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Abstract

Discovering the dependencies among the variables of a domain from examples is an impor-
tant problem in optimization. Many methods have been proposed for this purpose, but few
large-scale evaluations were conducted. Most of these methods are based on measurements
of conditional probability. The statistical implicative analysis offers another perspective of
dependencies. It is important to compare the results obtained using this approach with
one of the best methods currently available for this task: the MMPC heuristic. As the SIA
is not used directly to address this problem, we designed an extension of it for our purpose.
We conducted a large number of experiments by varying parameters such as the number of
dependencies, the number of variables involved or the type of their distribution to compare
the two approaches. The results show strong complementarities of the two methods.

Keywords: Statistical Implicative Analysis, multiple dependencies, Bayesian network.

1. Introduction

There are many situations in which finding the dependencies among the variables of a do-
main is needed. Therefore having a model describing these dependencies provides significant
information. For example, which variable(s) affect(s) the other variable(s) may be very use-
ful for the problem of selection of variables; decomposition of a problem to independent
sub-problems; predicting the value of a variable depending on other variables to solve the
classification problem; finding an instantiation of a set of variables for maximizing the value
of some function, etc (A. Goldebberg, 2004; Y. Zeng, 2008).

The classical model used for the detection of dependencies is the Bayesian network.
This network is a factorization of the probability distribution of a set of examples. It is well
known that the construction of a Bayesian network from examples is a NP-hard problem,
thus different heuristic algorithms have been designed to to solve this problem (Neapolitan,
2003; E. Saheli, 2009) . Most of these heuristics are greedy and/or try to reduce the size of
the exponential search space by a filtering strategy. The filtering is based on some measures
that aim to discover sets of variables that have high potentiality to be mutually dependent
or independent.
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These measures rely on an evaluation of the degree of conditional independency. How-
ever other measures exist which are not based on conditional probability measurements that
have the ability to discover dependencies. Using another measure that is not based on con-
ditional dependencies can provide another perspective about the structure of dependencies
of variables of a domain. Statistical Implicative Analysis (SIA) has already shown a great
capability in extracting quasi-implications also called as association rules (R. Gras, 2008).
We present a measure for multiple dependencies based on SIA and then use this measure
in a greedy algorithm for solving the problem of multiple dependencies detection. We have
compared our new algorithm for finding dependencies with one of the most successful con-
ditional dependencies based heuristic introduced so far, MMPC (I. Tsamardinos, 2006). We
have designed a set of experiments to evaluate the capacity of each of them to discover two
kinds of knowledge: the fact that one variable conditionally depends on another one and
the sets of variables that are involved in a conditional dependencies relation. Both of this
information can be used to decompose the NP-hard problem of finding the structure of a
Bayesian network into independent sub-problems and therefore can reduce considerably the
size of corresponding search space.

This paper organized as follows: In the next section we describe the MMPC heuristic. In
section 3 we present our SIA based measure and algorithm for finding multiple dependencies
and the experimental results of the algorithms are presented in Section 4. Finally we
conclude in section 5 with a brief discussion.

2. The MMHC Heuristic

Discovering multiple dependencies from a set of examples is a difficult problem. It is clear
that this problem cannot be solved exactly when the number of variables approaches few
dozens . However, for some problems, the number of variables can be several hundred or
several thousand. Therefore, it is particularly important to have some methods to obtain
an approximate solution with good quality. A local search approach is usually used in
these problems. In this case the model of dependencies is built incrementally by adding
or removing one or more dependencies at each step. The dependencies are chosen to be
added or removed using a score that assesses the quality of the new model according to
the set of examples (E. Saheli, 2009). In this approach the search space is exponential in
terms of maximum number of variables on which a variable may depend. Therefore, there
is a need to develop methods to increase the chances of building a good quality model
without exploring the whole search space exhaustively. One possible approach is to use a
less computationally expensive method to determine a promising subset of the search space
on which we can subsequently apply a more systematic and costly method.

The final model is usually a Bayesian network in which the dependencies represent con-
ditional independencies among variables. It is possible to build this model using information
from other measures besides conditional probability. Indeed, the measurements in the first
phase are used as a filter to eliminate the independent variables or bring the variables with
shared dependencies together in several sub-groups. The second phase uses this filtered
information to build a Bayesian network. The goal of our study is to compare the ability
of two approaches for the detection of dependencies for the first phase. In this section a
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measure based on conditional probability is described and in the section 4 this measure will
be compared with a SIA based measure.

2.1 Definition and Notation

A Bayesian network is a tool to represent the joint distribution of a set of random variables.
Dependency properties of this distribution are coded as a direct acyclic graph (DAG).
The nodes of this graph are random variables and the arcs correspond to direct influences
between the variables.

We consider a problem consisting of n variables v1, v2, . . . , vn. Each variable vi can take
any values in setMi = mi,1,mi,2, . . . ,mi,k. For the detection of dependencies a set of N
examples is available. Each example is an instantiation of each of the n variables in one of
k possible ways.

Pari, the set of all variables on which variablevi depends, is the parent set of vi .Any
vj ∈ Pari is a parent of vi and vi is a child of vj . A table of conditional probability
distribution (CPD), also known as the local parameters, is associated for each node of the
graph. This table represents the probability distribution P (vi|Pari).

2.2 MMPC Approach

Although learning Bayesian networks might seem a very well-researched area and even some
exact algorithms have been introduced for networks with less than 30 variables (M. Koivisto,
2004), applying them to many domains such as biological or social networks, faces the
problem of high dimensionality. In recent years several algorithms have been devised to
solve this problem by restricting the space of possible network structures using various
heuristics (N. Friedman, 1999; I. Tsamardinos, 2006). One of these algorithms, which has a
polynomial complexity is ”Sparse Candidate” algorithm (N. Friedman, 1999). The principle
of this method is to restrict the parent set of each variable assuming that if two variables
are almost independent in the set of examples, it is very unlikely that they are connected in
the Bayesian network. Thus, the algorithm builds a small fixed-size candidate parent set for
each variable. A major problem of this algorithm is to define the size of the possible parent
sets and another one is that the algorithm assumes a uniform sparseness in the network.
More recently, another algorithm called Max-Min Hill Climber (MMHC) has been proposed
to solve these two problems and obtain better results on a wider range of network structures
(I. Tsamardinos, 2006).This algorithm, uses a constrained based method to discover possible
parents-children relationships and then uses them to build a Bayesian network. The first
step of this algorithm, the one we use in this section to detect dependencies, is called
Max-Min Parent Children (MMPC). The MMPC algorithm uses a data structure called
parent-children set, for each variable vi that contains all variables that are a parent or a
child of vi in any Bayesian network faithfully representing the distribution of the set of
examples. The definition of faithfulness can be found in (Neapolitan, 2003; I. Tsamardinos,
2006). MMPC uses G2 statistical test (P. Spirtes, 2000) on the set of examples to determine
the conditional independency between pairs of variables given a set of other variables. The
MMPC algorithm consists of two phases. In the first phase, an empty set of candidate
parents-children (CPC) is associated with vi. Then it tries to add more nodes one by one
to this set using MMPC heuristic. This heuristic selects the variable vj that maximizes

24



Detecting Multiple Dependencies

the minimum association with vi relative to current CPC and add this variable to it. The
minimum association of vj and vi relative to a set of variables CPC is defined as below.

MinAssoc(vi; vj |CPC) = argminAssoc(vi; vj |S) for all subset S of CPC.

Assoc (vi, vj |S) is an estimate of the strength of the association between vi and vj
knowing the CPC and is equal to zero if vi and vj are conditionally independent given the
CPC. The function Assoc uses the p-value returned by the G2 test of independence: the
smaller the p-value the higher the association. The first phase of MMPC stops when all
remaining variables are considered independent of vi given the subset of CPC. This approach
is greedy, because a variable added in one step of this first phase may be unnecessary after
other variables were added to the CPC. The second phase of MMPC tries to fix this problem
by removing those variables in CPC which are independent of vi given a subset of the CPC.
Since this algorithm looks for candidate parents-children set for each node, if node T is in
CPC of node X, node X should also be in CPC of node T .

What is not clear about these methods are their capabilities to discover any kind of
structures and how different conditional probabilities and structures of real networks influ-
ence on the quality of results. We present the result we have obtained using the MMPC
algorithm on examples generated from various Bayesian networks in Section 4.

3. SIA Based Approach

Statistical Implicative Analysis (SIA) (R. Gras, 2008) is a data analysis method that offers
a framework for extracting quasi-implications also called as association rules. In a dataset
D of N instances, each instance being a set of n Boolean variables, the implicative intensity
measures to what extent variable b is true if variable a is true. The quality measure used
in SIA is based on the unlikelihood of counter-examples where b is false and a is true.
We are interested in the capabilities of SIA for finding multiple dependencies especially in
situations that are difficult for conventional methods that are based on other measurements.
For example, a situation in which two variables are independent but often take the same
value in a large number of examples. We want to study the efficiency of SIA to refute the
hypothesis of dependence by taking into account the counter examples. In order to use
the SIA in general, some modifications are necessary. Indeed, we do not restrict ourselves
to the binary variables and generalize the method for variables with higher cardinalities.
We also want to be able to detect a situation where a combination of variables implies
another variable, using an overall measure. In other word we want to measure one or more
combinations of variables as the parents of a child variable. For example for variables A,
B and C ∈ {0, 1, 2}, we want to define a measure which is able to detect a dependency
from B and C to A because when B = 0 ∧ C = 2, A = 1 is abnormally frequent and when
B = 0 ∧ C = 0, A = 0 is abnormally frequent. Current version of the SIA cannot be used
for this purpose.

3.1 Definition and Notation

We use the following definitions and notations besides those presented in section 2.1. All
the definitions presented here and the proofs for the rational of the measures and their
properties can be found in (R. Gras, 2008). Let Card(mi,j) be the number of times the
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variable vi takes the value mi,j in N examples. Card(mi,j) is the number of times the
variable vi takes a value different from mi,j and Card(mi1,j1 ,mi2,j2) the number of times
the variable vi1 takes the value mi1,j1 and variable vi2 takes value mi2,j2 in N examples.

Let πi be an instantiation of the parents of vi chosen from Πi, the list of all combinations
of instantiation of vi parents. For example, in the previous example with the variables A,
B and C, ΠA = (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2). If k = |Mi| then
for each vj ∈ Pari

|Πi| = k|Pari|.

Let Card(πi) be the number of times all parents of vi, take value πi in the N examples.
Then the measure q extended from SIA is

q(πi,mi,j) =
Card(πi∧mi,j)−

Card(πi)×Card(mi,j)
N√

Card(πi)×Card(mi,j)
N

.

And the inclusion index i(πi,mi,j) for measuring the imbalances is extended from SIA is

i(πi,mi,j) = (Îαmi,j/πi .Î
α
mi,j/πi

)1/2α.

If we define function f as below
f(a, b) = Card(a∧b)

card(a)
Then

Îαmi,j/πi = 1 + ((1− f(πi,mi,j)) log2((1− f(πi,mi,j)) + f(πi,mi,j) log2((f(πi,mi,j)).

If Card(πi ∧mi,j ∈ [0, Card(πi
2 [; otherwise, Îαmi,j/πi = 0; and

Îαπi/mi,j = 1 + ((1− f(mi,j , πi)) log2((1− f(mi,j , πi)) + f(mi,j , πi) log2((f(mi,j , πi)).

In above equations α = 1.The score we try to maximize is

s(πi,mi,j) = −i(πi,mi,j)× q(πi,mi,j).

3.2 Extension of SIA

Unfortunately, the current SIA measure considers only one instantiation of the parent set
at a time. If we want to consider all possible instantiations of the parent set we will
obtain as many different dependency measures as there are different possible combination
of instantiation. However, for each variable vi, we need a single measure that represents its
degree of dependency with its parent set. Therefore we must consider all the combination
of variables for Πi and use the measures s(πi,mi,j), to see how they imply all the possible
values of vi. Consequently we build a table Ti containing the set Πsi of measures s for all
the combination of Πi and Mi with size

k × |πi| = k|par(vi)|.

We tried various methods to combine the information of this table to a single measure. The
simplest way is to consider just the maximum of Πsi. Other possibilities are to take the
average of Πsi or the average of the x% of highest scores. We conducted many test with
these approaches and none of them has yielded satisfactory results. In the first series of
measures we considered the scores of one instantiation of πi , but different values of Mi
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B C A= 0 A =1 A =2 Sup E

0 0 0 1.3 0.6 1.3 0.272
0 1 0 0 0 0 0
0 2 2.1 0 0.2 2.1 0.129
1 0 0 0 0 0 0
1 1 0.4 0.2 0.5 0.5 0.45
1 2 1.1 0 0 1.1 0
2 0 0 0 0 0 0
2 1 0 0 0 0 0
2 2 0 0 0 0 0

Table 1: An example of table Ti with A,B and C ∈ {0, 1, 2}and A={(0, 0), (0, 1), (0, 2), (1, 0), (1, 1),
(1, 2), (2, 0), (2, 1), (2, 2)}.

independently. What we want to detect is that a value of πi imply one specific instantiation
of vi and we want that it is true for several different instantiations of πi. Therefore a
measure is needed to detect that s is high for a couple (πi,mi,j) with mi,j ∈ Mi and low
for all the others mi,j̄ ∈ Mi and that it is true for several πi. We have therefore defined a
score which combine, for a given πi, the maximum value Supπi of s for all mi,j ∈ Mi and
the entropy Eπi of s for all the values mi,j ∈Mi.

Supπi = max(s(πi,mi,j)) where 1 ≤ j ≤ k,

Eπi = −
k∑
j=1

p(s(πi,mi,j)) log(p(s(πi,mi,j))

log(k)

where

p(s(πi,mi,j)) =
s(πi,mi,j)

k∑
j̄=1

s(πi,mi,j̄)

.

For calculating a measure associated with a table Ti, we consider a set H of those πi
corresponding to the highest x% of Supπi values in the table. Then the score of the table is

Si,Pari =

∑
πi∈H

Supπi∑
πi∈H

Eπi
.

This is the measure we want to maximize. Table 1 presents TA for the example with
variables A,B,C. If you select the highest 20% Sup, only lines 1 and 3 will be selected
and SA will be equal to 8.48. In the following section we give an algorithm that uses this
measure to determine the major dependencies of a problem.

3.3 SIA Based Algorithm

In previous section we defined a measure Si for each variable vi knowing its parent set. To
determine the dependencies of a problem we should consider different possible configurations
of parent sets for all variables and choose the configuration that leads to a maximum total
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score. Since the number of possible configurations is exponential in the number of variables,
we need a heuristic approach. We chose an greedy approach for this heuristic. In the
beginning of the algorithm we set the parent set of each variable to empty. Then at each
step a new variable is chosen to be added to any of the parent sets using measure S. We stop
adding variables when a fixed number of edges, maxEdge, has been added. The calculation
of the table Ti is also exponential in the number of parents of variables so we restrict the
maximum number of parents for each variable to four.The next variable to be added to a
parent set is chosen by comparing the highest score of four different tables. The algorithm is
presented in Table 2. This algorithm avoids calculating the score for all combinations of 2,
3 and 4 variables in a parent set. Only combinations that include x parents can be selected
to calculate the score with x + 1 parents. The variable structMax includes: the score of
the variable regarding its parent set, the child variable and the candidate parent variable
to be added to the parent set. After initialization, table max1 contains a list of the scores
in descending order of all the combinations including one parent and one child. So there is
n2 scores in it. Tables max2, max3 and max4 are initially empty. They are used to store
the scores of child-parents combination when there are 2, 3 and 4 parents in the parent sets
respectively. Thus at each stage of the algorithm, the variable to be added to the parent set
of another variable will be determined by selecting the highest score of 4 tables. If Maxi
is the selected table, the parent set of the variable associated with the maximum score for
this table goes from i-1 to i variables. The score is then removed from the table and a new
max score is calculated and inserted in the table maxi+1.The four tables are kept sorted in
descending order so the maximum value of each table is always in position 0.

4. Experimental Study

In this section we study the capabilities of the MMPC heuristics and our SIA algorithm
in finding the conditional dependencies and dependent variables involved in conditional
dependencies.

4.1 Experimental Design

In our experiments, we use artificial data produced by sampling from randomly generated
Bayesian networks. Each network has A arcs and n = 100 variables divided into two sets:
a set of D variables for which there are direct dependency relations with at least one of the
n-D-1 other variables; a set of variables I with no dependency relationship with any of the
other n-1 variables. The CPD of each variable is randomly generated taking into account
the possible dependency relations. Each variable can take 3 different values.

We represent the distribution of independent variables as a triplet such (p1,p2, p3). For
example (80, 10, 10) means that each random variable has a probability of 0.8 for one
of its three possible values, and a probability of 0.1 for the other two. The value with a
probability of 0.8 is chosen randomly among the three random variables. For distributions
called ’random’, each variable has a different distribution (p1,p2, p3).
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for all Vi
Pari ={ ∅ }

structMax = {0, 0, 0}
max1 = ∅
for sall Vi {

for all vj 6= vi{
if (Si,Pari+vi > structMax.score) {
sturctMax.score = Si,Pari+vi

structMax.child = i
structMax.parent = j

}
}
max1 = max1 + structMax

}
DescendingSort (maxi)
max2 = ∅,max3 = ∅,max4 = ∅
nbEdge = 0
while (nbEdge < maxEdge) {
k = getIndexOfTableWithMaxScore(max1,max2,max3,max4)
enf = maxk[0].child
parchild = parchild +maxk[0].parent
if (k < 4) {
structMax = {0, 0, 0}
for all vj /∈ parchild {
if (Si,Pari+vi > structMax.score) {
sturctMax.score = Si,Pari+vi}
structMax.child = i
structMax.parent = j
}
}
maxk+1 = maxk+1 + structMax
DescendingSort (maxk+1)
maxk[0] = {0, 0 ,0 }
DescendingSort (maxk)
nbEdge = nbEdge+ 1

}

Table 2: SIA based Algorithm.

4.2 Evaluation of MMPC Heuristic

In this section, we study the ability of the MMPC algorithm to discover good parent-child
sets of variables from data generated from Bayesian networks.

In our study, we vary the characteristics of the networks to analyze the consequences
of this variation on the effectiveness of the MMPC algorithm. These changes include the
distribution of independent variables I, the number of dependent variables D and the number
of dependencies among the variables D (i.e. the number of arcs A in the network). The
results are presented in Tables 3 to 4. Each row of these tables represents an average of
results for 10 different sets of examples generated from 10 different networks but with the
same characteristics. In each experiment, we calculate the mean and standard deviation
of the number of true positive (TP), False Positives (FP), False Negative (FN) and the
computational time. TP is the number of parent-children relationships correctly predicted
by the algorithm. Thus, the number of TP at most can be twice the number of arcs of
the network because if there is an arc between node X and node T it means each of them
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Distribution
of I

Average
of TP

SD of
TP

Average
of FP

SD of
FP

Average
of FN

SD of
FN

Run
times(S)

precision= TP/(TP+FN)

(80, 10, 10) 30 7.29 116 11.33 49 7.28 6.5 37.5%
(50, 25, 25) 30 8.12 113 11.9 49 8.16 6.4 37.5%
(40, 30, 30) 29 7.28 117 11.63 51 7.28 6.7 36.25%
Random 29 6.76 118 10.54 50 6.78 6.2 36.25%

Table 3: Effectiveness of the MMPC algorithm according to the distribution of independent variables.

should be in the CPC( Candidate Parent-Children set) of the other node. In the same way,
the number of FNs, i.e. the existing arcs in the network that have not been predicted by
the algorithm, can be at most twice the number of arcs. The sum TP + FN is equal to
twice the number of arcs of the network. The number of FP is the number of dependencies
predicted by the algorithm and which do not exist in the network.

4.2.1 Finding the Dependencies

In this section, first we investigate the effects of the distribution of independent variables on
the effectiveness of the MMPC algorithm. Bayesian networks used for this purpose include
I = 75 independent variables and D = 25 dependent variables. The distribution used to
generate the independent variables varies from almost uniform to completely random. The
results are presented in Table 3. The number of arcs for all these networks is A = 40. One
can see from these results that the distribution of independent variables has virtually no
effect on the efficiency of the MMPC algorithm. The algorithm, under these conditions, was
able to discover about 37% of dependencies. It may be noted that the number of FP is high,
which means that the algorithm tends to predict many more dependencies than that really
exists. In order to investigate the effect of the proportion of independent variables, we keep
the ratio A / D almost the same while changing the numbers D and I (n remains equal to
100). As it can be seen from the results presented in the first three rows of Table 4, when the
network contains only the dependent variables (D = 100), the MMPC algorithm performs
much better and is able to find almost 80% of dependencies. However, where the number
of dependent variables is equal to 25, only about 35% of the dependencies are discovered.
The number of FP is also very low when all variables are dependent. It seems this method
has difficulty in determining the independent variables. However, it can be noted that the
run time increases considerably in the case where all variables are dependent. This can be
problematic when the number of variables in the problem is much higher than 100.

If we vary the number of arcs in the networks with n dependent variables(D = n, I=0),
like in previous section,the TP is high. However, the percentage slightly decreases when the
complexity of the networks increases. But it seems that the complexity is less important
than the proportion of dependent and independent variables. Although, it should be noticed
that the complexity of the network influences the computation time.

4.2.2 Problem of Selection of Variables

We mentioned in the introduction the possibility of methods that detect dependencies for
the selection of variables involved in dependency relations. The idea is to decompose the
original problem by locating the independent variables (those with empty candidate parent-
children sets) for which the optimization can be performed independently. As the search
space is reduced, the chance of finding a good quality solution is increased. The problem here
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D I A Average
of TP

SD of
TP

Average
of FP

SD of
FP

Average
of FN

SD of
FN

Run times (s) precision= TP/(TP+FN)

25 75 40 29 6.76 118 10.54 50 6.78 0.31 36.2
50 50 80 53.4 8.81 99.4 11.35 106.6 8.81 0.34 33.4
100 0 150 243.8 8.17 16.6 6.81 56.2 8.17 21.1 81.3
25 0 30 52.4 3.55 2.4 1.96 7.6 3.55 0.31 87.3
25 0 40 65.6 4.17 2.2 1.89 14.4 4.17 1.83 82
25 0 60 91.8 4.51 3.2 3.37 28.2 4.51 6.63 76.5
100 0 120 200.6 5.51 25.2 7.28 39.4 5.52 9.98 83.6
100 0 150 243.8 8.17 16.6 6.81 56.2 8.17 21.1 81.3
100 0 200 312.4 9.67 10.8 3.37 87.6 9.67 28.3 78.1

Table 4: The average efficiency of MMPC algorithm regarding the proportion of independent variables and
complexity of the Bayesian network.

Distribution D A TP TN

random 25 60 24.2 11.4
random 25 40 23.2 12.4
random 25 30 24 10.6
(80, 10, 10) 25 40 23.8 12.6
(50, 25, 25) 25 40 23.8 13.6
(40, 30, 30) 25 40 23.8 13.8

Table 5: Results obtained by the MMPC algorithm for the problem of selection of variables.

is slightly easier than the one studied in section 4.2.1 because the goal here is to determine
the list of variables involved in dependency relationships without finding the dependencies
precisely. We therefore conducted a series of experiments to measure the capacity of the
MMPC on this problem.

We used networks with different independent variable distributions generated using the
method described in section 4.1. We also vary the complexity of the networks by changing
the number of arcs. The results are presented in Table 5. Although the MMPC approach
could discover more than 90% of the dependent variables in Table 5 (23 out of 25), it
discovered just about 17% of independent variables (TN in Table 5). This means that this
method tends to significantly overestimate the number of dependencies. The results are
little affected by changing distributions of independent variables and the complexity of the
network (results not shown). It seems that this method cannot be used for the problem of
selection of variables because almost all variables are selected.

4.3 Evaluation of SIA Based Algorithm

We repeated the same experiences as those in Section 4.2 to evaluate our SIA based detection
algorithm in order to achieve the most possible honest comparison. It should be noted
though that this disadvantaged SIA. Indeed, the data were generated from the models,
Bayesian networks, which are based on conditional probability measurement. The SIA
approach uses an alternative measure that does not have the same properties. In particular,
a very significant difference is that the Bayesian network model is not transitive while
the SIA is. But a totally fair comparison is not possible and, taking into account these
differences in our analysis, this comparison seemed to be the best way to proceed.
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Dist. of I Avg Avg Av P Run
& maxEdge of TP of FP of FN Time

(80, 10, 10), 35 0.9 34.1 39.1 2.25 37
(50, 25 ,25), 35 6.7 28.3 33.3 16.7 61.7
(40, 30, 30), 35 7.8 27.2 32.2 19.5 69.3
Random, 35 , 0.6 34.4 39.4 1.5 44.6
(80, 10, 10), 50 1 49 39 2.25 46.1
(50, 25 ,25), 50 8.4 41.6 31.6 21 76.4
(40, 30, 30), 50 11 39 29 27.5 89.8
random , 50 1.2 48.8 38.8 3 57.4
(80, 10, 10), 150 1.2 148.8 38.8 3 63.6
(50, 25 ,25), 150 12.3 137.7 27.7 30.7 179
(40, 30, 30), 150 15.3 134.7 24.7 38.2 184
random , 150 4.9 145.1 36.1 12.2 194

Table 6: Results based on distribution of I, x=10%.

Dist. of I Avg Avg Av P Run
& maxEdge of TP of FP of FN Time

(80, 10, 10), 35 0.2 34.8 39.8 0.5 33.8
(50, 25 ,25), 35 7.7 27.3 32.3 19.25 59.7
(40, 30, 30), 35 5.1 29.9 34.9 12.7 66.4
random ,35 0.4 34.6 39.6 1 36.9
(80, 10, 10) , 50 0.2 49.8 39.8 0.5 42.3
(50, 25 ,25) , 50 6.2 43.8 33.8 15.5 70.2
(40, 30, 30) , 50 7.1 42.9 32.9 17.7 80.9
random , 50 0.5 49.5 39.5 1.25 41.3
(80, 10, 10), 150 0.3 149.7 39.7 0.75 55.5
(50, 25 ,25) , 150 6.6 143.3 33.4 16.5 164.2
(40, 30, 30), 150 8 142 32 20 177.9
random , 150 4.2 145.8 36.8 10.5 140.9

Table 7: Results based on distributions of I, x=50%.

4.3.1 Finding the Dependencies

We use the same data as in section 4.2. Our algorithm uses several parameters: the percent-
age of best Sup, x for each table Ti and the maximum number of variables to be added to
all parent sets, maxEdge. For each of these parameters we used different values. Those we
found most relevant and we presented here are 10% and 50% for x and 35, 50 and 150 edges
for maxEdge parameter. We have evaluated three different configurations corresponding to
a real situation in which we do not know the number of dependencies of the problem in
advance. Actually we search slightly less, slightly more and much more dependencies that
really exist by setting maxEdge to 35, 50 and 150 respectively. The results presented in Ta-
bles 6 and 7 indicate that our algorithm discovered few dependencies. The measure appears
more sensitive to the distribution used to generate the independent variables. The results
obtained with the value x = 10% is slightly better. The calculation time is also higher than
the max-min algorithm, but our program has not yet been optimized for computational
efficiency.

4.3.2 The Problem of Selection of Variables

We used the same data sets to test the ability of our algorithm to solve the problem of
selection of variables involved in dependencies relation. The results are presented in Tables
8 and 9 and show a strong potential of our algorithm for this problem. The results are much
better than those obtained with the max-min algorithm. Although the number of TP is
slightly lower, the number of FP is considerably lower. What is most important is the fact
that the level of prediction is much better that one would expect by chance. As the ratio
of dependent variables to the number of independent variables is 1/3 in the model used to
generate the data, a random prediction would give the same ratio of TP / FP (ie, in this
case TP / (75-TN)). In Tables 8-9 in column TP / (0.33xFP), we present the gain compared
to a random selection of variables. In the cases with distributions of independent variables
(40, 30, 30) and (50, 25, 25) the gain is very significant, up to 16.1. For comparison, the
results of the max-min algorithm show more stability, but a gain that never exceeds 1.18.
Our algorithm seems to have more difficulty when the independent variables have extreme
distributions, ’random’ or (80, 10, 10). With x = 10% and when we search less dependencies
that it really exists (35 Edges), the gain is always at least 1. Although this is a first version,
our algorithm seems to have a very high potential to detect the dependent variables and
thus to solve the problem of selection of variables. We also tested our algorithm on the data
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Dist. of I, maxEdge Avg of TP Avg of TN TP/(0.33xFP)

(80, 10, 10), 35 6.7 55.5 1.03
(50, 25 ,25), 35 15.5 71.8 14.7
(40, 30, 30), 35 15.4 72.1 16.1
random, 35 3.4 64.7 1
(80, 10, 10), 50 6.8 46.4 0.73
(50, 25 ,25), 50 18.3 68.7 8.79
(40, 30, 30), 50 18.3 69.7 10.5
random, 50 6.1 61.3 1.36
(80, 10, 10) 150 9.2 13 0.45
(50, 25 ,25) 150 22.8 31.8 1.6
(40, 30, 30) 150 21.8 46.7 2.33
random 150 17.3 32.6 1.24

Table 8: Results for selection of variables, x=10%.

Dist. of I, maxEdge Avg of TP Avg of TN TP/(0.33xFP)

(80, 10, 10), 35 7.6 60.4 1.58
(50, 25 ,25), 35 16.8 66.2 5.79
(40, 30, 30), 35 14.8 67 1.85
random, 35 4 57 0.67
(80, 10, 10), 50 8 53.5 1.13
(50, 25 ,25), 50 18.3 59.9 3.67
(40, 30, 30), 50 18.1 63.7 4.85
random, 50 5.5 50 0.67
(80, 10, 10), 150 11.8 6.7 0.52
(50, 25 ,25), 150 22.1 22.8 1.28
(40, 30, 30), 150 22 41.2 1.97
random, 150 22 16.5 1.14

Table 9: Results for selection of variable, x= 50%.

presented in section 2.3.2 in which D = 50, I = 50 and A = 80 (results not presented here).
The results show that with configuration x = 10%, the gains are between 1.28 and 1.82.

5. Conclusion

We conducted a study on the capabilities of two methods based on different measures for
discovering the dependencies of a problem: 1) the max-min algorithm, which is based on
the test of conditional dependency G2; 2) an algorithm that we developed based on an
extension of the SIA measure. We applied these algorithms to several datasets by varying
the parameters of the problem such as the distribution of independent variables, the number
of dependent variables and the number of dependencies. We also considered two different
problems: to determine the dependencies relations and to identify the variables involved in
the dependency relationships. Of course finding a solution for the first problem can also
solve the second. However, it is generally not possible to directly and fully resolve this
problem. Being able to see at first just what is the subset of variables involved in the set
of dependencies reduces the complexity of the first problem and thus help to reach a better
solution.

Our results showed a good efficiency of the max-min algorithm for discovering the de-
pendencies when all the variables of the problem are involved. The algorithm appears to
be little affected by the change in the complexity of the model and the distributions of the
independent variables. However, it has some significant limitations to detect dependencies
when part of the variables is independent. The algorithm max-min does not appear to
be effective for the second problem: the selection of variables. Our SIA based algorithm,
does not seem capable of directly detecting the dependencies whatever the configuration
was. But it seems very effective to determine the dependent variables. However, it is less
efficient in situations where the independent variables have extreme distributions like (80,
10, 10) or ’random’. The two approaches seem complementary and promising. It would
be very interesting to develop a method combining these two approaches. In a first phase
our algorithm, using the extended version of the SIA, would select a subset of variables for
which there is a strong presumption of dependency. Then, in a second phase, the max-min
approach is applied to this sub-set to determine more precisely where these dependencies
are. All these information would then be used to build a Bayesian network. It would be
also interesting to compare the methods based on the importance of the dependencies using
some connection strength (Ebert-Uphoff, 2007) measure instead of just counting the num-
ber of discovered dependencies. It would be also interesting to compare the modified SIA
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with multi-dimensional form of classical measures to detect correlation between variable
distributions.
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