto the observation space. Thus, labels are observables
which are permitted to be noisy. Characterising the system
is, in this case, done by fusing a set of observations (e.g.
labels and signal) at a higher (state space) level.

2 Problem Approach

There is very little knowledge with regard to the biologi-
cal processes governing most of the applications described
in this paper. Hence, we cannot resort to specific models
such as those found in the literature of nonlinear-dynamic
theory (we’re thinking along the lines of Van der Pol os-
cillators and the like). Here we make use of another kind
of state space models, that of Markov models. A kind of
Markov model which incorporate class labels are Markov
Decision Trees. From a generative model perspective, how-
ever, the labels uniquely define the state and the signal, i.e.
they hard-sectioning the observation space and do not al-
low for label uncertainty. Label dynamics are also typi-
cally not accounted for. Here we suggest a different class
of Markov models: coupled Markov models, in particular,
coupled hidden Markov models (CHMM) [3] in which the
labels are modelled as observables generated via one chain



and signals by other neighbouring chains. The CHMM thus
accounts for individual dynamic properties of labels and
signals. Labels and signals are then fused in state space.
The time delay between them is estimated to allow for lag-
ging or lead behaviour between the chains. Labels in the
classical sense are discrete. By allowing multivariate dis-
crete observation models for the labels, an optimal concen-
sus score can be statistically estimated within the overall
framework of parameter estimation. Indeed, labels need
not be conventional scores, but can be markers of any kind,
e.g. muscle activity signals to describe the state of hand
movement in brain computer interface applications.

A typical way of using hidden Markov models (HMM) is
by extracting features from the observation time series and
then using these as the “observed” time series to train the
HMM parameters. Thus, one in fact conditions on the fea-
tures and thus expects the model to perform worse than
when allowing for feature uncertainty and integrating them
out in a Bayesian sense. Such an approach, using Markov
Chain Monte Carlo sampling, has already been shown to
give significantly improved classification results [13]. In
this paper we perform full Bayesian analysis using a varia-
tional learning framework. In variational learning theory
all aspects of HMMs can be estimated within the same
framework, be it belief propagation, parameter estimation
or model selection. By approximating the full posterior dis-
tribution of the parameters, we avoid many of the problems
of the maximum likelihood framework. In addition, the
free energy provides a measure for the choice of the best
model.

3 \Variational learning of Coupled Hidden
Markov Models

Variational learning aims to minimise the variational free
energy [7] between the (intractable) model posterior P and
a simpler (analytic) approximating distribution ). The free
energy is given as the Kullback-Leibler (KL) divergence
between @ and P, where the distribution @ is defined over
the hidden variables, such as parameters or hidden states.
Being a directed divergence, it is an upper bound to the
true log-probability of the data, i.e. the evidence. The di-
vergence is maximised with respect to the individual distri-
butions.

Given a set of hidden variables A = {A;,---, AL},
the method known as “Mean Field” variational approx-
imation assumes that the Q-distributions factorise, i.e.
Q(A4) = Hle Q(A4;) with the additional constraint that
J Q(A;) dA; = 1. In this paper, the CHMM parame-
ters are assumed to be independent form each other, i.e.
Q) = HjﬂilQ(Bj) while the hidden state sequence
maintains its chain-like structure. In the case of 2 cou-
pled chains, the hidden states are composed of subsets,
S = {S1,---,S~v}and T = {t1,---,Tn} which form

a joint distribution of the form

Q(S,T) =Q(51)Q(Th)
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where I is a time delay or lag from chain T' onto S and i1
is the lag from chain S onto T'.

The value of the free energy varies depending on the num-
ber of state space dimensions, the lag between the state
chains and the observation model order. Indexing the free
energy for each possible setting of these quantities by a, we
can choose the most probable model from the relation [7]

a, x exp{—F,}. )

In effect the form reduces to computation of the posterior
model probability in the event of flat priors over model
structures [2].

One example of a directed graph of the CHMM is shown
in figure 1. The graph has 2 observation models, one multi-
nomial for the discrete set of label observations and one
multivariate linear observation model for stochastic signals.
The discrete observation model’s random variable Xz has
a Dirichlet prior with prior counts x,. The update for-
mulae for this model are particularly simple and consist
of simply adding all the probabilities of the states T, for
all values falling within a category. The linear observa-
tion model is a multivariate autoregressive (AR) model, i.e.
G = S0 Hifyy + &, where §;, € R4*! is a d-variate
response vector at time ¢, H, € R%¥*? is the matrix of
model coefficients, and &€, € R*! is a stochastic noise
vector. The model is simplified by concatenating the p co-
efficient matrices into one partitioned matrix, H € RZ*4p,
and thus i, = HZ, + &, where #; € R¥*! is a dp-variate
basis vector at time ¢ which, in the AR-model case, is just
a vector with stacked lagged samples of original time se-
ries, z; = [Ji—1" -+ ,§i—p']". TO overcome the problem
of different sampling rates between the two chains, we as-
sume the same linear model for a set or segment of multi-
variate observations. This has the advantage of implicitly
applying some smoothing to the observations and is math-
ematically simpler than tackling the problem in the state
space. Thus, in a segment of observations, indexed by n,
u samples of y; are concatenated to a single matrix Y,, =
[F(n—1)us" " > ¥nu)- The same number u of basis vectors
x; are concatenated to give X, = [Z(n_1)u," " ; Tna)- It
follows that Y, € R4X* and X,, € R¥P*%,

The discrete nature of the state space means that the linear
model distribution has discrete parents which results in a

mixture of linear models . The model, given the state S,, =
m, becomes

p(Yn - Han) = Nd,u(oa Xm, Iu) (3)



where Ny, defines a d x u-matrix variate normal density
function [4] with precision ¥,,, and I, is a v X u iden-
tity matrix. The prior densities for the coefficient matri-
ces H,, are assumed to be a d x dp-matrix variate nor-
mal densities, Ng,ap(Q, X1, ®1,), with mean Q and preci-
sions 33,,, and ®,,,. The priors for residual precisions 3,
and the coefficient precisions ®,,, are Wishart densities [1],
Wy(as, Bx) and Wy, (as, Bs), with shape/scale parame-
ters ax/By, and ag/Bg, respectively.

All approximating Q-distributions over model parameters
are assumed to factorise. This is the mean field case and
thus, if all prior distributions are chosen to be conjugate,
the posterior distributions, Q(8), are functionally identical
to the prior distributions [6]. To avoid confusion, we de-
note the parameters of (@) with tildes, e.g. Q(X,,) =
Wy(éas,,, Bs,,). With all the prior and posterior distribu-
tions in place, we can compute the update equations using
the generic formulae in [5]. The equations for the linear
observations models are given in the appendix, as is the
free-energy formula.
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Figure 1: Directed graph of 2 chain CHMM with one chain
having a multinomial observation model (for observations
Z) and the second chain a multivariate linear model (for
observations Y"). In this particular example both lags be-
tween the two chains are symmetric and have a value of
2.

3.1 Estimation

Model Parameters: By taking the derivatives of the free
energy with respect to the distributions of the unknown pa-
rameters, we obtain a set of update formulae for the param-

eters of the distributions, which are given in the appendix.

Hidden States: The hidden variables (i.e. the state se-
quence) can be estimated using standard forward-backward
message passing [9], conditioned on the data and the expec-
tations of the model parameters under the Q-distributions.
The use of the forward-backward recursions is justified
by the fact that message passing equations are fixed point
equations of the free-energy when the Q-distributions are
assumed to be of the form given in equation (1) [14] [8]. In
the case of CHMMs, however, message passing can only
be employed after prior node clustering. With increasing
lag, this becomes exponentially expensive. Thus, for lags
greater than 1 we sample the hidden state sequence. The
process is reasonably fast since one can sample the hid-
den state space densities directly and need not accumulate
a much larger number of state space variable values to com-
pute empirically the parameters of their distributions.

State Space Dimension and Lag: Estimation is per-
formed over several state space dimensions. Given a fixed
state space dimension estimation involves iterative applica-
tion of forward-backward message passing, update of the
model parameters, and estimation of the free energies. The
free energies, obtained for each state-space dimension are
then used to evaluate the highest probability model accord-
ing to equation (2) and thus the optimal state space dimen-
sion. At present the lag estimation is simply a search within
the bounds beyond which we believe there is no interac-
tion between the chains. Again, the free energies, obtained
for each lag value are used evaluate the highest probability
model.

4 Experiments

4.1 Model Selection with Synthetic Data

We begin by investigating the free energy behaviour as
state-space dimension, linear observation model order and
state-space lag are varied. The 1024 samples of synthetic
data were drawn from a model with 2 multivariate autore-
gressive models, with coefficient matrices
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and unit covariance stochastic noise. The estimates of the
free energies for a number of settings of model order and
size of state spaces are shown in figure 2a. The posterior
model probability based on these free energies is shown in
figure 2b. The preferred combination is clear. Next, we
investigate the free energy for a dual chain CHMMs with



different lag topologies, i.e. where the edge between chain
S and chain T varies. This time, the data was generated by
drawing 1024 samples from a CHMM with additive Gaus-
sian noise and with state lags Is = 2 and I = 2. Figure 3
shows the free energy values reaching a minimum at the lag
for which the data was generated®.
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Figure 2: Free Energies and resulting Model Posterior
Probability for various settings of state space dimensions
and linear model orders for synthetic data.

4.2 Periodic Respiration

We also applied the CHMM to features extracted from a
section of Cheyne Stokes Data 2, consisting of one EEG
recording and a simultaneous respiration recording, both

For simplicity, we only showed values for which Is = Ir.
Also, although we have not described the case of a Gaussian ob-
servation model, it is clear that by setting the basis vector to be
just a scalar of value 1, collapsing the coefficient matrices to a
vector, and fixing the number of segments to just v = 1, one
recovers a simple multivariate Gaussian observation model. The
update equations can be found in the appendix

2 breathing disorder in which bursts of fast respiration are
interspersed with breathing absence.
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Figure 3: Free Energy for a 2-chain CHMM with different
symmetric lags, i.e. Is = Ir.

sampled at 128 Hz. The data was used as it has clearly
defined states and thus allows verification of the results of
the unsupervised learning algorithm. The feature, the frac-
tional spectral radius (FSR) [11], was computed from con-
secutive non-overlapping windows of two seconds length
for the EEG and respiration signals separately. Each fea-
tures thus extracted formed the observation sequence of a
CHMM chain. A Gaussian observation model was fitted
to each chain. The minimum state space dimension is 2
for each chain and thus 4 overall. This was also the di-
mension the model preferred. As for the lag, the free en-
ergy changed little over the range of lg = Ly = 1,---,3.
This suggests that the choice using windows to estimate
the features would result and state changes within these to
be merged into a single feature measure. With no prob-
abilistic treatment of this feature, conditioning on it does
not allow for uncertainty which then has to be absorbed by
the Markov model. Overall, the results are very similar to
those of a single HMM with 4-dimensional state space us-
ing state-space clustering [12], suggesting really no overall
lead or lag preference between the channels. Figure (4)
shows a data section with the corresponding Viterbi state
sequence. The data is segmented predominantly into the
following regimes: segments of arousal from sleep, wake
state with rapid respiration, and two sleep states different
only in the EEG micro-structure. Unlike any maximum
apriori [10] or maximum likelihood method [12], however,
the variational implementation results in automatic prun-
ing of states not supported by the data. Thus, we can start
the algorithm with any large number states and leave the
algorithm to converge to the result shown above.



Cheyen-Stokes Segmentation

Respiration & CS-Class

400
300

bbb b

-100

EEG & CS-Class

o
o o

Il Il
850 900 950 1000 1050
Time (sec)

Figure 4: CS-data: Respiration and EEG Signals with their
respective segmentation.

4.3 Classification with Synthetic Data

In this experiment we classify an artificial data set. The tar-
get labels were drawn form a first order Markov sequence
with 2 state values. Conditioned on the current state 12
samples were drawn from a linear model using reflection
coefficients (0.8, —0.8,0.5) and (0.9, —0.7, 0.6) with driv-
ing noise of variance 1. To compare our model to that
in [13], the labels were also corrupted and 20% of them
were replace by white noise which was uncorrelated with
the class labels. Table 1 shows the generalisation errors to-
gether with those obtained from the comparable model in
[13] using sampling for parameter estimation. The vari-
ational and sampling results are comparable and it was
pointed out in [13] that these sampling results showed a
significant improvement to those obtained by conditioning
on a priori extracted features.

4.4 Segmentation of Cognitive tasks

The idea of the brain computer interface (BCI) experiment
is that we infer the unknown cognitive state of a subject
from his brain signals which we record via surface EEG.
The data in this study were obtained with an 1SO-DAM
system using a gain of 10* and a fourth order band pass fil-
ter with pass band between 0.1 Hz and 100 Hz and sampled
with 384 Hz and 12 bit resolution. The BCI experiments
were done by several young, healthy and untrained sub-
jects, who did two task pairings: auditory-imagination and
left-right motor imagination tasks. Each task was done for
7 seconds with an experiment consisting of 10 repetitions
of alternating tasks. The recordings are taken from 3 elec-
trode sites: T4, P4 (right tempero-parietal for spatial and
auditory tasks), C4’, C4” (right motor area for left motor

imagination), and C3’, C3” (left motor area for left motor
imagination). The ground electrode is placed just lateral to
the left mastoid process.

We train the CHMM on the EEG of one subject. We used
a 7th order linear model order, a state space dimension of
2 and lag of 1 on a total of 10 repetitions the experiments®.
The results of a 10 fold validation are shown in table 1.
Since estimated labels were obtained by integrating out
the neighbouring chain’s contribution to the state transition
probability before computing the Viterbi path on the test
data. Again, the results are comparable although weaker
than if we had an outlier model included as in [13].

Table 1: Generalisation Accuracies for sampling and varia-
tional experiments. Sampling results were taken from [13]

experiment variational | Sampling
Synthetic 93.6% 87.2%
left vs. right motor 79.1% 79.5 %
auditory vs. navigation 80.0 % 78.4 %

5 Conclusions and Reflections

The most attractive features of estimating CHMMs in the
variational framework is that one avoids many of the pit-
falls of maximum likelihood methods, such as singular co-
variance matrices because no data has been allocated to
a particular state. This is neatly avoided when approxi-
mating the full posterior probability of the all model pa-
rameters. The estimation of linear observation models is
also much more robust, since parameters which are not
supported by the data are simply set to their prior values
4, We can also use some post-hoc investigation of the
coefficient covariance matrices to determine the effective
model order (by finding the knee in the matrix eigen spec-
trum). Sampling the state sequence within the variational
framework empirically proved to be adequate and gave re-
sults comparable to other methods. Furthermore, the varia-
tional algorithm clearly approaches the best possible solu-
tion as confirmed when compared with the results obtained
with MCMC sampling. However, it out-performs the sam-
pling algorithm definetly, in terms of speed - convergence
is much faster in the variational framework.

Although the free energies correspond nicely to the optimal
lag and other parameter settings, the situation in reality is
less clear cut. For the lag in particular, one often obtains
a large range of small free energy values and one is some-
what free to choose the “optimal”. Consider, for instance,

3Some sections within which the signal strength resulted in
amplifier saturation (i.e. sections of flat lines) had to be removed
beforehand. They caused the estimation of determinants to be-
come singular and thus inverses ill-defined.

4All within reason, of course, which mathematically means
reasonable matrix condition numbers.



when features which are extracted from the original time
series using overlapping sliding windows are applied to the
Markov model. The features are highly correlated and one
cannot expect a sharply peaked free energy spectrum at
a particular lag. The estimation processes then becomes
more sensitive to noise and outliers.

When comparing our results to those obtained by sampling
one thing does become obvious. That is, the effect of out-
liers or corruption of data. Some data sets used here had
short amplitude plateaus as a result amplifier saturation.
In contrast to sampling methods, such sections had to be
removed as they lead to singular matrix determinants and
thus undefined matrix inverses.
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A Appendix: Update Equations

In the following we use of the denote the probability of the
hidden state variable taking on the value m (out of M pos-
sible values ) given all the data by v¢, = P(S, = m|X).
Also, 7, = zﬁzl Ynm and T denotes the transpose oper-
ation.

The posterior density of the model coefficients, H ,, is a
d x dp matrix variate Normal density [4] with mean 2 and
precision matrices 3,,,, ®,, computed by

AT = &, (Txv,, +GonBpn?")
zNlm = dEmBEm
&, = Txx, + 0omBg,,
I‘XXm = Z 'YnanXnT
n
FXYm = Z ’YnanYnT

The posterior of the residual variances, X, is a Wishart

density with shape and scale parameters computed by

- 1
axm :E (; UYnm + dp + 2&2)

BEm :% Z’)’nm [(Yn - Qm‘Xn)(Yn - Qan)T

2

i (% = ) GomBap, (Om = )"
+%tr (dq,mff;ﬂf@;}) > '+ By

The posterior model coefficient variances, @, also follow
a Wishart density with parameters

. d
0pm = = + 0o

5 Ym=1,---M
- 1 - _ L
Bcpm = i(Qm - Q)TagmBzrln(Qm - Q)
1 - -
+§tr(&gmB§}nZ;})<I>;ll + Bg

B Appendix: Free Energy
The general variational Free Energy is given as the integral

Fe / 4(S)¢(6) logp(Y, 518) dS d6 +

~ v

InternarEnergy

/ 4(8) log (S) dS + / 4(6) log % 0

KL—Di\Zargence

~

Negativg Entropy

The negative entropy term in the case of coupled hidden
Markov models is

ECHMM = E(SnZI) + E(Tnzl)
N
+ Z E(STL|SH717TTL715) + E(Tn|Tn717 SnflT)
n=2

The internal Energy is given as
7= -N%10g02m) + 3 7m (‘I’(ﬁm) C( )
2 m m=1
+2 i‘l’ (1(2(12771 +1- l)) - E10g|é>:m|>
2 P 2 2
= %tr (Boa, (Vo = n X)) (Vo = 0 X))
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- n



The KL-divergence D(g(8)||p(@)) for the variational mod-
els is given as

S (DN H ) I H [ Zs B0))) 53 @
+ 3 D (a(Em) IP(Em)) ©)
+ 2 0m Dw(¢(®m)[[p(®m)) (6)

+Dp(q(As,7)llp(As,T)) (7

where the only unusual term is the divergence (4), which is
given by

1 ~ ~
5 { (dp) 10g S| + dlog || — *p

— (dp) (Zm ( (25, + 1 — l)) —1og|1§zm|>
—d (Zw ( (2a0m + 1 — 1)) - 1og|f?<1>m|>

Bmém) (aszz ol 1)
B
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Divergences (5) and (6) are standard KL divergences be-
tween Wishart densities and divergence (7) are Divergences
between Dirichlet densities, all of which can be found in
the literature.

C Appendix: Updates for Gaussian
Observation Models

For Gaussian observation models we use for the means
a conjugate Normal prior with mean and precision g,
and C,,,o, and for the precisions a conjugate Wishart prior
with shape and scale parameters «,,, and B, respectively.
Thus, the posterior for the means is a Normal distributions
q(tt,,) ~ N (ft,,0, Cmo), With its parameters computed by

~ —1 ~—1
I |
('ymamB + CmO)

ﬁmO =
é’mO =
where g = Zt 1 YemYy- The posterior of the precisions is

a Wishart density, ¢(C |ém, Bm) ~ W(@m, Bm), with
its parameters computed by

1

Om = 5’_ym+a Ym=1,---M

: Yeom - - T -1

B, = Z ? — Bmo) (Y — Bmo)" + %Cmo +B
t
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