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Abstract

Density models are a popular tool for build-
ing classifiers. When using density models to
build a classifier, one typically learns a sepa-
rate density model for each class of interest.
These density models are then combined to
make a classifier through the use of Bayes’
rule utilizing the prior distribution over the
classes. In this paper, we provide a discrim-
inative method for choosing among alterna-
tive density models for each class to improve
classification accuracy.

1 INTRODUCTION

Methods for constructing models for classification are
often described as either discriminative methods or
non-discriminative methods. A discriminative method
constructs a model by using both positive and neg-
ative examples for each class while constructing the
classifier. While discriminative methods often perform
better than non-discriminative methods, the construc-
tion of discriminative models can be problematic in
situations in which the number of classes is very large
and when some of the classes have small counts. In
such situations, one turns to non-discriminative model
construction techniques. A non-discriminative method
constructs a separate model for each class using only
positive examples for that class.

The most common non-discriminative technique for
classifier construction is the density model approach.
In this approach, one builds a separate density model
for each class of interest. These density models are
then combined to make a classifier through the use
of Bayes’ rule by combining the density models with
the prior distribution over the classes. Typically, the
density models for a class is chosen on the basis of its
ability to represent the density of the features for that
class. Thus, the choice for each class is independent of

the choice made for other classes despite the fact that
the final use is a classification task in which the alter-
native classes are compared. In this paper, we describe
a method for choosing among a set of alternative den-
sity models for the classes. This method can be used
to improve the resulting classifier in a variety of ways.
For instance, it can be used to improve overall classifi-
cation accuracy or it can be used to reduce the size of
the resulting classifier while maintaining classification
accuracy.

In our approach, we assume that we are given a data
set and a set of alternative density models for each
class, and we choose a single model for each class,
what we term a configuration. The configuration is
chosen on the basis of the accuracy of a density model
classifier constructed from the models in the configura-
tion for the data set and the cost associated with these
models. Clearly, the number of configurations grows
quickly and, as the number of classes grows large, it
becomes infeasible even to enumerate all of the config-
urations. We show that the problem of identifying the
configuration of models that has the best accuracy can
be solved using standard propagation algorithms in a
(non-probabilistic) graphical model. The structure of
the graphical model is determined by the types of mis-
takes that are made on the data set. If the resulting
model is sparse then the selection can be computed
effectively. In many cases, the resulting model is not
sparse and we need to approximate inference to iden-
tify good configurations of models.

In Section 2, we describe the density model selec-
tion problem. In Section 3, we describe the graphical
model approach to solving the problem. We also de-
scribe a simple approximation method for situations
in which the method is computationally infeasible. In
Section 4, we provide some preliminary experimental
evidence using mixtures of Gaussian models contain-
ing different numbers of components. In these exper-
iments, our goal is to identify the number of mixture
components needed for each class to achieve optimal



classification accuracy. We compare our model selec-
tion technique with a standard (non-discriminative)
approach to model selection for density models. In
Section 5, we discuss future work.

2 DENSITY MODEL SELECTION

In this section, we describe the problem of density
model selection for classification. The variables in this
problem are the class variable C' = {c1,...,c;}, where
c; is one of the possible classes of interest, and a set
of variables X = {Xy,...,Xx} that are to be used
in making the class determination. We are given a
training set D = y',...,y" of L cases that have the
values for both C' and X. For convenience we use D;
(1 < j < J) to denote the subsets of D for which the
correct class is ¢;. We denote the [** case of the data
set for class c; by xé» where the value for C' is given by
the subscript j.

We assume that we are given a set of alternative mod-
els for each class. We denote the i*" model for class
cj by M ; To simplify the notation, we assume that
each class has the same number of alternative models
I. The alternative models are assumed to be given in
this paper and could be learned using the training set
above or some separate training set.

We use p(cj) to denote the prior on the classes and
p(x|M}) to denote the likelihood of the values X = x
given the i** model for the j** class. We denote a
configuration of models by s = (s1,...,sy) where s; €
{1,..., I} indexes the model selected for class j.

We evaluate the performance for a configuration of
models by the overall classification accuracy obtained
for the associated test data sets Dq,...,D;. We let
n; be the number of cases in data set D;. The total
number of errors and overall classification accuracy are
computed as follows:
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where x(b) is one if a = b and zero otherwise. Note,
when computing the total number of errors, we are
selecting the model with the highest posterior prob-
ability through the simple application of Bayes rule;
pOM*[x) oc plx|M;* ().

The goal of discriminative density model selection for
classification is to identify the configuration s of mod-
els that minimizes

Errors(s, D) + aCost(s) (3)

where « is given and Cost(s) is some cost associated
with a particular configuration. In this paper, we will
choose Cost(s) = 3 Size(M;’) where the Size(M)
is the number of parameters in the i** model for class
J.

3 ALGORITHM

We use the junction tree algorithm to identify the con-
figuration that minimizes Equation 3. We construct a
junction tree in two phases. In the first phase, we
construct an error graph. The error graph captures
the confusability between classes. Each class is rep-
resented by a vertex in the graph. The lack of an
edge between the vertices for class ¢; and ¢ indicates
that there is no configuration in which we can mis-
takenly classify a data point belonging to one of the
classes as the other class. In the second phase, we be-
gin by triangulating the error graph. The (maximal)
cliques of the triangulated error graph form the junc-
tion tree. With each clique in the junction tree we
associate a potential which has values indexed by the
model configurations for the classes that appear in the
clique. We set the values of the potentials to represent
the costs (e.g., model sizes) and errors associated with
classification mistakes. We use the resulting junction
tree and potentials to find the optimal configuration
of models by applying the min-sum algorithm (e.g.,
Aji and McEliece, 2000). In situations where the er-
ror graph is highly connected the computations will
be intractable and one must either use approximate
propagation techniques or prune the error graph.

Construction of error graph

In this phase of the algorithm we construct a repre-
sentation for the confusable classes. We do this by the
Construct-Error-Graph procedure. In this procedure,
for each case, we rank alternative models on the basis
of the likelihood of the case. This implicitly assumes
that the prior for the classes is uniform. The proce-
dure can be adapted to the case in which one does not
choose to assume a uniform prior on the classes.

Construct-Error-Graph(DataSet D)

1) Let G be an empty graph with vertices
corresponding to classes.

2) For each case in data set D



3) Create a set S of all classes
that have models that are ranked
above any model for the correct class.

4) Add an undirected edge between each
pair of classes in S and an undirected
edge between the correct class and
each class in S.

5) Return G

The complexity of the min-sum procedure is related
to the connectivity of the error graph for the data set.
If one includes models that are extremely poor models
for a class then the size of the cliques will be very large.
In an effort to reduce the complexity of the procedure
one can modify the algorithm to count the number of
mistakes between a pair of classes and prune all of the
edges between classes for which there are fewer error
than some threshold.

Creating the potentials

We represent the costs and error information in a junc-
tion tree. We construct the junction tree from the
error graph by triangulating the (possibly pruned) er-
ror graph. Note that it is NP-hard to identify the
triangulation that minimizes the size of the maximal
cliques of the resulting graph (Arnborg, Corneil, and
Proskurowski 1987). The cliques of the triangulated
error graph provide us with the junction tree. We as-
sociate a potential with each of the (maximal) cliques
in the junction tree. The potential contains a value
for each of the possible configurations of the variables
in the clique with which it is associated. Recall that
for our application, the variables are the classes and
the possible values for the variables index the alterna-
tive models. We assign values to the potentials of the
junction tree with the Fill-Potentials procedure.

Fill-Potentials(DataSet D, Join-Tree T)

1) For each class J find the smallest
clique in T that contains J. For
each configuration of the potential
add alpha times the size of the model
for class J that is indexed by that
configuration.

2) For each case L in the data set
3) Identify the correct class X for L
4) For each model I from class X

5) Get the list of models from the other
classes that have better likelihoods

for case L.

5) Let Y be the set of classes
represented in this list.

6) Find a clique CL that contains both
X and Y (Note that there might not be
one if we have pruned; in that case
find the clique that contains the most
variables in X union Y and remove the
variables from Y not in clique CL.)

7) Let Z be the set of model
configurations for Y in which one
of the models in Y is better than
model I for class X.

8) Add one to each configuration of the
potential for CL that has the I’th
model for class X and is consistent
with a configuration in Z.

Min-Sum Propagation

After the potentials have been created and filled we
can apply the Min-Sum propagation algorithm (e.g.,
Aji and McEliece, 2000). If one wants to identify the
best configuration in terms of accuracy one sets a = 0.
If one wants to identify a configuration that is smaller
but maintains the highest accuracy possible one can
adjust a to be larger than 0. As one increases the
size of « the size of the resulting configurations will
decrease.

Example

For this example, we assume that there are four classes
and that we are given two density models and a data
set for each class. We denote the density models for the
classes by My = {M}, M?}, My = {M3, M2}, M3 =
{M}, M3}, and My = {M}, M}} and we denote the
associated training data sets for the classes by D =
{XLX%}v D, = {X%,X%}, Ds = {Xé,X%}, and Dy =
{xi,xi}.

Each column of Table 1 contains a case and a list of
models ranked according to likelihood for that case.
For instance, for data case x] the model with highest
likelihood is model M? followed by models M3 and
Mj{. Hence, selecting a model configuration involving
M} and M} would result in a wrong classification for
case x}. Note that no models ranked below the low-
est ranked correct model are included in the list; these
models have no effect on the model configuration se-
lection method.

When constructing the error graph, case x3 leads the



Case x; | X7 X5 | X5 Xz | X3 x4 | x3
Model ME | MP || MZ | M3 || M | M7 || M7 | M?
ranking || M3 | M3 | M3 | M3 || M | M2 || M} | M}
M| ME | M2 M | M} M}

My M

M} M

Table 1: Models ranked according to likelihood for each individual case in our example.

| [ M5 [ M ]

MI[Mp 2 [ 1 L [ My [ MF |
MZ[ T | O MIT 2 | 1

MZMIT 2 | 3 MZ 0 | 1
MZ|[ 1 | 2

Table 2: Potential tables after the Fill-Potentials pro-
cedure.

algorithm to add all edges between model classes M7,
Ms, and M3. Adding edges to the error graph for all
cases in the example results in a graphical structure
as shown in Figure 1. This graph is triangulated.

Figure 1: Error graph for the example.

We begin by initializing the value for all potentials to
zero for every configuration. For this example, we set
a = 0, that is, we effectively have no difference in the
costs for alternative configurations. Next we consider
each case and increment the potentials appropriately.
When considering case x3, we add a count of one to
the configuration (M4, M}) in the potential table for
M3 and My. For a slightly more complicated exam-
ple, when considering case x3, we add a count of one
to the configurations (M}, M3, M3), (Mi, My, M%),
(M2, M}, M3), and (M2, Mg, M2) in the potential ta-
ble for My, M5, and Ms. Adding counts for all the
cases results in potential tables as shown in Table 2.

Table 3 shows the consistent marginal potential tables
as obtained after min-sum propagation. From these
potential tables it can be seen that the configuration
(M{, M2, M2, M}) with a total of 0+0—min{0,1} = 0
errors is the best configuration for the classification
task.

| [ M5 [ M ]

MI[M 3 1 L [ My [ M7
MZ| 2 | O MIT 3 ] 2

MZ|MI| 3 | 3 MZ 0 | 1
MZI| 2 | 2

Table 3: Consistent marginal potential tables after
min-sum propagation.

Data set | #Train | #Test | #Variables
M54 928 618 33
M56 1388 925 33
M64 986 656 33
M78 3720 2482 33
N86 5160 3440 33
N99 6000 4000 33
N146 2843 1894 33
N158 1062 708 33
Table 4: Statistics for sub-phonetic data sets used in

our experiments.

4 Experiments

In this section, we describe preliminary experiments
with our approach for discriminative model selection
for density model classification.

4.1 Data sets

We evaluate our method on real-world speech data,
which has been partitioned into data sets associated
with individual sub-phonetic events observed for con-
tinuous speech. We have selected eight highly con-
fusable sub-phonetic events for the classification task.
Each case in a data set represent an observation on
33 continuous variables, which are 12 mel-scale fre-
quency cepstrum coefficients (MFCCs), log-energy and
their first and some second order dynamics (Huang,
Acero, Alleva, Hwang, Jiang, and Mahajan 1995). The
data set for each individual sub-phonetic event is par-
titioned by a 60/40 split into training and test data.
Characteristics for the data sets are summarized in
Table 4.



4.2 Models

We investigate finite mixture models in which each
component model encodes the mutual independence of
the variables X = (X1, ..., Xny)—that is, mixtures of
multivariate Gaussians with diagonal covariance ma-
trices.

For each data set we learn twenty different mixture
models with one through twenty components. The in-
dividual models are learned by applying the EM algo-
rithm to perform MAP estimation using diffuse priors
similar to those described in Thiesson, Meek, Chick-
ering, and Heckerman (1999). We use the discrimi-
native model selection method, described in this pa-
per, to select the configuration of models which max-
imizes the overall classification accuracy on the train-
ing data. For comparison, we consider a trivial method
that selects the configuration containing only one com-
ponent models and another trivial method that selects
the configuration containing only twenty component
models. We also consider the method that selects the
configuration where the model for a class is selected to
maximize the Cheeseman-Stutz score (Cheeseman and
Stutz, 1995), as suggested in Thiesson et al. (1999).

4.3 Results

Table 5 shows the overall classification accuracy for the
configurations obtained by our selection methods. The
highest accuracy is obtained for the configuration se-
lected by the discriminative method suggested in this
paper. In addition, with the exception of the method
of choosing the smallest configuration, all of the meth-
ods produce configurations that yield good classifiers.

Table 6 shows the number of mixture components
for the selected configurations. The Cheeseman-Stutz
and the discriminative model selection methods choose
configurations that are significantly smaller than the
most complex configuration. It is interesting to note
that the discriminative selection improves the classifi-
cation accuracy while reducing the size of the result-
ing classifier even when not using a cost term to pe-
nalize model size (i.e., @ = 0). By comparison, the
Cheeseman-Stutz method yields an even smaller con-
figuration but one that has slightly worse accuracy.

For large scale classification tasks where many thou-
sand models are used for classification, as is the case
for the speech recognition system described in Huang
et al. (1995), storage or memory constraints may force
us to choose a model configuration that is smaller than
the optimal configuration. By adding a cost term to
the model configuration selection criterion, such as
Cost(s) = >, (Size(M;j), we can reduce the size of
the selected configuration while maintaining accuracy.

Selection Method Accuracy
One component models 0.585
Twenty component models 0.650
Cheeseman-Stutz selection 0.643
Discriminative model selection 0.653

Table 5: Classification accuracies for the smallest,
largest, Cheeseman-Stutz selected, and demonstra-
tively selected configurations.

Data set | One | Twenty | CS | DMS
Mb4 1 20 3 5
M56 1 20 2 5
M64 1 20 3 2
M78 1 20 6 10
N&6 1 20 8 9
N99 1 20 10 12

N146 1 20 7 8
N158 1 20 3 5
Total 8 160 42 56

Table 6: Number of mixture components in each model
for the smallest (One), largest (Twenty), Cheeseman-
Stutz selected (CS), and discriminatively selected
model configuration (DMS).

Finally it should be noted that we have seen situations
where the most complex model configuration signifi-
cantly degrade performance, so even if the size is not
a constraint, selecting the most complex model config-
uration is not, in general, a good choice.

5 DISCUSSION

In this paper, we have described a method for choos-
ing among a set of density models for a set of classes
of interest. Our method allows one to choose a set of
density models that can achieve good accuracy while
allowing one to limit the cost (e.g., size) of the result-
ing set of models. We plan on applying this methods
to alternative data sets and alternative classes of den-
sity models. Alternative approximations such as loopy
min-sum propagation is a natural alternative to the ap-
proach of pruning the error-graph. In addition, more
work is needed to understanding how to reuse com-
putations for multiple runs when adjusting the tuning
parameter .
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