On Boosting and the Exponential Loss

Abraham J. Wyner
Statistics Dept.
Wharton School

University of Pennsylvania

Philadelphia, PA 19104

ajw@wharton.upenn.edu

Abstract

Boosting algorithms in general and AdaBoost
in particular, initially baffled the statistical
world by posing two questions: (1) Why is
it that AdaBoost performs so well? and
(2) What makes Boosting methods resistant
to overfitting? In response to question (1)
Hastie, Tibshirani and Friedman (2000) take
a statistical view of Boosting by recasting it
as a stagewise approach to the minimization
of an exponential loss function by means of an
additive model in a process similar to addi-
tive logistic regression. This characterization
has since been well integrated in the statis-
tics and computer science communities as the
best statistical answer to question (1). In
this paper, we argue that this well assimilated
view is questionable and that perhaps Boost-
ing’s success has nothing to do with the mini-
mization of an exponential criterion or indeed
any optimization at all. Our argument rests
on a constructive theorem that states that for
any sequence of classifiers there exists a linear
combination for which the exponential crite-
rion equals one. Furthermore, we present a
Boosting algorithm which performs empiri-
cally like AdaBoost while stabilizing the ex-
ponential loss to a constant.

1 ON THE EXPONENTIAL LOSS

The performance of Boosting surprised statisticians.
AdaBoost (Freund and Schapire, 1996) works well- re-
ally well, on a huge variety of problems in various dif-
ferent contexts. Yet it achieves this success in defiance
of several important statistical paradigms. Its pro-
gram of model selection is haphazard, random and un-
regulated. It shrinks the training set error rate to zero,
yet, paradoxically, it continues to improve its out of

sample performance even after this mark is obtained.
Finally, It seems remarkably resisitant to overfitting,
in many, if not all contexts, even though it never vali-
dates on hold out data, never estimates an out of sam-
ple error rate, or otherwise considers performance on
anything other than the training data.

There are primarily three explanations for the suc-
cess of Boosting. The first explanation is set in the
context of PAC learning. While mathematically at-
tractive the theory is practically unappealing since it
offers no hint of why AdaBoost should generalize well
on test data. Furthermore, from a practical point of
view the weak learner hypothesis is unnatural at best
and false at worst. A second explanation see Schapire
et. al., focuses on AdaBoost’s ability to Boost the
“margin”. This work offers concrete bounds on the
generalization error which decrease as the margin in-
creases. Unfortunately, in practice, these bounds are
either too loose to be of use, or too restrictive to be ap-
plicable. Furthermore, Breiman (2000) has found sim-
ple counterexamples for which increased margin leads
to higher generalization error. At best, the role of the
margins in classification is still unknown and a worthy
topic for further research.

Hastie, Tibshirani, and Friedman (Hastie et. al
2000) take great strides to clear up the mystery of
boosting to provide statisticians with a statistical view
of the subject. The heart of their article is the re-
casting of boosting as a statistically familiar program
for finding an additive model by means of a forward
stagewise approximate optimization of an exponential
criterion.

This explanation has been widely assimilated and has
reappeared in the statistical literature (see for example
Friedman et al. 2001) as well as in a plethora of com-
puter science articles (for example Schapire’s overview
1999). Further, there has been very interesting work
connecting the optimization realized by AdaBoost to
other optimizations (see Collins et. al (2000) for ex-

ample).

1.1 STATISTICAL VIEWS OF BOOSTING

Let’s review this argument. The statistical view in
Friedman et al. 2000 begins by asking a statistical
question: Given a space of classifiers G, consider linear
combinations of the form

M
= Z Amgm ()
m=1

How does one select g, @, and M to optimize an ex-
ponential criterion exp(—yf(z))? Here and through-
out this discussion, we will consider x a vector of pre-
dictors, y € {—1,1} a binary class label, and T a train-
ing set of N pairs {x;,y;} for i = 1,.., N. Since global
minimization is usually not possible, a forward stage-
wise optimization is proposed. Given

m—1
fm-1= Z aigi(l')
=1

the goal is transformed to finding g,, and «,, that
minimize

with g, € G and o, € R.

N

Z exp(—¥i(fm—1(i) + amgm(2:))).

=1

In light of the defining property of the exponential,
namely factorization , the previous problem is reduced
to a weighted minimization. That is

Ewml

{am,9m} = arg mm exp(—

e —e ™) D w1 (D)1{yi # g(a)}

i=1
with
N
Wm—1(i) = exp(=yifm—-1(2:))/ D _ exp(—yi fm-1(z:))
=1

defined to be weights. The AdaBoost algorithm is re-
covered by noting that this minimum is found by let-
ting

N
gm = arg IgIéingm—ll{yi # g(wz)}
i=

while assuming that every ¢ € G maps to {—1,1}.
Taking a single derivative leads to the solution

N

gm = arg min > w1 (i) 1{yi # g(zi)}
i=1

and

€m

where

N
em =Y w1 (i)1{yi # gm (i)}
i=1
is the weighted error rate on the training set by clas-
sifier g,,. At the next stage, the weights are recom-
puted by an updating procedure where each correctly
classified training example gets down weighted by the
factor exp(—a;,) and each incorrect example gets up
weighted by the factor exp(—a;,,). This is AdaBoost.

Freund and Schapire (1996) arrive at the same solu-
tion and calculation but in a different context. Since
one can construct a binary classifier by taking the sign
of a linear combination of real values functions, the
training set error rate €(M) of an M term linear com-
bination fjs, can be re-written in the following form:

N

S 1{yif(z:) < 0).

i=1

e(M) =

Freund and Schapire observe that

M M

D Wyifm(@s) <0} <D exp(yif (i)

i=1 =1

Thus, a stagewise minimization of the left hand side
(training set error rate) is bounded by a stagewise
minimization of the right hand side (the exponential)
and the resulting algorithm is AdaBoost.

The exponential function’s identification with Ad-
aboost is uncontested. Nevertheless, minimization of
the exponential loss is sensible only in light of the pop-
ulation version of the algorithm for which it is easily
proven (see Friedman et al. 2001) that a one-step op-
timization of the exponential criterion results in es-
timates equal to (half) the log odds ratio. Thus, it
would appear that taking the sign of such an estima-
tor (as Adaboost does) would result in the optimal
Bayes classifer.

In summary, we have recounted the connection be-
tween stagewise optimization of the exponential loss
and Adaboost. Unanswered is the question of whether
optimization of the exponential on training data will
result in population optimization as well.

2 STABILIZING THE LOSS

From the perspective of the exponential loss AdaBoost
should be a disasterous overfit, since it never validates

or otherwise considers hold out samples. Furthermore,
it computes the loss exclusively on the data while ig-
noring any consideration of its expectation over the
population. In more traditional statistical contexts
this ignorance may not be problematic. For example,
the construction of a linear regression fits a function
to the data (the least squares line) which is proven to
be good only in expectation (the conditional expecta-
tion is the population minimizer). In small parame-
ter regression contexts, this is rarely a concern since
the function space is small and a fit to the data is
likely to be a good fit out of sample. Not so in our
context, where not only are the base classifiers often
strong learners, but the resulting linear combination
of classifiers are almost always sufficiently rich enough
to separate the training data, even in high dimensions.
To wit, Yali Amit has observed (in private communi-
cation) that the loss can increase exponentially on a
hold out sample while decaying exponentially on the
training data. Breiman (2000), in a discussion of the
statistical view, has expressed his misgivings with this
explanation as well.

Casting Boosting as an optimization has led to in-
teresting new algorithms (see for example, Friedman
(2001) and Hastie et. al. (2000)) that are quite sim-
ilar to AdaBoost since they all involve the averaging
of classifiers retrained on perturbed data. In contrast
to AdaBoost, these algorithms implement various ef-
forts to protect against overtraining. Broadly, these
efforts are of three categories. One method is to limit
the complexity of the base learner by using decision
stumps instead of trees, another is to shrink the coeffi-
cients (see Friedman 2001) and a third is to regularize
the algorithm by controlled stopping (Jiang 2001). All
three approaches are natural solutions in the context
of optimization. AdaBoost works fine without these
efforts.

In this paper I will argue that Breiman’s intuition
was correct: that minimization of an exponential cri-
terion has less to do with the success of Adaboost than
it appears. My case rests on one simple theorem and
an empirical observation. We start with the theorem.

Consider, as before, a set of binary classifiers G, such
that every g € G is a mapping of vectors z in some
p-dimensional feature space to the binary variable y €

(-1,1}.

Theorem A: Let g,,, € G from m =1 to M be any
arbitrary sequence of classifiers. Let T = {z;,v;} ¥,
be a training set of N observations. Starting with
fo = 0 recursively define f,, = E;’;l a;g; and oy, =

Blog == where

€m

N
1
€m = ; & (=Y fm1(20)) {y: # gm(2:)}-
It follows that for all M
5 Lol =1
£ N P IByz mM\Z;)) = 1.

Note: The value of ¢, denotes the weighted error
rate of g,, on training set T using the accumulated
exponential loss at each observation z; by the linear
combination f,, 1.

Theorem A implies that any sequence of classifiers
can be combined linearly while holding the exponen-
tial loss on the data constant. We exploit this fact to
produce a good linear combination of classifiers that is
indifferent to the exponential criterion. To this end we
construct the following algorithm:

Beta-Boosting: Let wg = % Then for m =1 to
M do:

1. gm = argmin g S wm_11{y; # g(x:)}
Let €, be the weighted error rate achieved by g,,

Oy = %log Iem

€m

Wi (1) = Win—1 (1) exp(—=Yigm (Ti) m)-

oL N

Renormalize wy, (7).

Output final classifier

M
F(z) = Sign[z Bamm ()]
m=1

Observe that Beta-Boosting is almost Adaboost. The
main difference is that we have generalized the factor
of 1/2 from the definition of a,, which results in an
updating scheme whose weights are the beta powers of
Adaboost’s weights. Theorem A applies in the special
case of 8 =1 (which we call ”square-boosting” (since
its weights are the squares of Adaboost’s), for which it
follows that at every stage the weights always sum to
1 (so normalization is not required) and that the ex-
ponential criterion remains constant at 1 regardless of
the number of iterations. Beta boosting can be viewed
in the context of optimization theory as well. The
optimal program with respect to the exponential is
B = 1/2. Square boosting is a case of Successive Over
Relaxation (SOR). In this particular case, however,
the doubling of the step size leads not only to over-
relaxation but excessive relaxation. Square-Boosting
is thus not an optimization.

Like Adaboost, the SquareBoost algorithm is a
stagewise scheme based on modular reweighting for
constructing a linear combination of classifiers fitted
on perturbed training sets. Adaboost will drive the ex-
ponential criterion to zero exponentially quickly, while
Squareboosting keeps the criterion constant at one.
More importantly, the criterion is identically one for
all binary weak learners, not necessarily the one that
achieves the lowest weighted training error. Accord-
ingly, we can expect that SquareBoosting should fail
to Boost.

Proof of Theorem A: Let fo = 0 we pro-
ceed by induction. For m = 0 the result is triv-
ial. Now, given frn_1 = > o a;g;. Let wp_1(i) =

exp(—yifm-1(z:))/ Zf;l eXP_y. £ 1 (2i) Using the
fact that y;gm(x;) is —1 if g, (x;) # y; and 1 oth-
erwise, we have

N

Zexp(—yi(fmq + amgm(zi))) =

i=1

E Wyn— 1
= E Wy — 1
E Wm— 1

i) exp(—Yimgm (2;))

i) exp am)l{yz # gm(wz)}+

i) exp(—am)[1 — H{yi = gm(®i)}]

= m Zwm l{y, = gm(z z)}

i=1

Zwm 1)[1_1{yz gm(xz)}]

]-_em N
i=1

1—e€pm €m
€m +

€m 1—¢,

(1 - 6m)

=1l—€p+en
=1

Thus the exponential criterion equals one for all M
and for arbitrary choice of classifiers g,,,, which prove
the theorem. Note: If the initial weights are normal-
ized then the sum of the weights will sum to one and
renormalization will not be necessary.

3 PERFORMANCE

SquareBoost, by construction, will find a linear com-
bination of classifiers by a stagewise process that is
indifferent to the exponential criterion. This sets it
apart from LogitBoost, GentleBoost (see FHT, 2000)

and Mart (Friedman, 2001). Yet the surprising fact is
that SquareBoosting is apparently as successful a clas-
sifer as Adaboost. We present SquareBoost tested on
examples from the UCI Irvine repository using C4.5
as the base classifier. In all of them, Squareboosting
exhibits the properties of AdaBoost: excellent perfor-
mance (relative to C4.5), training set error rates that
reach zero, and test set error rates that continue to
drop even after the training error has reached zero. In
this draft we include three examples: CAR, SATIM-
AGE, and SEGMENTATION (details of the simula-
tion appear in Table 1). Other examples (not shown)
reveal the same behavior. In all three examples we ex-
amine the performance of the algorithm as measured
by test set error rate. We then plot the error rate as
a function of the number of iterations. Three features
clearly stand out:

1. In the examples, the test set error rate of Square-
Boost jumps up after the second iteraration, but
then descends well below the C4.5 error rate.
This is likely due to the fact that SquareBoost’s
reweighting stategy is more aggressive than Ad-
aBoost in the early stages.

2. The test set error rate of SquareBoost is essen-
tially equivalent to that of AdaBoost after 225
iterations.

3. Performance of SquareBoost continues to improve
for many iterations after the training set error rate
is zero.

4. The performance of AdaBoost and SquareBoost-
ing after 225 iterations is statistically equivalent.
AdaBoost slightly outperforms SquareBoost in
Satimage (Figure 1), SquareBoost outperforms
AdaBoost in Car (Figure 3) and the two are nearly
the same in Segmentation (Figure 2)

SquareBoosting is actually a special case of Beta-
Boosting with 8 = 1, that is weights that are sim-
ply the squares of AdaBoost’s weights. This choice is
interesting since it seems to perform as well as Ad-
aBoost while stabilizing the exponential criterion. We
now consider two other special cases: “root” Boost-
ing, that is Beta-Boosting for 8 = 1/4 (weights that
are the square roots of AdaBoost) and Quad-Boosting
which uses weights that are the fourth powers of Ad-
aBoost. Qualitatively, Root boosting is akin to Gen-
tleBoost since the step size in the ”optimization” is
halved, in many examples a much more gradual fit-
ting to the training set is observed, unfortunately the
overall performance is many example (see for example
Figure 4) tends to be quite poor relative to AdaBoost.
Quad boosting is too aggressive. In all examples con-
sidered (See Figure 5, other examples not shown) its

Table 1: Description of three data sets from the UC
Irvine Repository

DATASET DATASET TRAINING ATTRIBUTES CLASSES
SIZE SET SIZE ConT/DISCR
CAR 1728 1000 0/6 4
SATIMAGE 4435 2000 36/0 6
SEGMENTATION 2310 1155 19/0 7

performance is weakest relative to the other examples,
although is may be possible to improve its performance
by means of a regularization algorithm.

4 CONCLUSIONS

We have proved that there exists a stagewise forward
program for constructing a linear combination of clas-
sifiers that is indifferent to the exponential criterion.
Nevertheless, this algorithm is nearly AdaBoost in def-
inition and in practice. This forces a reconsideration
of the connection between Boosting algorithms and
statistical optimization. Another view suggests that
despite the difference in their respective treatment of
the exponential criterion, both algorithms are actually
programs for sequentially perturbing the training data,
fitting classifiers and averaging the result. This view is
supported by several arguments. One argument is that
averaging is in fact a smoothing process that prevents
overfitting (see Krieger et al 2001). A closer look at
other stagewise programs for finding a linear combina-
tion, for example GentleBoost and LogitBoost, reveal
the same underlying structure of perturbation and av-
eraging. Given that all the algorithms proposed in this
paper (RootBoost, QuadBoost and SquareBoost) are
empirically similar to AdaBoost while radically differ-
ent with respect to optimization, suggests that loss
function minimization can only be part of the story.
What we have accomplished in this paper is a math-
ematical and empirical justification for the lingering
doubt among some in the Boosting community that
optimization is an explanation for AdaBoost.

Acknowledgements

The author would like to acknowledge Andreas Buja,
Yoram Singer and Abba Krieger for many helpful con-
versations and discussions.

References

Breiman, L. (2000), Discussion on Statistical View of
Boosting, The Annals of Statistics, Vol. 28, No. 2.

Collins M., Robert E. Schapire, Yoram Singer, Logistic
Regression, AdaBoost and Bregman Distances (2000)
Computational Learing Theory.

Iterations

I I I I
00 ST0 0T'0 S0'0

aley Jol3 19S 1591

Figure 1: Comparison of SquareBoost (dashed line)
and AdaBoost (solid line) applied to Satimage dataset

Freund, Y. and Schapire, R.E. . (1996) Experiments
with a new Boosting Algorithm. Machine Learning:
Proceedings of the Thirteenth International Confer-
ence 148-156, Morgan Kaufman, San Francisco.

Friedman, J.H. (2001). Greedy function Approxma-
tion: A gradient Boosting Machine. Annals of Statis-
tics, Vol. 29, No. 5.

Hastie T.,Tibshirani R., and Friedman J. (2000). A
Statistical View of Boosting, The Annals of Statistics
2000, Vol. 28 No. 2.

Hastie T., Tibshirani R, and J. Friedman. (2001) The
Elements of Statistical Learning: data mining, infer-
ence and prediction. Springer, 2001.

Jiang, W., (2001) Is Regularization Unnecessary for
boosting. Proceedings of the 8th annual conference of
AT and Statistics, Morgan Kaufmann, January, 2001.

Krieger A., Long C. and A.-Wyner (2001) Boosting
Noisy Data, Proceedings of International Conference
on Machine Learning, Morgan Kaufman, July, 2001 .

Schapire R.E. (1999), Theoretical views of boosting

Iterations

I I I I I I
Zctro 0T'0 800 900 00 200

aley 103 19S 1591

Figure 2: Comparison of SquareBoost (dashed line)
and Adaboost(solid line) applied to Segmentation
dataset

and applications. In Tenth International Conference
on Algorithmic Learning Theory, 1999.

Schapire R.E. , Freund, Y,. Bartlett, P. and Lee, W.S.
(1998) Boosting the margin: a new explanation for the
effictiveness of voting methods. Annals of Statistics
26(5): 1651-1686.

Iterations

0c0 ST0 0T'0 S0°0

Jouz 19S 191

Figure 3: Comparison of SquareBoost (dashed line)
and Adaboost (solid line) applied to Car dataset

o o
L 8 - S
N ~N
o o
L R -
- -
1% 1%
i= i=
k=l k=l
IS IS
Q Q
o = o =
L 8 - S
- -
L o L o
n n
L o - o
T T T T T T T T T T T T
0T'0 600 800 L00 900 S00 oT'0 600 800 L00 900 S0°0 00
arey Jou3 189S 1saL arey Jou3 189S 1saL

Figure 4: Comparison of RootBoost (Solid line) and Figure 5: Comparison of QuadBoost (Dashed line) and
Adaboost (Dashed line) applied to Car dataset Adaboost (solid line) applied to Car dataset

