Learning by Cheating - Supplementary Material

Dian Chen Brady Zhou Vladlen Koltun Philipp Kréhenbiihl
UT Austin Intel Labs, UT Austin Intel Labs UT Austin

1 Additional details

Map-view perspective transformation. Given a predicted waypoint W = (0, W,) in camera
coordinates, we compute its projection into the ground plane (s, Wy, 0) using cameras horizontal

field of view (fov), f = Wfovﬂ)’ height p,,, and canvas center ¢, = %, cy = % We assume the
camera always faces forward, as the map is anchored at the agents position and in its local coordinate
frame. We always project points onto a constant ground plane z = 0 to avoid depth estimation:
Wy = e, Py Wy = %py To make the projection a one-to-one mapping, we additionally
move the projected points back by 4 meters, to prevent points closer to the ego-vehicle getting
clipped at the image bottom. This transformation is differentiable, and the sensorimotor agent can
be end-to-end trained by map coordinate waypoints. The camera is placed at p = (2,0, 1.4) in the
vehicle coordinate, at the hood position. The camera faces forward, and has a resolution of 384 x 160

with horizontal fov 90°.

Data collection We use 157K training frames and 39K validation frames at 10 fps collected by a
hand-crafted autopilot to train the privileged agent. We use 174K training frames in our 0.9.6 imple-
mentation. For both our offline dataset collection and privileged rollouts, we collect the frames using
four training weather conditions uniformly sampled in the training town. We add 100 other vehicles
to share the traffic with the ego-vehicle. We add 250 pedestrians in our 0.9.6 implementation.

Hyperparameters We use the Adam optimizer with initial learning rate 10~%, no weight decay
to train all our models. We use batch size 32 to train all of our models in 0.9.5, and we use batch
size 128 to train the privileged model, and batch size 96 to train the image model in 0.9.6. We used
the batch augmentation trick [5] with m = 4 for our image model training in 0.9.6. For the spatial
argmax layers in both privileged and sensorimotor agent, we fix temperature 5 = 1 instead of a
learnable parameter. We use PyTorch 1.0 to train and evaluate our models.

Image model warm-up Since a randomly initialized network returns the canvas center at the end
of the spatial argmax layer in the image coordinate, it corresponds to infinitely far when projected.
This causes exploding gradients in the backward pass. To address this issue, we warm-up our image
model by first supervising it with loss in the projected image coordinate space for 1K iterations
before the two-stage training.

2 Additional experiments

If an agent can perform near perfectly using a map representation, why not simply try to predict the
map representation from raw pixels, then act on that? This approach resembles that of Miiller et al.
[7], where perception and control are explicitly decoupled and trained separately.

We train two networks - the first network is used for perception and directly predicts the privileged
representation from an RGB image. We resize the RGB image to 192 x 192 and feed this into a
ResNet34 [4] backbone, followed by five layers of bilinear-upsampling + convolution + ReLU to
produce a map of the original resolution of 192 x 192. The perception network is trained using an
L1 loss between the network’s output, and the ground truth privileged representation. The second
network is used for action and predicts waypoints from the output of the first network. We use the
same architecture and training procedure as the privileged agent in our main experiments, and we
freeze the weights of the perception network during training.

3rd Conference on Robot Learning (CoRL 2019), Osaka, Japan.

We use a dataset of 150k frames collected from an expert in training conditions, with no trajectory
noise. The offline map predictions on the training and validation sets are quite good, but we notice
that during evaluation, even slight out of distribution observations produce erroneous map predic-
tions, causing the waypoint network to fail. To address this, we collect another dataset of the same
size and employ trajectory noise [1] in 20% of the frames, to broaden the states seen by the percep-
tion network. Table 1 shows the results. Both map prediction agents performs significantly worse
than our two-stage agent.

Train Town Test Town
Method Train Weather Test Weather Train Weather Test Weather
No augmentation 39 34 30 32
Trajectory noise 58 62 65 62
LBC 100 100 100 100

Table 1: Map prediction baseline with and without trajectory noise compared to our two stage LBC,
evaluated on the Navigation task of the CoRL2017 benchmark on CARLA 0.9.5.

3 Benchmark results

For completeness, Table 2 and Table 3 show the training town performance in the CARLA CoLR
2017 and NoCrash benchmark respectively. We again compare to MP [3], CIL [1, 3], CAL [8],
CIRL [6], and CILRS [2].

Table 4 compares the different CARLA versions 0.8 and 0.9.5. We compare the performance of
CILRS on the Navigation Dynamic task between with (version 0.8), and without a working pedes-
trian autopilot (version 0.9.5). The CILRS performance in 0.9.5 matches the older CARLA version
in testing weathers, and is slightly lower in the training weathers. This indicates that CARLA 0.9.5
does not make the task easier. We report the higher numbers from the CILRS paper [2].

Task Weather MP[3] CIL[1] CIRL[6] CAL[8] CILRS[2] LBC LBCf
Straight 98 98 98 100 96 100 100
One Turn train 82 89 97 97 92 100 100
Navigation 80 86 93 92 95 100 100
Nav. Dynamic 7 83 82 83 92 100 100
Straight 100 98 100 100 96 100 100
One Turn test 95 90 94 96 96 100 96
Navigation 94 84 86 90 96 100 100
Nav. Dynamic 89 82 80 82 96 96 96

Table 2: Quantitative results on the training town in the CoRL2017 CARLA benchmark in the train-
ing town. LBC' denotes our agent trained and evaluated on our customized CARLA based on 0.9.6,
the most up-to-data CARLA version. Note that CARLA 0.9.6 has different graphics comparing to
0.8 and 0.9.5, while the latter two share the same.

References

[1] F. Codevilla, M. Miiller, A. Lépez, V. Koltun, and A. Dosovitskiy. End-to-end driving via
conditional imitation learning. In /CRA, 2018.

[2] F. Codevilla, E. Santana, A. Lopez, and A. Gaidon. Exploring the limitations of behavior cloning
for autonomous driving. In ICCV, 2019.

[3] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An open urban driving
simulator. In CoRL, 2017.

CARLA <0.9.5 CARLA 0.9.6

Task Weather CIL[1] CAL[8] CILRS[2] LBC LBC PV AT

Empty 79+1 81+1 87+1 100+0|97+1 100+1 10040
Regular train 60+1 73+2 83+£0 99+1 [93+£1 96£3 99+1
Dense 21+2 4241 42+2 95+2 | 71+£5 8045 86+3
Empty 83+2 8 +x2 87+1 100£0 | 8 £4 1000 100+0
Regular test 555 68£5 88+2 99+1 | 87+3 97+3 99+£1
Dense 13+4 33+£2 70+£3 97+£2 | 63+1 81+6 83+6

Table 3: Quantitative results on the training town in the NoCrash benchmark. The methods were run
on CARLA <=0.9.5. LBC' denotes our agent trained and evaluated on our customized CARLA
based on 0.9.6, the most up-to-data CARLA version. Note that CARLA 0.9.6 has different graphics
comparing to 0.8 and 0.9.5, while the latter two share the same.

Train Town Test Town
CARLA version Train Weather Test Weather Train Weather Test Weather
CILRS [2] 0.84 92 96 66 90
CILRS 0.9.5 (no ped) 84 96 53 92

Table 4: Comparison of CILRS [2] on different versions of CARLA on the Navigation Dynamic
task of the CoRL2017 benchmark.

[4] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR,
2016.

[5] E. Hoffer, T. Ben-Nun, I. Hubara, N. Giladi, T. Hoefler, and D. Soudry. Augment your batch:
better training with larger batches. arXiv:1901.09335, 2019.

[6] X.Liang, T. Wang, L. Yang, and E. Xing. CIRL: Controllable imitative reinforcement learning
for vision-based self-driving. In ECCV, 2018.

[7] M. Miiller, A. Dosovitskiy, B. Ghanem, and V. Koltun. Driving policy transfer via modularity
and abstraction. In CoRL, 2018.

[8] A. Sauer, N. Savinov, and A. Geiger. Conditional affordance learning for driving in urban
environments. In CoRL, 2018.

	Additional details
	Additional experiments
	Benchmark results

