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Abstract

In an influencial paper Kohavi and John [7]
presented a number of disadvantages of the
filter approach to the feature selection prob-
lem, steering research towards algorithms
adopting the wrapper approach. We show
here that neither approach is inherently bet-
ter and that any practical feature selection al-
gorithm needs to at least consider the learner
used for classification and the metric used
for evaluating the learner’s performance. In
the process we formally define the feature se-
lection problem, re-examine the relationship
between relevancy and filter algorithms, and
establish a connection between Kohavi and
John’s definition of relevancy to the Markov
Blanket of a target variable in a Bayesian
Network faithful to some data distribution.
The theoretical results lead to principled
ways of designing optimal filter algorithms of
which we present one example.

1 Feature Selection for Classification

Feature (also called variable) selection for classification
is an important problem that has been given consid-
erable attention during the last three decades. In this
section we formally define two versions of the feature
selection problem and discuss how previous definitions
do not meet the needs of a practitioner.

The purpose of feature selection is many-fold: First,
while theoretically, in the sample limit, the more fea-
tures we have, the better, in learning experiments in-
volving many practical algorithms a good selection of
features often yields models with better generalization
performance than when using the full feature set [5].
A second reason for desiring to reduce the number of
variables required for learning is that they may be
unnecessarily expensive to observe. For example, in
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medicine, an unnecessary variable may cost hundreds
or even thousands of dollars per observation, and may,
in addition, entail risks for the patients’ health [4].
Third, parsimonious models are easier to understand
and less computationally expensive for performing in-
ference and prediction. Finally, when feature selection
is used as a tool to deepen researchers’ understanding
of the characteristics and structure of some domain
(e.g., to orient them towards subsequent experimenta-
tion and eventually development of a detailed domain
theory), unnecessary variables make such interpreta-
tion more difficult.

Despite significant research in the field, a standard and
acceptable general definition of the feature selection
problem has not yet been reached. According to a re-
cent call for papers for the special issue on variable
and feature seletion of the Journal of Machine Learn-
ing Research (JMLR), the “Variable selection refers to
the problem of selecting input variables that are most
predictive of a given outcome”. Kohavi and John [7]
(hereafter KJ) define it as the “subset of features such
that the accuracy of the induced classifier ... is maxi-
mal”. A similar definition is given in [13]: the feature
selection problem is to discover the set of features and
the parameters of the classifier to be used such that it
minimizes the expected loss, according to a loss func-
tion. Among other problems that we discuss below,
these definitions do not distinguish among all possi-
ble features sets with maximal accuracy (or minimal
loss) and cannot incorporate instances of the problem
where the cost of features is important and a trade-off
between accuracy and cost of observations is required.

Because of the lack of standard definitions it is hard
to analyze arguments in favor or against feature selec-
tion algorithms, e.g., the argument of KJ against filter
algorithms (defined below). Hence, we attempt a def-
inition of the problem that enables the analysis of the
theoretical properties of feature selection.

Definition 1. Feature Selection Problem 1
(FSP1). A feature selection problem is a tuple



(X,®,T, A, M), where X is a sample of input patterns
defined over a feature set &, T' € ® a target variable, A
a classification algorithm producing a prediction model
for T given T and X, and M a performance metric of
the classifier’s model and the selected features. A so-
lution to the problem is a feature subset ¢ C ® that
maximizes M (¢, A(T,X | ¢)), where X | ¢ is the pro-
jection of the data X on only the features in ¢.

For technical simplicity and without loss of generality
we impose the constraint that 7' always has to be in-
cluded in the selected features. Typical feature selec-
tion algorithms that have appeared in the literature
tackle specific instances of the above definition, but
not the problem in its full generality. For example,
the KJ definition matches the above one when M is
any loss function and there is no preference among fea-
ture sets that exhibit the same loss (accuracy). Unlike
their definition however, the metric M requires as a
parameter the selected feature set to account not only
for any loss function, but also to incorporate feature
observation costs and possibly trade-off accuracy for
smaller feature subsets.

Notice that the classification algorithm A in the defi-
nition is fixed and given as part of the problem. That
is, a solution to the problem is a feature subset that
optimizes the metric for the given learner A. However,
this is not the problem that practitioners would really
like to solve. The practinioner is free to choose any
classifier and thus he or she is interested in optimiz-
ing the metric over all possible or available classifiers.
The confusion over feature selection is depicted in the
definition of feature selection, given by the editors of
the recent JMRL’s special issue on feature selection,
as the process of selecting the features “that are most
predictive of a given outcome”: according to which
classifier is prediction power measured by? Is it mea-
sured by a given classifier or is it the maximum over
all classifiers? The above discussion suggests that a
more appropriate definition is the following:

Definition 2. Feature Selection Problem 2
(FSP-). A feature selection problem is a tuple (X, ®,
T, M) with semantics as in Definition 1. A solution to
the problem is a feature subset ¢ C & and a learning
algorithm A that maximizes M (¢, A(T, X | ¢)).

To distinghuish between the two definitions we will
refer to the first problem as FSP; and the second
as FSP,5. There is no third definition possible that
also maximizes over all possible metrics M because
the metric is a characteristic of the problem: a prac-
titioner is allowed to choose any known classifier A
but whether the 0/1-Loss, the Mean-Squared-Loss, or
some trade-off of accuracy and cost of features should
be optimized depends on the nature of the problem

and the goals and ultimate real-life uses of the learnt
model.

An established distinction of feature selection algo-
rithms is KJ’s filters and wrappers.

Definition 3. Types of Feature Selection Algo-
rithms. A wrapper feature selection algorithm for
FSP, is a search procedure in the space of all possible
feature subsets that uses the classification algorithm A
and the evaluation metric M for assessing the quality
of states (i.e., feature subsets). A filter variable se-
lection algorithm is an algorithm that selects variables
without evaluating the metric M on the output of the
classification algorithm A. For FSP,, a wrapper is a
search procedure in the space of all possible subsets
and all possible classification algorithms.

Notice that a filter may use a learner A’ and a metric
M' to select features. In this case, the difference with
a wrapper is that A’ and M' may be different than the
A and M used in the definition of the feature selection
problem. If however A’ = A and M’ = M, then the
filter algorithm becomes a wrapper. One such example
is the Recursive Feature Elimination algorithm (RFE)
[6] where a linear Support Vector Machine (SVM) is
trained on the data and then the first half of the fea-
tures corresponding to the smallest weights in the vec-
tor normal to the optimal hyperplane is eliminated
recursively. Of the logs |®| linear SVMs models and
corresponding feature sets produced this way, the one
with the maximum performance is selected, where per-
formance is measured by a combination of the success
rate, the acceptance rate, and other SVM model char-
acteristics. If the classifier A used to induce the final
model is again a linear SVM and the same performance
metric is used, then RFE is a wrapper method, other-
wise it is used as a filter. In such settings the distinc-
tion between wrappers and filters blurs.

2 Relevancy and Filters

In this section we suggest that relevancy is defined over
feature subsets instead of individual features, so that
subsets labeled as relevant correspond to solutions of
the feature selection problems and that a filter algo-
rithm essentially implements a relevancy definition.

2.1 What is Relevancy for Feature Selection

Volume 97 of the Artificial Intelligence Journal was de-
voted to the concept of relevancy. Why are researchers
interested in this concept (in the context of feature se-
lection)? One justification is that it is perhaps the first
step to feature selection: the semantics of “relevancy”
suggest to our intuition that a relevant variable should
be included in the selected variables and all irrelevant



variables should not. Moreover, an implicit consensus
in the community is that relevancy can and should be
defined independently of both the classifier to be used
and the evaluation metric: the relevance of a variable
should depend on the probability distribution of the
data, not whether SVMs, for example, will be used to
build the final model.

Formally, the relevant set of variables should be
the solution to FSP, (X, ®,T,A,M) (or FSP,
(X,®,T,M)) for a given X, ® and T but independent
of any learner A and performance metric M, at least
in the sample limit of X where the joint distribution
of X is a close approximation to the real distribution
of the whole population of the data instances.

Since filters are independent of A and M, each (com-
putable) definition of relevancy corresponds to a num-
ber of exact or approximate filtering algorithms that
implement the definition and return all relevant fea-
tures. Conversely, any filter algorithm corresponds to
some definition of relevancy that only employs the dis-
tribution of the data.

If the scientific community could agree on a satisfy-
ing and appropriate definition of relevancy it is then
a matter of designing efficient filters for determining
the relevant set of variables. An attractive property
of such an ideal definition would be that we can select
the relevant variables independently of A and M. The
above discussion suggests the following;:

Definition 4. A definition of relevancy Ry for target
T is a set of functions f : Py — 2%, where ® is a
feature set and Pg is the set of all possible distributions
defined over ®.

In other words, a definition of relevancy is a rule for
labeling features as relevant or irrelevant given T' and
the probability distribution of the data. Indeed, all
definitions given in the KJ paper [7] and in Blum and
Langley [3] intentionally define functions f : Py — 2%
for each feature set ® and target 7. We present some
of these definitions in the sections to follow.

Notice however, that an F.SP; might have two (or
more) solutions ¢; and ¢5. In addition, a feature might
belong to both of these sets, just one, or none. In
case we label as relevant the features in the union of
these two sets, the correspondance between relevant
features and solutions to the F'SP; is lost: ¢1 U ¢2
may no longer be a solution. The same is true for the
intersection of the solution sets. This loss of correspon-
dance can lead to confusion and further attempts to
distinguish sets of features, e.g., KJ define weakly and
strongly relevant features with the intent that strongly
relevant ones are always required for maximum accu-
racy, while weakly relevant ones may or may not be
needed.

We counter-suggest that a relevancy definition, instead
of labeling individual features as relevant or irrelevant,
should label whole feature subsets as relevant or irrel-
evant, specifically, those subsets that are solutions to
the feature selection problem.

Definition 5. A definition of relevagcy Ry for a tar-
get T is a set of functions f : P — 22 for each feature
set ®.

That is, f returns a set of feature subsets given the
probability distribution of the data.

2.2 There are No Relevancy Definitions
Independent of the Learner or Metric

That Solve the FSP

In this section we examine the KJ argument against
filter algorithms, we prove that every definition of rele-
vancy necessarily needs to consider the classifier A and
metric M, and we provide an alternative definition of
relevancy.

KJ closely examine a number of previous definitions of
relevancy and present examples where the definitions
fail to classify variables as relevant with the desired
properties. Subsequently, they provide an improved
definition of relevancy that satisfies the intuition of rel-
evancy over the previous examples, nevertheless, even
for this definition there exist learners for which the set
of relevant variables is not the solution to the variable
selection problem. KJ argue convincingly that in the
general case (i.e., when relevancy is not tied to a spe-
cific classifier) the concept of relevancy is of little use:
both relevant and irrelevant features may be required
for optimal classifications. They quote: “Relevance
of a feature does not imply that it is in the optimal
feature subset and, somewhat surprisingly, irrelevance
does not imply that it should not be in the optimal
feature subset”, and “Different algorithms have differ-
ent biases and a feature that may help one algorithm
may hurt another”. Thus, the feature selection pro-
cess interacts with the classifier used to induce the
final model.

Of course, when they talk about relevancy they mean
their definition of it, but the implicit conjecture that
lingers in the the paper is that there is no definition
of relevancy independent of the learner A with the de-
sired property that the relevant variables according to
this definition are the solution to FSP; (X, ®,T, A, M)
(they do not consider FiSP2). We now formally prove
that :

Theorem 1. There is no concept of relevancy Rt
defined independently of the metric M, such that the
set of relevant feature subsets given a probability dis-
tribution p are solutions to the FSP, (X, ®,T, A, M)



or FSP, (X,®,T, M), where X a data sample drawn
from p.

Proof. Let R be the set of relevant feature subsets for
target T, for probability distribution p of the data, and
according to the relevancy definition Ry. Let ¢ ¢
R be a feature subset. Define M (¢, A(T, X)) = 1
and M (¢, A(T,X)) = 0, for any other feature subset
¢. If there is no such set ¢, that means that Ry
labels all subsets as relevant. In this case, pick one
feature selection subset arbitrarily and create a metric
M which assigns score 1 to it, and 0 to any other
subset (if no other subset exists then & = {T'}). In
all cases not all relevant feature subsets maximize the
metric. O

The theorem proves that relevancy should take into
consideration (i.e., should be a function of) the metric
used in the definition of the feature selection problem.
We now prove that for FSP; it should also take into
consideration the algorithm A.

Theorem 2. There is no concept of relevancy Rr (M)
(i.e., given the metric M ) defined independently of the
classifier A, such that the set of relevant feature sub-
sets given a probability distribution p are solutions to
the FSP1 (X, ®,T, A, M), where X is a data sample
drawn from p.

Proof. Let M (¢, A(T,X | ¢)) = —I, where [ is the 0/1-
Loss of the classifier A, thus M maximizes the accu-
racy of the classifier. Let ® = {T,V}, T and V binary
with distribution p such that P(T' = 1|V = 1) = 0.8,
P(T =1V =0) = 04, and P(V = 1) = 0.5 from
which we infer that P(T' = 1) = 0.6. Let S be a Simple
Bayes classifier (SBC). Any definition of relevancy may
label {V,T}, {T'}, or both sets as the relevant feature
subsets. Selecting {V,T'} has the minimum 0/1-Loss
and {T'} the maximum for the SBC S in the sample
limit. Thus, given enough sample M({V,T},S(X |
{V,T},T)) > M{({T},S(X | {T},T)). Let S’ be the
classifier that runs S on the input and returns the re-
verse classification from S.

If the definition of relevancy returns {T'} as the only
relevant variable, then for the algorithm S there is a
better subset {V,T}. If a definition of relevancy re-
turns {V,T'} as the relevant feature subset, then for
algorithm S’ there is a better subset {T'} (since S per-
forms worse on {T'} so S’ performs better). It is wrong
(or at least uninformative) for a definition of relevancy
to return both sets as relevant since they get different
scores for different algorithms. O

In other words, there are cases where even if we know
the metric M and the probability distribution p of the

data, there is a classifier A such that we could still not
label the feature sets as relevant or irrelevant (in such
a way that they correspond to solutions to the feature
selection problem).

KJ’s implicit conjecture was right. Knowing the met-
ric M is a necessary condition for defining relevancy
for both feature selection problems and knowing the
classifier A is a necessary condition for defining rele-
vancy for F'SP;. In the same fashion, knowing M and
A is a necessary condition when designing optimal fil-
ter algorithms.

To the significant number of definitions of relevancy for
feature selection that have appeared in the literature,
and in particular are mentioned in [3, 7] we counter-
suggest:

Definition 6. A feature subset ¢ is relevant for F'SP;
for target T, classifier A, metric M and data X if it
is the solution to the problem F'SP;. Similarly, for
FSP;.

3 A No Free Lunch Theorem for
Wrappers

In this section we consider limitations of the wrapper
approach and in particularly prove they are subjected
to the constraints of the No Free Lunch Theorem [14]
for search optimization.

Wrapper approaches display two considerable short-
comings: (a) they require! training and evaluation of
the performance of the classifier used for every vari-
able subset considered during search, which is compu-
tationally expensive, and (b) it is necessary to repeat
the feature selection for every different classifier used
to solve the classification problem (for FSP; wrap-
pers). The advantage of the wrapper approach is that
if the whole feature subset space for FSP; is explicitly
or implicitly searched, then they are guaranteed to dis-
cover the optimal feature subset for classification for
any learner, evaluation metric, and data distribution.
Nevertheless, on all but the smallest problems an ex-
haustive search is computationally prohibited and so
wrappers provide no optimality guarantees.

Wrappers that are designed independently of the algo-
rithm and the metric used treat the objective function
M(¢, A(T, X | #)) to be optimized as a black-box. On
each FSP, they perform a heuristic search in the space
of all possible feature subsets. As black-box optimiza-
tion searches, wrappers are subject to the results of
the No Free Lunch (NFL) theorem for optimization
[14] that we are about to discuss.

'We have already mentioned that filters may also train
and evaluate classifiers in their attempt to select features,
but in the case of filters this is optional.



NFL states that for any measure of performance (e.g.,
proximity of the output value to the maximum value) a
black-box optimization search is as good as any other,
when averaged out on all possible (but finite number
of) objective functions (problem landscapes). Specif-
ically, let X be a finite search space of states, ) a
finite space of objective values, and F = Y% the set
of all possible objective functions defined on these two
spaces. NFL states that the performance of any pair
of algorithms A; and A, averaged out on all f € F is
the same. For a wrapper, the objective function is the
metric M that for all practical purposes takes a finite
number of output values, e.g, all numbers that can be
represented by 32 or 64 bits on some machine.

Theorem 3. NFL holds for FSP; wrappers if the
choice of the metric M or the classifier A is uncon-
strained.

Proof. X and Y are both finite. It suffices to show
that any objective function f € F = Y7 is realizable.
When the metric M is unconstrained and it can be
any function, then for any f € F, with f(¢) =ay € Y
we can simply assign M (¢, A(T, X 1¢)) = ag.

When the metric M is given and fixed, we need to
show for any function f = M (¢, A(T,X | ¢)) € V¥,
with f(¢) = a4, there is a distribution p of data and
an algorithm A that realizes it.

Let M be minus the 0/1-Loss of the classifier A (accu-
racy), let the distribution p be P(V; = 2¢) = 1 for any
feature V; € ® \ {T'}, and P(T = 1) = 1. Let the clas-
sifier A consist of rules of the form: “if 7" (Vi = j,
then output b;”, for j =1.. L2®I+1 (we assume states
containing A are included in the search space). Notice
that each rule j fires for one and only feature subset
¢, namely the one whose binary encoding is the num-
ber j, e.g., feature subset 1101 containing the first,
third, and fourth feature (starting from the right) cor-
responds to j=13=2°% + 2% 4 23, By setting b; to 1 we
get M(¢;, A(T, X | ¢;)) = 1 and by setting b; to 0,
we get M(¢;, A(T,X | ¢;)) =0. For Y = {0,1} and
ag € {0,1} we get f(¢) = ap when ay = b;. Thus, any
function is realizable even if the metric M if fixed. O

4 TImplications for Designing Filters
and Wrappers

All of our theorems and KJ’s arguments employ ex-
treme classifiers to make their point. For example, KJ
show that there is a handicapped classifier (the limited
perceptron classifier [9]) that requires irrelevant vari-
ables to be included in the selected features for some
problems, where relevance is defined according to Def-
inition 9. But, that does not mean that there are no
filtering algorithms for F'SP; that perform well with

the problems and classifiers that are typically used in
practice. In a similar fashion, just because NFL holds
for wrappers does not mean that averaged out on all
problems that occur in practice there is no wrapper
with superior performance over all other wrappers.

KJ’s argument is valid in principle for FSP;. How-
ever, as we have already mentioned in practice we are
interested in solving F'SP,. It is very unlikely that a
researcher or modeler will use a filtering algorithm and
then apply only the limited perceptron classifier with-
out trying any other more powerful classifiers. Even
though F'SP, was not spelled out by researchers as
the real problem they try to tackle, in a number of
feature selection papers a manual meta-search is per-
formed over a limited number of classifiers, essentially
attempting to optimize the metric over both feature
subsets and classifiers simultaneously. For example,
KJ use wrappers on both the Naive Bayes and Deci-
sion Trees. A practitioner would choose the feature
subset and algorithm that maximizes the accuracy.

The conclusions we draw from this discussion are the
following: in principle both filters and wrappers need
to consider the metric and algorithm in order to be
optimal and efficient respectively. Thus, designing fea-
ture selection algorithms should target specific classes
of metrics and algorithms. Neither approach to feature
selection is inherently superior or should be dismissed.

5 Designing Optimal Filters

Armed with a new understanding of relevancy and fil-
ters, we now proceed to design optimal filters for spe-
cial cases. First, the relevancy definitions of KJ and
the concept of Markov Blanket of a target variable
T, MB(T) are presented. The relationship between
the relevant features and MB(T') is explored. MB(T)
is the solution of several classes of feature selection
problems.

Regarding notation, we will denote a variable by V; €
®, its values by v;, the target variable T, a value
of T by t, the remaining set of variables by S;, i.e.,
S; = @\ {V;,T}, and a joint value of S; as s;. We
will also use the shorthand P(T | V1,Va2) = P(T | V)
to denote that for every instantiation ¢ of T', and ev-
ery instantiation vy, and vy of the set of variables
V1 and V5 the following equation holds: P(T = ¢t |
Vi =v,Va =w2) = P(T =t | Va = vp). Similarly,
P(T | V1,Va) # P(T | V) expresses the fact that
there is an instantiation of 7,V;, and Vs for which
the equation does not hold. Also, we will denote
the conditional independence of T and V; given V5 as
I(T; Vi | Va) = P(T | Vi, Va) = P(T | V3). Finally, to
avoid technical difficulties when the conditional prob-
ability P(T' | V) is not defined (which is the case when



P(V) = 0), we will assume that the joint probability
distribution has no structural zeros, i.e., all the pos-
sible instantiations of the variables ® have a positive
probability, no matter how small. According to KJ [7]:

Definition 7. KJ-Strong relevancy. A variable V;
is KJ-strongly relevant to 7 if and only if there
exists some v;,t, and s; for which p(V; = =;,5; =
s;) > 0, such that p(T = t|V; = v;, S; = s;) # p(T =
tlS, = s;)-

Definition 8. KJ-Weak relevancy. A variable V; is
KJ-weakly relevant to T if and only if it is not KJ-
strongly relevant, and there exists a subset of variables
S] of S; for which there exists some v;, ¢, and s} with
p(Vi = v;, 8] = s;) > 0 such that: p(T = t|V; =
vi, S; = s3) # p(T = t|S; = s7).

Definition 9. KJ-Relevancy. A feature is KJ-
relevant to T if it is KJ-weakly or KJ-strongly rel-
evant to T'. A feature is KJ-irrelevant to 7' if it not
KJ-relevant to T'.

Definition 10. Markov Blanket. The Markov
Blanket of T, denoted as MB(T) is a minimal set of
variables, such that every other variable is indepen-
dent of T given MB(T), i.e., VV € ®\{V,T}, P(T |
MB(T),V) = P(T | MB(T)).

It turns out that the MB(T') is unique and coincides
with the set of KJ-strongly relevant features in distri-
butions that are faithful to some Bayesian Network. In
distributions not faithful to any BN the KJ-strongly
relevant features are the ones that belong in the inter-
section of the Markov Blankets. We now define these
concepts and prove the properties.

Definition 11. Bayesian Network (®,G,J). Let
® be a set of discrete variables and J be a joint proba-
bility distribution over all possible instantiations of ®.
Let G be a directed acyclic graph over a set of vari-
ables S C ®. Let all nodes of G correspond one-to-
one to members of ®. We require that for every node
V € @, V is probabilistically independent of all non-
descendants of V, given the parents of ¥V (Markov
Condition). Then we call the triplet (®,G,J) a
Bayesian Network (BN) [10].

A well known property of BNs is that any joint prob-
ability distribution can be represented with a BN.

Definition 12. d-separation. Two variables V; and
V4 are d-separated given a set of variables V3 in a BN
if and only if there exists no adjacency path p (i.e.,
a path ignoring the ordering of the edges) such that
(i) every collider of p (a collider being a node with two
incoming edges that belong in the path) is in V3 or has
a descendent in V3, and (ii) no other nodes on path p
are in V3 [11].

From the definition and graph theory we infer:

Proposition 1. A variable with a direct edge to T is
never d-separated given any subset of the variables; a
parent of a common child with T is never d-separated
given any subset of the variables that contains the
common child.

Definition 13. Faithfulness. The graph G of some
BN N is faithful to a joint probability distribution
J over feature set V' if and only if every dependence
entailed by G is also present in J. We say that a
data-generating process K is faithfully represented by
N, if K in the sample limit produces data with joint
probability distribution P, and N is faithful to P. A
BN N is faithful if there is a probability distribution
J to which it is faithful.

It follows from the Markov Condition that every con-
ditional independence entailed by G is also present in
J. Thus, together Faithfulness and the Markov Con-
dition establish a close relationship between a graph
G and some probability distribution J and allow us to
associate statistical properties of J with graph proper-
ties of G. In the terminology of Spirtes, Glymour, and
Scheines [12] G and J are faithful to one another, and
in the terminology of Pearl [11] G is a perfect-map of
P and P is a DAG-isomorph of G.

Proposition 2. In a faithful BN, d-separation cap-
tures all conditional dependence and independence re-
lations that are encoded in the graph [11, 10] which
implies that two nodes are d-separated with each other
given V, if and only if they are conditionaly indepen-
dent given V.

Theorem 4. The unique MB(T) in a faithful BN is
the set of parents, children, and parents of children of
T.

Proof. Neapolitan shows [10] that the set of parents,
children, and parents of children of T d-separates T’
from any other variable. Let us call this set L and
prove that it is minimal and thus a MB(T'). By Propo-
sition 1 nothing d-separates a parent or a child of T" so
we cannot remove them from L. Again, by Proposition
1, if the children belong in L nothing can d-separate
a parent of a common child with 7. Thus, parents
of common children also cannot be removed from L.
We now prove that L is also unique. Assume that
another set I' # L d-separates T from any other vari-
able. With a similar argument as above, we see that
L' has to contain all parents and children of T, and
also all parents of children of T. Thus, L C L' and
since L is minimal, ' = L and so L is unique. O

The next theorems
MB(T).

Theorem 5. In a faithful BN, a variable V € ® is
KJ-strongly relevant, if and only if V€ MB(T).

associate KJ-relevancy and



Proof. Suppose that V; is KJ-strongly relevant, but
does not belong in MB(T). Recall that in the def-
inition of KJ-strong relevancy (Definition 7), S; =
@\ {V;,T}, and so MB(T) C S;. Since MB(T) is
a subset of S; it follows that P(T' =t |V =v,5; =
s;) = P(T =t | S;). Therefore, according to Defini-
tion 7, V; can never be KJ-strongly relevant, contrary
to what we assumed.

Conversely, we can prove that if V; € MB(T), then it is
KJ-strongly relevant. By the definition of d-separation
(Definition 12), we can see that each member V; of
MB(T) is not d-separated from T given S;, i.e., given
the remaining set of variables. In turn this implies (by
Proposition 2) that T and V; are conditionally depen-
dent given S;, ie., P(T =1t | V;,S:) # P(T =t | S:)
and so V; is KJ-strongly relevant. O

Theorem 6. In a faithful BN, a variable V € ® is
KJ-weakly relevant, if and only if it is not KJ-strongly
relevant and there is an undirected path from V to T.

Proof. Consider an undirected path p from V to T
and let Z be the set of colliders in p. Then V and T
are not d-separated given Z, so they are conditionally
dependent (Proposition 2) and thus, P(T | V,Z) #
P(T | Z). By definition then, if V' is not KJ-strongly
relevant, it is KJ-weakly relevant. Conversely, if V' is
KJ-weakly relevant, then there is a set Z such that
P(T | V,Z) # P(T | Z). If there is no path between
V and T then they are d-separated given any set, and
by Proposition 2 conditionally independent given any
set and so V' cannot be KJ-weakly relevant. O

A corollary of the above is that KJ-irrelevant features
have no path to T in the BN faithful to the probability
distribution. If faithfulness and thus Proposition 2 do
not hold (as is typical when there are deterministic re-
lations for example) it is possible that there are multi-
ple Markov Blankets for T', MB1(T), ..., MB,(T). In
this case the KJ-strongly relevant features are the ones
in the intersection of all the Markov Blankets, i.e., the
set (); M B;(T') (we omit a proof due to lack of space).

6 MB(T) as the Solution of a Feature
Selection Problem

This section summarizes the conditions under which
MB(T) is the solution to feature selection problems.

By definition, MB(T') carries all information required
to estimate the probability distribution of T given the
data. The exact distribution is required only for cali-
brated classification, i.e., when the output of the clas-
sifier is not the most probable class of T, but the dis-
tribution over class membership. Calibration is re-

quired in many learning applications such as when
cost-sensitive decisions must be made and corresponds
to Mean-Squared Loss. For example, in order to apply
decision theory, an agent should know the probabil-
ity distribution of 7" and not just the most probable
classification.

It is quite probable that when 0/1-Loss is used in-
stead as the metric only some of the features in MB(T)
are required or features that do not belong in MB(T).
But, for calibrated classification all features in MB(T)
are required. From this discussion we conclude:

Proposition 3. MB(T) is the solution to FSP;
(X,®,T,A, M) in the sample limit of X, where X is
drawn from a faithful BN, A is any calibrated clas-
sifier that can approximate any probability distribu-
tion? and M is a metric strictly decreasing with the
Mean-Squared Loss with a preference for smaller sub-
sets. MB(T) and A is the solution to the FSP,
(X,®,T,M). If X is not drawn from a faithful BN
then the solution to the F'SP; problem above is the
smallest among all MB(T).

7 An Optimal Filter Algorithm

The definitions and theoretical results presented above
are not just of academic interest. They directly lead to
the design of optimal filter algorithms for the special
case of Proposition 3: any algorithm that provably
identifies MB(T) is an optimal filter algorithm under
the conditions stated in the proposition.

We now present the Incremental Association Markov
Blanket (IAMB) algorithm (Figure 1). TAMB was first
introduced in [2] (available by request from the au-
thors), is similar to GS [8] (but uses a different heuris-
tic), and identifies the MB(T) under the following as-
sumptions: 1. All data is generated by processes that
can be faithfully represented by Bayesian Networks.
2. There exist reliable statistical conditional indepen-
dence tests and measures of associations for checking
independence and strength of association of 7" with
some other variable X given a set of variables Y. When
the assumptions are violated its output serves as a
heuristic approximation of the MB. Experimental re-
sults on TAMB are reported elsewhere [2].

TAMB consists of both a forward phase and a backward
phase. An estimate of the MB is kept in the set CMB.
In the forward phase all the variables that belong
in MB(T) and possibly more (false positives) enter
CMB, while in the backward phase the false positives
are identified and removed so that CMB=MB(T) in
the end.

*For example A, can be calibrated Neural Networks,
Bayesian Network Learners, etc.



Phase I (forward)
CMB = §; Cont = True
‘While Cont = True
Cont = False
F = arg maxVeq)_{T}_CMB assoc(V;T | CMB)
If ~I(F ; T | CMB)
CMB = CMB|J F
Cont = True
End If
End While

Phase II(backward)
For each variable F' in CMB
IfI(F; T | CMB - {F})
Remove F' from CMB
EndIf
EndFor
return CMB

Figure 1: The Incremental Association Markov Blan-
ket (IAMB) Algorithm.

The heuristic used in IAMB to identify potential MB
members in phase I is the following: start with an
empty candidate set for the MB(T), i.e., CMB = §,
and admit into it (in the next iteration) the variable
that has the largest association with T conditioned
on CMB. Function assoc in the figure measures the
strength of association between F' and T given the
features in CMB. We stop when the association of
every variable conditioned on CMB vanishes (F' and
T are independent given CMB, i.e., I(F; T|CMB)).
This heuristic is admissible in the sample limit because
all members of MB will enter CMB eventually.

A number of parametric and non-parametric measures
of associations and conditional independence tests can
be used to implement functions assoc and I in the
figure, that are sound in the sample limit under various
data sampling assumptions [1]. In the sample limit
TAMB will provably output the correct MB using any
of these metrics (see proof in [2]).

8 Conclusions

In this paper we re-examine the concepts of relevancy,
the feature selection problem and the distinction be-
tween wrappers and filters. We prove there is no con-
cept of relevancy, defined independently of either the
classifier used for the final induced model or the met-
ric used for evaluating performance, that corresponds
to solutions of the feature selection problem. Thus,
filter algorithms need to consider these two parame-
ters to be optimal. Similarly, we prove that wrappers
are subject to the No Free Lunch theorem unless they
consider these two parameters. Optimal feature selec-
tion is possible only for special cases; design of optimal
feature selection algorithms is attainable only by con-

straining the application domain in terms of classifiers
and loss functions used and tailoring the algorithms in
those terms. For calibrated classification, the Markov
Blanket of the target variable is the optimal feature
set. The Markov Blanket corresponds to the strongly
relevant features, as defined by Kohavi and John, in
data faithful to some Bayesian Network. We present
an algorithm that provably discovers the Markov Blan-
ket and thus optimally solves a special case of the fea-
ture selection problem.
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