Learning Navigation Subroutines from
Egocentric Videos

Supplementary Material

Ashish Kumar' Saurabh Gupta® Jitendra Malik'-2
1UC Berkeley 2Facebook Al Research 3UIUC

ashish_kumar@berkeley.edu, saurabhg@illinois.edu, malik@eecs.berkeley.edu

Al Subroutines and Affordances Full Training Details

Inverse Model Training and Pseudo-labeling. The agent starts at 1.5K different locations spread
over 4 environments (E;,qin) and executes random actions for 30 steps. The collected data (45K
interaction samples) is used to train the inverse model. We use cross-entropy loss between the
actual action and the predicted action. We use Adam [1] with 64 batch size and 0.001 learning rate.
Ablations over number of interaction samples by varying number of starting locations and number
of steps per starting location is shown in Figure A4.

This model is then used to pseudo-label videos in D to obtain dataset D. D is used to learn subrou-
tines 7 (., z) and the affordance model.

Subroutine Training: We slice each of the 217K videos into clips of length 10 steps with a sliding
window of 5 (ablations over the length of subroutines is shown in Figure A4). This gives us a total
of 2.2M clips to train our subroutines. We experiment with using 4 subroutines (i.e. the z vector is
4-dimensional) and show ablations over this hyper-parameter Figure A4. This model is trained by
minimizing the cross-entropy loss between the actions output by the policy (a) and the pseudo-labels
(@) obtained from the inverse model.

Affordance Training: We train the affordance model to predict the inferred subroutine id z given
the first image in length 10 trajectory by minimizing cross-entropy loss over the inferred z label.

A2 Consistency and Diversity Visualizations

We unroll different subroutines from different locations in the test environment &;.4;, and visualize
the trajectories followed by each of them in the top view in Figure A2. We show multiple rollouts
of each subroutine from each of the starting locations. Randomness in behavior comes from the
sampling of the actions from the network output. The three top view figures in each column of Fig-
ure A2 correspond to one subroutine at three different starting locations and we rollout 8 trajectories
from each starting location. Thus, each column demonstrates that a specific subroutine does similar
things when initialized at different locations, showing the consistency of our learned subroutines.
For example, SubR1 always turns right, SubR2 always turns left. Rollouts shown in different rows
of Figure A2 show that different subroutines show diverse behaviors when started from the same
location. This shows the diversity of across our learned subroutines.

We also quantitatively compute disentanglement: we unroll the different subroutines from the same
starting location and compute the intersection over union between trajectories from subR; and SubR;
(for example, IoU between the green region and blue region in plots in the top row of Figure A2).
A higher IoU implies similar areas are traversed by two sets of sub-policies, lower IoU implies the
two sub-policies are distinct. Thus, we should expect a higher IoU between the trajectories from the
same subroutine and a lower IoU between different subroutines. The average loU between different
subroutines is 0.42, and the average IoU between trajectories from the same subroutines is 0.58.
Thus, indeed different subroutines are disentangled.

3rd Conference on Robot Learning (CoRL 2019), Osaka, Japan.

A3 Affordance Model Entropy Visualization

We also look at the entropy of the out- "

put of affordance model in Figure A1l l L

in top view. The arrow shows the di-

rection in which the agent is facing

and we plot the entropy of the pre- i g - _
diction of the affordance model when

the first-person (egocentric) observa- 11
tion is given as input. A higher en-

tropy lmplies that more subroutines Fi.gure Al: Multi-modality in .Affordance Predictions: We visu-
apply in the given scenario. The ob- alize the entropy of the distribution output by the affordance model
in the test environment. A larger circle denotes a higher entropy
meaning more subroutines can be invoked at that location. We ob-
serve that the affordance model has a higher entropy as the agent
approaches hallway intersections, or room entrances. This multi-
modality collapses as the agent crosses the decision junctions.

served entropy is consistent with our
expectations, as explained in the fig-
ure caption.

A4 Baselines
for Exploration

1. Random Policy: We randomly sample an action from the four possible actions (stay, left, right,
forward) at every step.

2. Forward Bias Policy: Since motion is typically dominated by forward motion, we compare to an-
other policy that samples the forward action more preferably. We use the distribution of actions in
the MP3D Walks Dataset, probabilities for stop, turn left, turn right and forward
were [0.0,0.17,0.17, 0.66] respectively.

3. Always Forward, Rotate on Collision: This baseline repeats the following procedure: rotate by a
random angle sampled from (—m, 7], move straight till collision.

4. Diversity Policy (DIAYN) [2]: We use the state-of-the-art RL-based unsupervised skill learning
algorithm from Eysenbach et al. [2] to learn 4 diverse skills on &4, environments. We test the
learned skills for exploration by randomly sampling a skill, and then executing it for 10 steps,
where we sample actions from the probabilities output by the selected skill. Policy architecture
is same as those for our subroutines, discriminator is based of a ResNet 18 model. Both models
are initialized from ImageNet. Policy is trained for over 10 million interaction, best performance
occurs at around 1M interaction samples.

5. Curiosity Policy [3]: We train a curiosity-based agent that seeks regions of space where its for-
ward model has high prediction error [3]. Policy architecture is same as that for our subroutines
(except that it does not take in the latent vector z), and initialized from ImageNet. Forward model
is learned in the convd average pooled feature space of a fixed Resnet 18 model pre-trained on
ImageNet. Trajectories are executed by sampling from the action probabilities output by the
policy. Once again, policy is trained for over 10 million interaction, best performance occurs at
around 1M interaction samples.

Curiosity Model: Pathak er al. [3] proposed use of prediction error of a forward model as an
intrinsic reward for learning skills using RL. We were surprised at the rather poor performance for
the curiosity model. We found that the model converges to the policy of simply rotating in-place.
Such a degenerate solution makes sense as rotating in-place has higher prediction error than staying
in-place and moving forward. In-place rotations cause new parts of the environment to become
visible which makes for a harder prediction task. Staying-in-place and moving forward cause only
minor changes to the image or no changes at all. Thus, the curiosity model rightly learns to simply
rotate in-place. We saw this same behavior across different runs with different hyper-parameters and
different architectures: policies will collapse to outputting just the rotation actions. Entropy based
regularization is used to prevent such a collapse. We used such regularization and cross-validated
various choices for the trade-offs in loss between entropy regularization and policy gradient loss,
but didn’t find it to alleviate this issue. We selected the best model for the task of exploration across
different runs and different number of training iterations. This selected model ended up being a
heavily regularized model that would pick actions almost uniformly at random, as that would get
higher performance than simply rotating in-place. As both extremes (taking actions randomly, or

2 3
~——— subroutine 0

~u w

x

Figure A2: Subroutine Consistency and Diversity: Each top-view figure shows multiple roll-outs of a sub-
routine from a given location. The black arrow in white circle shows starting position and the black dots shows
the ending location of the rollouts. Columns show the same subroutine over different starting locations, il-
lustrating the consistency of our subroutines while rows show different subroutines unrolled from the same
location illustrating their diversity. It appears that SubR1 prefers turning right and, SubR2 prefers turning left.
Note that policies only use first person views.

picking only the rotate in-place action) are trivial solutions, the curiosity model starts to ignore the
image and consequently performs on-par with uninitialized models for reinforcement learning tasks.

Diversity Model: The diversity model from Eysenbach ef al. [2] seeks to classify states with the
skill id that was used to get to it (see Algorithm 1 in [2]). While this works well for the environ-
ments studied in [2], it breaks down for visual navigation. This is because, the same state can be
reached via different skills depending on the starting state. This causes the skill classifiers ¢ to only
perform at chance. Consequently, the reward for the skill policies is uniform, causing the policies
to collapse (all actions produce the same reward, and hence no learning happens). We observed
this empirically in our experiments as well: accuracy for state classification was at chance (25% for
four skills), and the reward stayed constant. Best performing policy (based on validation for explo-
ration metrics) always predicted the following probabilities for different actions for different skills:
[0.246,0.232,0.237,0.285] (for stop, left, right, forward respectively). As this can be
done without looking at the image, the policy learns to ignores the image. Thus, the model perform
on-par with uninitialized models for hierarchical reinforcement learning experiments.

AS Exploration Visualization

We show the coverage for each method in Figure A3. Figure 10 overlay trajectories executed by
different policies onto the map (only used for visualization). We see a wider coverage for VMSR
over other methods and also observe that the trajectories avoid the walls of the hallways when going
down them.

=== Forward Bias Policy =~ Always Forward, Rotate on Collision

Figure A3: Coverage Visualization: We show coverage of the overall space after sampling 20 roll-outs from
11 different locations in the the test environment E;s¢. Note that VMSR covers more of the environment. It is
able to come out of rooms and different roll-outs go towards different areas. Curiosity, diversity and Random
policies spend most of their time inside rooms. Policies that are biased to move forward do come out, but do
not show diverse behavior. Visualizations show top view, however policies only use first person views.

08 08 08 038
— With Affordance Model
0.7 0.7 0.7 — random 0.7
« 06 06 06 06
c
505 05 05 05
004 0.4 0.4 0.4
o3 0.3 03 - 03
b o e ——— .
[P - - = 02 T SeIE————c 0.2 o —=] ry ——————————
0.1 01 01 01
0.0 0.0 0.0 0.0
104 10° 10° 25 50 75 100 125 150 8 10 12 14 16 118 20
20 20 20 20
— With Affordance Model g
18 18 18 .,< 18 :
16 o — 16 15 Bsmmme 16 //
7] — _ = X
A ,/\~ 14 ——— 14 w =
X 12 12 12 12
S 10 10 10 10
8 8 8 8
6 6 6 6
104 108 108 25 50 75 100 125 150 8 10 12 14 16 18 20
12 12
12 12 — With Affordance Model
— random
10 10 10 10
8 T 8 8 8
T~ - 9 — D I
Qs 6 6 i S 6 3
<
4 4 4 4
2 2 2 2
0 0 0
10¢ 108 10° 25 50 7.5 100 125 150 8 10 12 14 16 18 20
Interaction Samples (Visual Diversity) Interaction Samples (Episode Length) Num Subroutines Path Length

Figure A4: Dependence on active environment interaction samples, length of reference videos and num-
ber of subroutines specified: Column 1 and 2: We plot the exploration metrics against the number of self
supervision interaction samples. There are two orthogonal ways of achieving this — increasing the number
of restarts while keeping each episode length fixed (Col 1) and increasing the length of each self supervision
episode while keeping the number of restarts fixed (Col 2). We see that visual diversity improves performance
on Max Dist metric, but saturates at 45K interaction samples (1500 restarts with 30 steps each). Performance
roughly remains the same as we increase the episode length. Column 3: We change the number of subroutines
learned on the x-axis and compare the use of affordance model for sampling subroutines to randomly sampling
subroutines. Affordance model shows improvement in collision rate over random sampling, indicating that the
affordance model better respects the constraints of the physical space. We don’t see an improvement in the ex-
ploration metric or max distance metric. Column 4: We observe improvements as we increase the path length
of the reference trajectories. Longer trajectories presumably allow VMSR to learn more complex subroutines.

Area Goal with Sparse Rewards

< o o g
EN o © =}

Episode Reward

o
N

— Inverse Features
—— VMSR (4 SubRs) [Ours]

o
=}

0 10 15 20

5
Env Interactions (x 100K)
Figure A5: We compare VMSR initialization to initializing the image features of the sub-policies with the
features from the inverse model for the downstream HRL task of PointGoal with sparse rewards. We see that
VMSR is 3x more sample efficient compared to this baseline.

A6 Ablations

We show ablations over 4 hyper-parameters in Figure A4 (see caption for more details). We compare
VMSR initialization to inverse features initialization for downstream HRL task in Figure AS5. We
show the ability of the trained model to generalize across various camera heights of the reference
images in Figure A6.

A7 RL Experimental Setup

We use &;.s¢ for RL experiments. We use A2C to train all our algorithms on Point Goal task and
Area Goal task.

e Area Goal: The task is to find the nearest washroom. &;.,; contains 2 washroom, and we
start the agent 10-23 steps away from the nearest washroom. We randomly start the agent
at a different location for every episode.

o Point Goal: We specify the goal coordinates relative to the start position, and randomly
sample the start and the goal locations every episode. The goal is 10-17 steps away from
the start location.

A8 Video Results

The enclosed video vmsr.mp4 contains video results of real robot deployment followed by an
explanation of our method. We use [4] for real robot deployment. Note that along with the 4
primitive actions (rotate left, rotate right, move forward and stay in place), the robot also moves
slightly backward incase of a collision.

A9 Area Splits and Agent Settings

We give details of area splits and the action space of the experts which generate reference videos
in Table A1l. In the table, step size (z) refers to the length of a single forward step, 6 refers to the
rotation angle for left/right turn, ¢ refers to the elevation angle of the onboard RGB camera from the
horizontal and h refers to the height of the robot from the ground.

100

80 1 H
—
S H :
< 60 i Seen :
& : During :
g i Training :
Q 40 H E
Q
<
20
0 £ ;
0 50 100 150 200 250 300
Height (cm)

Figure A6: We test the generalization of the learned inverse model on images from &,4;, which is unseen
during training. We plot the prediction accuracy (y axis) as we increase the camera height from the ground (x
axis). The agent is trained on heights from 90cm to 150 cm during training in £;4in and evaluated on heights
from 10cm to 300cm. We observe a very consistent performance even in the range not seen during training.
Note that the agent starts touching the ceiling of the room in some places at 300cm.

Table A1: Split of environments between different sets used in the paper. These environments are from Stanford
Building Parser Dataset (SBPD) [5] and Matterport 3D Dataset (MP3D) [6]. We fix a step size (x) and rotation
angle (6) for each area by randomly sampling from the list. For elevation angle and height of the robot, we
resample a value from the given ranges for every video.

Split Environments Agent Settings
Step Sizes ~ Rotation Angles Elevations Height
(x in cm)) (®) (h in cm)
Etrain areal, area6, B6ByNegPMKs, 20, 50, 80 36°,24°, 18° [-25°,5°T [90, 150]
Vvot9LyltCj
Evideo areaba, areabb, p5wJIjkQkbXX, 30,60,90 40°,30°,24°,20° [-35°,-5°] [80, 160]
VFuaQ6m2Qom, 2n8kARJN3HM,
SN83YJsR3w2
Eval area3 40 30° -15° 120
Etest aread 40 30° -15° 120
References

[1] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[2] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all you need: Learning skills
without a reward function. In /CLR, 2019.

[3] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by self-
supervised prediction. In ICML, 2017.

[4] A. Murali, T. Chen, K. V. Alwala, D. Gandhi, L. Pinto, S. Gupta, and A. Gupta. Py-
robot: An open-source robotics framework for research and benchmarking. arXiv preprint
arXiv:1906.08236, 2019.

[5] 1. Armeni, O. Sener, A. R. Zamir, H. Jiang, I. Brilakis, M. Fischer, and S. Savarese. 3D semantic
parsing of large-scale indoor spaces. In CVPR, 2016.

[6] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner, M. Savva, S. Song, A. Zeng, and
Y. Zhang. Matterport3D: Learning from RGB-D data in indoor environments. In 3DV, 2017.

	Subroutines and Affordances Full Training Details
	Consistency and Diversity Visualizations
	Affordance Model Entropy Visualization
	Baselines for Exploration
	Exploration Visualization
	Ablations
	RL Experimental Setup
	Video Results
	Area Splits and Agent Settings

