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Abstract

This paper explores a new generic method for
matching, when there are conditional dependen-
cies between the matches. It allows different
sorts of features to be matched in the same global
optimization framework. The method is based
on a binary Markov random field model which is
defined on the product space of matches, and is
shown to be equivalent to 0-1 quadratic program-
ming, and the MAXCUT graph problem. In
general these problem are

���
complete. How-

ever our approach takes inspiration from the cele-
brated result of Goemans and Williamson (1995)
that finds a polynomial time 0.879 approximation
to several

���
complete, using semidefinite pro-

gramming. The method is demonstrated for the
problem of curve matching.

1 Introduction

Markov random fields [1, 4] have proven to be a very pow-
erful tool in a wide class of image restoration and match-
ing problems and yet due to the amount of computation in-
volved in their estimation only the simplest types of models
are considered, typically the Potts model in which there is a
penalty if two sites have a different label. Markov random
fields have been used extensively for pixel based match-
ing, an excellent review of which may be found in [11], but
more rarely for feature based matching. Typically feature
based matching schemes follow a greedy approach [12] or
a relaxation approach (a summary of which can be found
in [5]), which do not provide a global optimum. Dy-
namic programming [10] has been suggested for finding
the global optimum of the matching edges [9] problem, but
this requires the imposition of extra constraints, which are
not valid for generic scenes. In the case of pixel match-
ing typically the model has a first order smoothing term
between adjacent pixels, that favours pixels having similar
disparities (and hence has an inherent bias towards constant

disparity regions). However it is difficult to impose unique-
ness such that each pixel has only one match without re-
sorting to some sort of ordering constraint, which does not
hold for all images and can only be imposed by considering
scan lines independently. In order to address these issues
a formulation of the Markov random field is made on the
feasible product space defined below. This formulation has
several advantages. Firstly it becomes easy to constrain
the matching to be unique. Second is to go beyond pix-
els and use higher level features such as points, curves and
surfaces, the matching of all of which can be solved simul-
taneously in the common framework set forward. Third,
pairwise constraints may be applied to the matches of the
higher level features: e.g. when two curve matches are
defined, their 3D structure can be readily recovered, with
knowledge of the 3D structure, coplanarity etc can be es-
tablished. Fourth, occlusion, segmentation, multiple views
can all be readily encoded in the same global optimization.

Section 2 gives some background on the use of Markov
random fields for matching, and then describes the Markov
random field model used in this paper. Section 3 describes
a novel method for estimating a Markov random field using
semidefinite programming. Having laid out the general the-
ory a specific example is considered, a Bayesian approach
to general curve fitting is formulated between two images
in Section 4; results for which are given in Section 5.

2 Product Space Formulation of the
Markov Random Field

Within this section a brief review of Markov random field
methods for image matching is made. Some problems with
the traditional approach are highlighted and then the prod-
uct space formulation is made.

2.1 Traditional Markov Random Fields for matching.

Markov random field models provide a powerful frame-
work for specifying nonlinear spatial interactions between
features. Typically they are specified on a regular lattice,



however this is not a necessary condition [4]. In this paper
we define a general undirected graph/lattice ���������
	��
with arbitrary connectivity, such that � is the set of vertices
and 	 the set of edges. If 
���� is a lattice point then

� ��
��
is defined to be the neighbourhood of 
 . Let � be a ran-
dom object, with state space � , defined on the lattice �
such that the value at any site 
 is ��� . Then � obeys a
Markov random field model if��� ��������� �"!#� ��� and��� ��� ��$ �&%�
'�(� �(� ��� � $ � ��� � �)�*�"!#
+���-,
A clique is a set of points, . , which are all neighbours
of each other i.e. !/
0�1
�2��3.4��
��65 
728� � ��
�� . The
Hammersly-Clifford theorem allows the likelihood for the
Markov random field to be written��� �����(�:9<;>=?&@�ACB'D EF�GIHJLKMJ

all N J �O� �QP 
+��.>�
RS (1)

where N J �O� �6P 
T�U.V� is the potential function, the nor-
malizing constant 9 ? is the partition function, WX�����Y�Z J[KMJ

all N J �O��� P 
Y��.>�]\ constant is the negpotential or
energy function, . all is the set of all possible cliques.

Suppose that a set of data ^ are observed from which � is
to be estimated, then the maximum a posteriori (MAP) so-
lution is given by _a` B � ��� �O� $ ^8�(b ��� �c^ $ �d� ��� �O��� ,
or equivalently _Xegf �ih�� � G8jlknm � �(� ��^ $ ���)� Gjlknm � �(� �O���)� . Note Wa�O���o� G8jlknm � �(� �O���
� plus a con-
stant, thus assuming only pairwise dependencies the �
that minimizes

h � � G EF jlknm � ��� ��^ $ ���
�p\ HJ[KMJ
all N J �O� �oP 
Y��.V� RS

(2)
will give the MAP estimate of the MRF. Assuming that theq
th element of ^ can be written ^8r , and that the likelihoods�(� ��^8r $ ���*�1! q are conditionally independent, then

h � � G3EF rgsptH
rgs =

jlknm � �(� ��^�r $ ��ru�)�p\ rlsVtH
rgs =

v sptHv s = N r v �O��rw�
� v �1RS
(3)

Many matching algorithms use the Markov random field
as a prior on the disparities of the features across the im-
age [11]. That is the lattice is defined on the features in
the first image and the set of variables � are the dispari-
ties of each feature The disadvantage of this approach is
that it is difficult to impose certain perceptual constraints
on the matching such as symmetry. This disadvantage can
be overcome by (a) the use of high order features, together
with (b) the reformulation of the Markov random field so
that the lattice points now no longer correspond to features
but to feature matches, which is explained next.

2.2 A new class of Markov Random Fields

As has been shown a traditional Markov random field for-
mulation of the correspondence problem cannot easily en-
force uniqueness of the matches, or if it does then it does
so by enforcing some other constraint such as the order-
ing constraint. Within this section a new class of Markov
random fields is defined based on the product space of
matches.

Suppose we are given two sets of items we wish to matchx = � y{z = ,|,|,wz t#} , of size ~ ,
x�� � y�� = ,�,|,)�/� } , of

size � , the elements of this set could be pixels in cor-
responding images or features such as corners, lines, re-
gions, etc. or any combination of these. Consider the
Cartesian product of these two sets � � x = @ x��

, i.e.� �&y7��z = � = �*�{��z � � = �*��,|,�,|���cz�rc� v �C�|,�,|,|�{��z�t'� � } � , here��z�rc� v � means that z�r matches � v . Let � be a binary in-
dicator vector such that the

q \�~��a�g� G�� � th element of� , � rl�Vt��C� v ;>=
� , is 1 if the
q \�~X���l� G�� � th element of �

corresponds to a match, i.e. z�r matches � v , 0 otherwise. If� rl�Vt��C� v ;>=
� � �
the putative match is said to be active. In

most cases an element of
x = can match at most one element

of
x��

and vice versa, leading to the constraints:rlsVtH
rls = � rl�Vt��C� v ;V=1� ����� � !�� and

v s �Hv s = � rl�Vt��C� v ;V=1� ����� � ! q
(4)

respectively. There are ~ of the first constraint, one for
each element of

x = , and � of the second, one for each ele-
ment of

x �
, Now a cost vector � for each match is defined

such that the cost of a given match � rg�pt��C� v ;>=
� � �
is� rl�Vt��C� v ;V=1� . It can be seen that the total cost of all active

assignments can then be calculated as h ML ���6�Y���6�4� .
If the likelihood of the matches can be deduced then as-
signing the costs � to be the negative log likelihoods of the
corresponding match and minimizing h ML will lead to a
maximum likelihood solution for the matching. This can
be solved for by Kuhn’s Hungarian method in polynomial
time [10].

The problem becomes more interesting if there is some in-
teraction between the matches such that the cost of a par-
ticular matching depends upon its neighbouring matches.
Within this paper we limit the discourse to pairwise depen-
dencies between matches. An additional cost is defined of�a�L�T� � if the two matches indicated by � � � �

and� � � �
are active. Hence it can be seen that the optimal

matching minimizes the following energy function

h MAP �c�6�(�U� � ��\ � s � tH� s =
� s � tH� s = � � � � �Y�{� � (5)

where
�Y�L� ��� , if � �

being active has no effect on � �
,

and
�X�L� �U� �"!#� 1.

1At this point it is possible to dispense with   and set ¡<¢|¢<£



To allow for the possibility that an element of
x = or

x��
might not be matched to anything we need to introduce an-
other cost: define � such that the

q
th element, � r , is the

cost of z r being unmatched, i.e.
Z v s �v s = � rl�Vt��C� v ;V=1� � � ,

and
�

such that its � th element,
� v , is the cost of � v being

unmatched. Thus the cost to be optimized becomes� MAP �����	�
����
�� �������H
����� �������

H
����� � � � ��� ��� �  �!�

H
 ��� "  "�# � $ �!�

H
$ ��� % $ % #$ (6)

where �'&r � � &v are indicator vectors such that �(&r � �
if z r

has no match, and
� &v � �

if � v has no match, 0 other-
wise, the corresponding vectors of indicator variables are�>� � . Note this is still a Markov random field, which will
be demonstrated below, but with a variable penalty depend-
ing on the number of elements of

x = and
x �

that are un-
matched. In effect the Markov random field acts like a ro-
bust estimator and throws out outliers (they become inac-
tive), if �)&r � �

then z�r may well be an outlier or contami-
nation of some sort. Next it is shown how this cost func-
tion can be optimized using semidefinite programming.

3 Semi Definite Programming

The general quadratic programming problem can be writ-
ten_a` B � � h �U� � � \ �

* � �,+ � subject to -/.<�*�o� �10
subject to, -�� .<�*�o� �20

, which can be seen has a
very similar form to (6). In this case � is restricted to
binary values. There are several approaches to render-
ing (6) into a form suitable for quadratic programming.
The first was to consider optimizing over an augmented
state space formed by concatenating � , � & , � & subject
to the constraints

Z rgsVtrgs = � rl�Vt��C� v ;V=1� \ � &v � � �1!'��� andZ v s �v s = � rl�Vt��C� v ;V=1� \3�'&r � � �1! q the second involves a
smaller state space and fewer constraints, and hence a more
computationally efficient optimization, but with more local
minima. First note

� &v � �<G Z rgsptrgs = � rl�Vt��C� v ;V=1� �"!'��� and�)&r � ��G Z v s �v s = � rl�Vt��C� v ;V=1� �"! q substituting these expres-
sions into (6) and simplifying leads toh MAP ���6�(��� � �!4 \�� � � � (7)

where
�

is a matrix with the �(5 th element being
�Y�L�

, and� 4 is a vector such that � 4rg�pt��C� v ;>=
� �U� rg�Vt �*� v ;>=
� G � v G � r .
By comparison with (3) it can be seen that this is a Markov
random field. To ensure that each element of

x = and
x��

is uniquely matched the pairwise cost for for such matches
is set to infinity. Consider two potential matches � � � �

,��� q \�~+� �g� G � � , such that �cz�rc� v � is active, and � � � �687�9 leaving (5) unchanged, however we keep   and set ¡ ¢�¢�£;:
for clarity to distinguish the ‘likelihood’ and ‘prior’ terms. Later¡ ¢�¢ will be set to the negative log prior for a match < ¢ .

�
, 5Q� q 2|\8~<���g� 2 G � � , such that ��z r 4 � v 4 � is active; then the

two conditions given next can rapidly determine if
q � q 2

or �o��� 2 , thus

!#����5 if

=
mod �����)~p� � mod �>5/�)~p�
floor � �t � � floor � �t �2? then

� �{� �A@U,
Note that not all possible matches need to be considered: if�n2� \ �a�L� � � then the putative match can be discarded,
since setting � � � � minimizes (7)2. This can often radi-
cally reduce the product space to be considered, the result-
ing set of matches is termed the feasible product space.

Having formulated the problem as one of 0-1 quadratic pro-
gramming, an algorithm is required to conduct the min-
imization. Unfortunately the general 0-1 quadratic pro-
gramming problem is

���
hard. However there has been

a large body of work over the past decade in designing re-
laxation methods to solve such problems. The idea being
to add or remove conditions to or from the original prob-
lem in such a way that the solution space is enlarged. The
hope being that the new solution space will be more smooth
allowing for a polynomial time solution.

Within this paper we try using a semidefinite program, be-
ing a generalization of linear programming, which can be
solved in polynomial time. The attention of algorithm de-
signers turned to semidefinite programs only recently due
to the pioneering work of Goemans and Williamson [6].
They demonstrated efficient approximations for several���

-hard problems based on semidefinite programming.
One of these problems is MAXCUT, where the vertices of
a given graph are partitioned into two sets such that the sum
of the edge weights between the parts is maximized. Goe-
mans and Williamson describe a randomized polynomial
time algorithm that computes a cut which is expected to be
0.878 times the size of the maximum cut. Next the rela-
tion between 0-1 programming and MAXCUT is demon-
strated.

Temporarily overloading notation. Let � ��� N � h � denote
an undirected graph on ~ vertices. Let

q � be the edge from
the

q
th to the � th vertex, with weight �]r v . For BDC Nthe cut EX�FB�� is the set of edges

q �3G h with one end-
point in B and the other in N %HB . The MAXCUT prob-
lem is to find the cut maximizing the sum of edge weights
i.e. _a` B)I)J�K Z r v K�L � I � � r v , An algebraic formulation can
be obtained by introducing cut vectors M �6y G<� � � } t withM r � �

if
q �NB and M r � G<�

if
q � N %OB . The maximum

cut can be obtained as_a` BM K�P ;V=�Q =SR �
�
* H rUT v ��r v �

��G MprFM v �*, (8)

Let � be a matrix with
q � th element � r v , then with some

2This is because <WV�¡
<YXZ:�[]\�<D^`_ a)[�bdc , as all elements
of ¡ will be shown to be positive.



manipulations it can be shown that�
* H r>T v � r v �

�]G M r M v �(� �
� M � � diag �O���'� G ��� M (9)

where � is the vector of all ones, and ��� � Diag �����7� G��� is called the Laplacian matrix of the graph. Thus
the MAXCUT problem becomes _a` B M K�P ;>=�Q =SR � M � �,M .

A simple change of variable �I� =� �UM�\�� this can be
seen to be the equivalent of the 0-1 quadratic program-
ming problem. Next a relaxation of the MAXCUT prob-
lem is described that will be used for optimization. ForM � y G<� � � } t the rank one matrix � � M�M � is positive
semidefinite, and its diagonal entries are equal to one. The
relaxation is to solve for the matrix � relaxing the rank one
constraint, i.e._X` B ����� 	�� �
���

such that diag �
���(���#����� ����	>- r ���������o� 0 r
where 	��]�
��� � Z r Z v�� r v�� r v is the inner product of the
two matrices, and ����� means � is positive semi defi-
nite; 	>-�r)���������o� 0 r are the constraints on the elements
of � . There are several algorithms in the literature to do
this, but one of the faster algorithms, that can handle con-
straints, is the spectral bundle (SB) method of Helmberg
and Rendl [7]. The code for which is publically available at
http://www.mathematik.uni-kl.de/˜helmberg/,
MATLAB code to formulate the matching problem is
available on request.

4 Edge Image Matching

Next we move from the general to the specific, the first case
to be considered is that of edge matching. By considering
the details of this case the advantage of the formulation will
become apparent, that in dealing with matches rather than
disparities or some such quantity, new soft or hard con-
straints on coplanarity, symmetry and parallelism etc can
be taken into account, in the matching process. First feature
extraction and matching is described. There are two types
of features that are used in this paper: corners (points) and
edges (curves). Corners are extracted using the Harris cor-
ner detector and then matched using cross-correlation, from
this the fundamental matrix is estimated and the matches
refined using the type of robust methods.

Once the epipolar geometry is recovered, Canny edges are
extracted [3] in each image. Then the recovered epipo-
lar geometry is used to match the Canny edges based
on the curve matching algorithm of Schmid and Zisser-
man [12]. This algorithm scores two curves that are pu-
tatively matched by cross-correlation of image intensities.
The point-to-point correspondence between the curves is
determined by the intersection of epipolar lines with the
curves. For each edge all the edges within a search region

in the next image are scored as candidate matches. In the
Schmid paper the score is simply the sum of the correla-
tion scores of patches about points in correspondence along
the curve, divided by the length of the curve, after transfer
under a local homography determined by osculating plane
of the curve. The best correlating curve is taken as being
matched if its score lies above a threshold. Here we eschew
the use of this error measure as being computationally ex-
pensive and not robust to image sampling effects.

4.1 Derivation of Edge Matching Likelihood, �
In [2] a scoring function �7�������0���02u���'2g� is defined which
is used as the negative log likelihood of two pixels ��������� ,���#2u���'2l� matching. Having defined a pixel wise error metric,
the error for a given matching for a pair of curves is defined.
Adopting the notation of the previous sections, let

x = be the
set of edges in the first image, such that z r �! r , similarlyx �

the set in the second image with � v �" 4 v , a match of
the two curves � � � �

corresponding to ��z r � v � defines
a three dimensional curve in space � � under the epipolar
geometry. The epipolar geometry defines a point to point
correspondence on the two curves and hence 3D3. Let # �
parametrize the curve � � and define the projection func-
tions from � � to image one by $ � ��# � �(� �
�p���'� , and image
two by $ � ��# � ��� ���#2u���'2l� . Integrating over the length of � �
yields the matching score then the match score is defined to
be � � � H

% � �7��$ � ��# � �*��$ 2� ��# � �
�p\
H

unmatched edgels

��&n,
(10)

Notice that � � is currently undefined when a point on one
curve has no correspondence on another, each such point is
assigned a fixed score � & , more simply � � is a sum of costs
for each pixel matched plus a constant times the sum of all
pixels on both curves. Let the length of an edge  be $  $ , then
by definition the costs for not matching are �#r4�'��& @ $  r $ ,� r��(��& @ $  4 v $ , thus ��2� �:� � G ��&�� $  r $ \ $  4 v $ � . This has a
probabilistic interpretation as follows, let the likelihood of
a match be set to

�(� �c^ $ �p���0���#2u���'2 �(b)� ;+* �-, Q .dQ , 48Q .�4 � , where^ is the data we are given (such as the images, results of
the canny edge detector etc). Let the likelihood for Canny
giving a false detection of an edgel be � ;/*10 which is the
probability that a detected edgel has no match. The com-
bined likelihood of all the matches in the images is�(� �c^ $ � ��� 2, Q .dQ , 4 Q . 4 K�L

3 � ;/* �-, Q .dQ , 4 Q .�4g� � ; t 0 � *1054 (11)

where �p���0���/2c���'2��NE is the set of all edgels, and ~�& is the
total number of unmatched edges. Minimizing (7) over � ,

3Sometimes a curve might bend back on itself so that it is in-
tersected twice by an epipolar line. In this case the match can
be determined by continuity such that neighbours on each curve
match to neighbours on the next. Alternatively edges can be bro-
ken into two if they lie tangential to an epipolar line.



with the uniqueness constraints on matching, maximizes
(11).

4.2 Derivation of the Prior Terms
�

Having addressed the formulation of the likelihood term,� , attention is next focussed on the prior term,
�

. First the
disparity function is defined, �/�
�p���'� to be the disparity at
pixel ��������� . The images are not rectified 4, so disparity for
a match � ���
�p���#� � �����p2�� ���/2u���72c� � � is defined to be$ �4�����	�p2 $ where $�
 � 
 $ is the image distance between two
homogeneous coordinates, and ��� is the homography of
the plane at infinity. There are two types of prior, the more
familiar is the prior on

�a�L�
, a smoothness term on dis-

parities, the more exotic the prior on
� �L� �)��
� 5 which

can include such things as parallelism, symmetry, occlu-
sion, coplanarity, change of ordering, being on a common
parametrized surface etc. Below they are set out in general
form, then in Section 5 specific forms of the distribution
will be tested.

Prior on
�a�{�

Smoothness: The most traditional of all
priors is a first order smoothness term on the disparities5

i.e. for a given match  r �  4 v , ��� q \�~ ���g� G�� � , �Y�L� �Z % � ���/�
$ � � # � �)� G �#��$ � ��# � \ � �
�
� � , In most matching
algorithms this is all that can be used due to computational
tractability. However because the use of edges is advocated�a�L�

needs to be only calculated once ‘offline’ prior to the
optimization and so can take an arbitrarily complex form,
such as minimizing curvature

�Y�L� � Z % � ���#��$ � ��# � �)� G* �#��$ � ��# � \ � �)�]\��#��$ � ��# � \ * �
�
� � or some more eso-
teric function

�a�{� � Z % � Z�� ��� ���/�
$ � ��# � �)�*���/�
$ � ��� � �)�
� �
specified to some task. Note smoothness implicitly en-
forces that edges with similar 2D shapes will be preferred
for small camera motions. Recall that if � 2� \ �X�L� � �
then the match can be discarded as inactive.

Priors on
� �L� �
��
� 5 Next the interaction between

two matches is considered, i.e can we say anything about�(� ��� � � � $ � � � � � . By using higher order features some
of these interactions can be of a more complex form than
if only pixels are considered. When two curve matches are
defined, their 3D structure can be readily recovered. Let
the two 3D curves be � � and � � , then with knowledge of
the 3D structure, coplanarity etc can be established. Hence
the value of

� �{�
will be the weighted sum of several terms�a�L� � Z�� r�� �O����5'� � r�L� where

� r controls the amount of
effect that prior has, � ����� 57� is a function that tails off with
the 3D distance between the two curves; if they are above
a user specified distance then � ����� 57� � � . This means

4Rectification is not used as this introduces unnecessary arti-
facts/noise into the image intensities, especially if the epipoles lie
in the image, also the disparities can be arbitrarily transformed.

5Alternatively smoothness could be imposed on the 3D depths
of the points.

distance curves have no effect on each other and that the
matrix

�
is kept sparse so that the computational burden of

the QP does not rise too quickly.

Smoothness
����L�

: The simplest interaction is to impose
some sort of smoothness in the disparities between the two
edges

� ��L� � Z % � Z % ��� �L� ���#��$ � ��# � �
�*���/�
$ � ��# � �
�)� � , typ-
ically the function � �L� �c� will be modulated to tail off to
zero with distance.

Coplanarity, Parallelism
����L�

,
�� �L�

: Let ! �L� be the
best fitting plane through � � and � � then

� ��L� �G8jgk�m � �(� ! �{� $ � � �
� � � . If the two curves are coplanar and
linear, how near they are to parallel can be measured by a
function of the angle between them

�" �L� �$#>��%�� , parallel
nonlinear curves are not considered for now.

Planar Bilateral Symmetry
�'&�L�

: First compute the plane
and then the homography between the two curves as de-
scribed in [8]. The error metric is a function of the variance
of the fit.

Ordering
�"(�L�

: The ordering constraint has been used as
a powerful constraint for edge [9] and pixel matching [11].
However there are many scenes for which the ordering con-
straint will be violated. To allow for this a fixed penalty� (�L� ��)	& is introduced for pairs of curves for which the
ordering constraint is violated.

Occlusion
��*�L�

: It is possible to detect when pairs of
matches or surfaces occlude each other, this is noted for
future work, but not included in the current cost function.

More complex relations could also be considered, e.g. are
the two lines coplanar, and do they intersect at right angles
(useful for detecting sides of a rectangular object such as a
table or house). Next how to calculate the neighbourhood
system of a given match is considered.

Calculation of Neighbourhood: In order to calculate
the neighbourhood

� ��� � � of given edge match, several
schemes could be used, the important thing is not to ex-
clude any matches � �

, which might have a significant� �L�
. As most

� �L�
terms all fall off with image distance

depending on the rate of decay there will be a point where
the curves are so far apart that they have no effect on each
other

�a�L��+ � . However this is not true of
� (�L�

, whilst
two curves, far apart in the image, may be considered inde-
pendent as far as shape and symmetry are concerned, vio-
lation of the ordering constraint would still incur a penalty.
At present we are exploring different schemes to efficiently
calculate the

� �L�
in the least number of steps. The current

scheme is based on examining the distance between the 3D
centroids of the edges, if greater than a threshold only or-
dering is checked, otherwise

�+�L� ��� . Next the algorithm
is demonstrated on some real images.



5 Results

Figure 1 shows a particularly difficult case for matching,
it might be possible to solve for the structure of this scene
by some other means such as detecting planes, or automat-
ically fitting architectural models. Both of those activities
are helped by detecting good features. The aim here is to
demonstrate the use of the Markov random field prior to
solve a matching problem with ambiguity, these images
furnish a lot of ambiguity, some edges are aligned with
epipolar lines, many have identical texture nearby and there
is an aliasing effect. Even the use of multiple views will not
help for regular structure due to the aliasing effect. The im-
ages are � � � @ ��� � and the motion is about 20 pixels (more
than can be tolerated by a typical dense stereo matching
scheme most of which function best for disparities of a
few pixels to be computationally tolerable [11]). The top
row of figure 1 shows the images and the corner matches.
The second row shows the curve matches attained by a
greedy matching scheme that uses the cost given in (10)
for a match pair normalized by the curve length. Each cor-
responding match is shown in the same colour in each im-
age. The third row shows the corresponding epipolar lines
(shown in red) for some edge matches (shown in black),
note that a lot of the edge matches are incorrect. For this
example there 324 edges in image 1, 328 in image 2, and a
feasible product space of

*����!* @ *�����* .
In order to try and give an indication of the effect of the dif-
ferent constraints they are introduced one at a time, first the
uniqueness constraint is introduced, the results are shown
in the top row of figure 2, using the greedy algorithm as-
signment as a starting point (even though this might violate
some constraints). The second row shows the effects of im-
posing uniqueness and first order smoothing of

� �L�
on the

matching. The third row shows the results of adding the
ordering constraint.

6 Conclusion

Within this paper we have formulated a class of Markov
random fields. These Markov random fields naturally lend
themselves to modeling the matching problem, with a nat-
ural way to model outliers. Formulation in the product
space and use of higher level features allows account to be
taken of higher level properties of the image, such as par-
allelism etc. Furthermore different types of feature may
interact in the same global optimization framework.

This new style of Markov random fields opens up many
new areas of research, which are currently being investi-
gated.
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Figure 1: Top row: first pairs of images, one of a building referred to as Judges, second pair, corner matches. Second row:
greedy algorithm matches, matching each edge to its best match. The corresponding matches are shown in each image in
the same colour. Third row: Showing some erroneous matches in black, together with the corresponding epipolar beam.
Note that even with the epipolar constraint, there is a lot of ambiguity, three will help, but not when the structures are
regular, as in this case.



Im 1 edges

Im 2 edges

Figure 2: Edge matches yielded using the Markov random field estimated by quadratic programming. Imposing all the
constraints


