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Abstract: The ability to discover approximately optimal policies in domains with
sparse rewards is crucial to applying reinforcement learning (RL) in many real-
world scenarios. Approaches such as neural density models and continuous ex-
ploration (e.g., Go-Explore) have been proposed to maintain the high exploration
rate necessary to find high performing and generalizable policies. Soft actor-critic
(SAC) is another method for improving exploration that aims to combine efficient
learning via off-policy updates, while maximizing the policy entropy. In this work,
we extend SAC to a richer class of probability distributions (e.g., multimodal)
through normalizing flows (NF) and show that this significantly improves per-
formance by accelerating discovery of good policies while using much smaller
policy representations. Our approach, which we call SAC-NF, is a simple, efficient,
easy-to-implement modification and improvement to SAC on continuous control
baselines such as MuJoCo and PyBullet Roboschool domains. Finally, SAC-NF
does this while being significantly parameter efficient, using as few as 5.5% the
parameters for an equivalent SAC model.

1 Introduction

Reinforcement learning (RL) provides a principled framework for solving continuous control prob-
lems, yet current RL algorithms often do not explore well enough to solve high-dimensional robotics
tasks [1]. Environments with a large number of continuous control factors, such as those that involve
combinations of leg movement, arm movement, posture, etc, have many local minima [2]. For ex-
ample, it is possible to achieve forward momentum in humanoid environments [3] with a variety of
suboptimal policies over those factors (e.g. arms lean forward or backward, not synchronized with
legs), in a way that will fail readily as the environmental variables change (such as environments
designed to purposely destabilize the agent, e.g., Coumans and Bai 2016). Success in these environ-
ments requires a complex coordination of the control factors, and to learn this, it is necessary to have
an exploration strategy that avoids converging too early on suboptimal local minima [5].

Soft Actor-Critic (SAC) [6] is a state-of-the-art exploration-based algorithm that adds a maximum
entropy bonus term [7] to a differentiable policy objective specified by a soft critic function. As an
off-policy algorithm, SAC enjoys sample efficiency – a desirable property in robotics, where real
world experiments might be costly to perform. However, SAC is limited to modeling policies that have
closed-form entropy (e.g., unimodal Gaussian policies), which we posit hurts exploration [8]. The
main contribution of this work is to extend SAC to a richer class of multimodal exploration policies,
by transforming the actions during exploration via a sequence of invertible mapping known as
normalizing flows (NF) [9]. Our approach, which we call SAC-NF, is a simple and easy-to-implement
extension to the original SAC algorithm that gives the agent access to a more expressive multimodal
policy and that achieves much better performance on continuous control tasks.

We show empirically that this simple extension significantly improves upon the already high explo-
ration rate of SAC and achieves better convergence properties as well as better performance on both
∗These authors contributed equally.
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sparse and deceptive environments. Next, the class of policies that we propose requires significantly
less parameters than its baseline counterpart, while also improving on the baseline results. Finally,
we assess the performance of both SAC and SAC-NF across a variety of benchmark continuous
control tasks from OpenAI Gym using the MuJoCo simulator [10] and the realistic Bullet Roboschool
tasks [4].

2 Related Work

Off-policy RL Off-policy strategies in RL collect samples under some behaviour policy and use
those samples to train a target policy. Off-policy algorithms are known to train faster than their
on-policy counterparts, but at the cost of higher variance and instability [11]. Among this family,
actor critic (AC) strategies have shown great success for solving continuous control tasks. In between
value-based and policy-based approaches, an AC algorithm trains an actor (policy-based) using
guidance from a critic (value-based). Two major AC algorithms, SAC [6] and TD3 [12], have shown a
large performance improvement over previous off-policy algorithms such as DDPG [11] or A3C [13].
TD3 achieved this by maintaining a second critic network to alleviate the overestimation bias, while
SAC enforced more exploration by adding an entropy regularization term to the loss function.

Density estimation for better exploration Using powerful density estimators to model state-action
values with the aim to improve exploration generalization has been a long-standing practice in RL.
For instance, [14] use dropout approximation [15] within a Bayesian network and show improvement
on stability and performance of policy gradient methods. [16] rather rely on an ensemble of neural
networks to estimate the uncertainty in the prediction of the value function, allowing to reduce learning
times while improving performance. Finally, [17] consider generative adversarial networks [18] to
model the distribution of random state-value functions. The current work considers a different
approach based on normalizing flows for density estimation.

Normalizing flows Flow-based generative models have proven to be powerful density approxima-
tors [9]. The idea is to relate an initial noise density distribution to a posterior distribution using a
sequence of invertible transformations, parametrized by a neural network and having desirable prop-
erties. For example, invertible autoregressive flows (IAF) are characterized by a simple-to-compute
Jacobian [19]. In their original formulation, IAF layers allow learning location-scale invariant (i.e.
affine) transformations of a simple initial noise density.

Normalizing flows have been used previously in the on-policy RL setting where IAF extends a base
policy found by TRPO [20]. In this work, we tackle the off-policy learning setting, and we focus on
planar and radial flows, which are known to provide a good trade-off between function expressivity
and time complexity [9]. Our work explores a similar space as hierarchical-SAC (HSAC) [21], which
also modifies the policy of SAC to improve expressiveness. However, HSAC has a significantly more
complex model, as it uses real NVP [22] along with a hierarchical policy, optimizing a different
reward function at each hidden layer. This represents a stronger departure from the original SAC
model and algorithm. We show that simply training all NF layers jointly on a single reward function
without any additional conditioning produces significant improvement over SAC and HSAC with a
model and training procedure that is reasonably close to SAC.

3 Background

In this section, we review the formal setting of RL in a Markov decision process (MDP), Soft
Actor-Critic (SAC) [6], and the general framework of normalizing flows (NFs) [9], the latter of which
will be used to improve exploration in Section 4.

3.1 Markov Decision Process

MDPs [23, 24] are useful for modelling sequential decision-making problems. A discrete-time
finite-horizon MDP is described by a state space S, an action space A2, a transition function
P : S ×A× S 7→ R+, and a reward function r : S ×A 7→ R. On each round t, an agent interacting

2The state S and the action A spaces can be either discrete or continuous
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with this MDP observes the current state st ∈ S, selects an action at ∈ A, and observes a reward
rt = r(st, at) ∈ R upon transitioning to a new state st+1 ∼ P(st, at). Let γ ∈ [0, 1) be a discount
factor; the goal of an agent evolving in a discounted MDP is to learn a policy π : S × A 7→ [0, 1],
such that taking action at ∼ π(·|st) would maximize the expected sum of discounted returns,

V π(s) = E
π

[ ∞∑
t=0

γtrt|s0 = s

]
.

The corresponding state-action value function can be written as the expected discounted rewards
from taking action a in state s, that is,

Qπ(s, a) = E
π

[ ∞∑
i=t

γi−tr(si, ai)|st = s, at = a

]
.

If S or A are vector spaces, action and space vectors are respectively denoted by a and s.

3.2 Soft Actor-Critic

SAC [6] is an off-policy algorithm which updates the policy using gradient descent, minimizing the
KL divergence between the policy and the Boltzmann distribution using the critic (i.e., Q-function)
as a negative energy function,

πnew = arg min
π′∈Π

DKL

(
π′(.|st)

∥∥∥∥exp{ 1
αQ

πold(st, .)}
Zπold(st)

)
, (1)

where α ∈ (0, 1) controls the temperature, Qπold is the Q-function under the old policy, and the
partition functionZπold(st) can be ignored [6]. The KL divergence above is tractable and differentiable
as the policies are assumed to be composed of diagonal Gaussians in the classical SAC formulation. It
can be seen easily that SAC follows a maximum entropy objective [7], as optimizing w.r.t. Equation 1
is equivalent to maximizing the state-action value function regularized with a maximum entropy term,

Lπ = E
st∼ρπ

[
E

at∼π
[Qπ(st, at)] + αH(π(.|st))

]
= E

st∼ρπ
[V (st)];

where V (st) := E
at∼π

[Qπ(st, at)− α log π(at|st)]

is the state-action value function, H(π(.|st)) is the entropy of the policy, α is now the impor-
tance given to the entropy regularizer. If π′(·|st) ∼ N (µ, diag(σ2

1 , .., σ
2
d)), then maxH(π′(·|st)) =

max log det(diag(σ2
1 , .., σ

2
d)) = max

∑d
i=1 σ

2
i , which is unbounded without additional constraints.

This prevents collapse to degenerate policies centered at the point with highest rewards and keeps
exploration active.
SAC models the value function and the critic using neural networks, Vν and Qω , and models a Gaus-
sian policy πθ with mean and variance determined by the output of neural networks with parameters
θ. The losses for Vν , Qω , and πθ are computed using a replay buffer D,

LQ = E
(st,at)∼D

[
1

2

{
Qω(st,at)−Q†ν

}2
]
, (2)

LV = E
st∼D

[
1

2

{
Vν(st)− E

at∼π
[Qω(st,at)− α log π(at|st)]

}2
]
, (3)

Lπ = E
st∼D

[
E

at∼π
[α log πθ,φ(at|st)−Qω(st,at)]

]
, (4)

where Q†ν = (r(st,at) + γ Est+1∼D[Vν(st+1)]).
In practice, the gradients of the above losses are approximated using Monte-Carlo. As an off-
policy algorithm, SAC enjoys the advantages of having lower sample complexity than on-policy
algorithms [25], yet it outperforms other off-policy alternatives [11] due to its max entropy term.
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Figure 1: Schematic representation of a SAC-based normalizing flow policy, which takes as input
noise and state information. The initial noise density is then fed through a sequence of invertible

transformations to match the target Boltzmann Q-function.

3.3 Normalizing Flows

NFs [9] are a class of iterative methods for transforming probability distributions introduced as a way
to improve the approximate posterior in amortized inference algorithms [26, 27]. More generally, they
provide a framework for extending the change of variable theorem for density functions to a sequence
of d-dimensional real random variables {zi}Ni=0. The initial random variable z0 has density function
q0 and is linked to the final output of the flow zN through a sequence of invertible, smooth mappings
{fi}Ni=1 called normalizing flows of length N . A number of different invertible function families can
be specified through the choice of neural network parameterization and regularization [9, 19, 28].
One good choice [19] is the family of radial contractions around a point z0 ∈ Rd defined as [9],

f(z) = z+
β

α+ ||z− z0||2
(z− z0), (5)

which are highly expressive (i.e. represent a wide set of distributions) and yet very light (parameter-
wise), in addition to enjoying a closed-form determinant. This family allows approximating the target
posterior through a sequence of concentric expansions of arbitrary width and centered around a
learnable point z0. In order to guarantee that the flow is invertible, it is sufficient to pick β ≥ −α.

4 Augmenting SAC with Normalizing Flows

We now propose a flow-based formulation of the off-policy maximum entropy RL objective (Eq. 2)
and argue that SAC is a special case of the resulting approach, called SAC-NF.

4.1 Exploration through normalizing flows

Figure 1 outlines the architecture of a normalizing flow policy based on SAC. Let ε be an initial noise
sample, hθ(ε, st) a state-noise embedding, and {fφ}Ni=1 a normalizing flow of lengthN parameterized
by φ = {φi}Ni=1. Sampling from the policy πφ,θ(at|st) can be described by the following set of
equations:

at = fφN ◦ fφN−1
◦ ... ◦ fφ1

(z),

z = hjθ(ε, st), j = 1, 2

ε ∼ N (0, I), (6)

where the state-noise embedding hjθ(ε, st) models samples from a base Gaussian distribution,
with state-dependent means, µθ(st). The index j denotes a hyperparameter, choosing either state-
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dependent (Lθ(st) for j = 1) or state-independent (Lθ for j = 2) diagonal scale matrices,

hjθ(ε0, st) =

{
εLθ(st) + µθ(st), j = 1 (conditional)
εLθ + µθ(st), j = 2 (average);

where L(st) = diag{(σ1(st), .., σ|A|(st))}
L = diag{(σ1, .., σ|A|)} (7)

We chose j according to experiments in the supplementary. Both functions allow to sample either
from a heteroscedastic or homoscedastic Gaussian distribution, following the reparametrization trick
in variational Bayes [29], and we explore these choices in more detail in the supplementary material.
Precisely, µ(st) : S → Rd is a state embedding function and L(st),L is a scale parameter. For flows
of the form fφ(z) = z+ gφ(z), we can asymptotically recover the original base policy through heavy
regularization,

lim
||φ1||,..,||φN ||→0

π(·|st)
d
= N

(
µ(st),L(st)L(st)

>), (8)

for all states st ∈ S. By analogy with the SAC updates, SAC-NF minimizes the KL divergence
between the Boltzmann Q and the feasible set of normalizing flow-based policies. The KL term is
once again tractable and the policy density now depends on the sum of log Jacobians of the flows:

log π(at, st) = log q0(a0)− log |detL|

−
N∑
i=1

log
∣∣∣det ∂fi(ai−1)

∂ai−1

∣∣∣. (9)

Algorithm 1 outlines the proposed method: the major distinction from the original SAC is the
additional gradient step on the normalizing flows layers while fixing the SAC weights θ.

Algorithm 1 SAC-NF

Input: Mini-batch size m; replay buffer D; number of epoch T ; learning rates αθ, αφ, αν , αω
Initialize value function network Vν(s)
Initialize critic network Qω(s,a)
Initialize policy network with weights πφ,θ(s)
for epoch = 1, ..., T do
s← s0

for t=0... do
at ∼ π(.|st)
Observe st+1 ∼ P (·|st,at) and get reward rt
Store transition (st,at,rt,st+1) in D
for each learning step do

{Update networks with m MC samples each}
ν ← ν − αν∇νL̂V {Update value function}
ω ← ω − αω∇ωL̂Q {Update critic}
θ ← θ − αθ∇θL̂π {Update base policy}
φ← φ− αφ∇φL̂π {Update NF layers}

end for
end for

end for

5 Experiments

This section addresses three major points: (1) it highlights the beneficial impact of NF deceptive
rewards domains through a navigation task, (2) compares the proposed SAC-NF approach against
SAC on a set of continuous benchmark control tasks from MuJoCo, Rllab and the more realistic
Roboschool PyBullet suite [4, 10, 30] and finally (3) investigates the shape and number of modes
that can be learned by radial NF policies. For all experiments3, the entropy rate α is constant and

3We trained all policies on Intel Gold 6148 Skylake @ 2.4 GHz processors.
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Figure 2: A deceptive reward environment where the high reward region is hidden behind a negative
reward region (left subfigure). The right subfigure shows trajectories of Gaussian and radial agents.

While the SAC policy is exploring vaguely the yellow region and falls into the pit, the SAC-NF
policy manages to find the optimal region by going from the yellow to green zone.

can be found in Supp. Table 3. For the SAC baseline, we used hyperparameters reported in [6]. A
thorough study of multi-modality and non-Gaussianity of SAC-NF policies on MuJoCo is shown in
the Appendix.

5.1 Robustness to confounding rewards

We first demonstrate that normalizing flow policies are able to find better solutions than a Gaussian
policy for SAC in an environment with deceptive rewards. We consider an environment composed of
three reward areas: a locally optimal strip around the initial state, a global optimum on the opposing
end of the room, separated by a pit of highly negative reward. The agent starts at the position
s0 = (4.5, 0) and must navigate into the high rewards area without falling into the pit. On each time
t, the agent receives the reward rt associated to its current location st. The experimental setup can be
found in Supplementary Material.

Figure 2 displays the trajectories visited by both agents. This highlights the biggest weakness of vanilla
SAC policies: the agent is unable to simultaneously reach the region of high rewards while avoiding
the center of the room. In this case, lowering the entropy threshold will lead to the conservative
behaviour of staying in the yellow zone; increasing the entropy leads the agent to die without reaching
the goal. Breaking the symmetry of the policy by adding (in this case three) radial flows allows the
agent to successfully reach the target area by walking along the safe path surrounding the room.

In the case of steep reward functions, where low rewards border on high rewards, symmetric dis-
tributions force the agent to explore into all possible directions. This leads the agent to sometimes
attain the high reward region, but, more dangerously, falling into low reward areas with non-zero
probability at training time.

5.2 Continuous control tasks

MuJoCo locomotion benchmarks

Next, we compare our SAC-NF method against the SAC baseline on six continuous control tasks
from the MuJoCo suite (see Figure 3) and one sparse reward MuJoCo task4. All results curves show
evaluation time performance which, in the case of SAC and SAC-NF, is equivalent to setting the
noise to 0. Evaluation happens every 10,000 steps, and values reported in the tables are not smoothed.
The values reported in the plots are smoothed with a window size of 7, equivalent to smoothing every
70,000 steps to improve readability.

The SAC-NF agent consists of one feed-forward hidden layer of 256 units acting as state embedding,
which is then followed by a normalizing flow of length N ∈ {3, 4, 5}. Details of the model can be
found in Supp. Table 3. For the SAC baseline, two hidden layers of 256 units are used. The critic and
value function architectures are the same as in [6]. All networks are trained with Adam optimizer [31]

4The sparse Humanoid task can be found here: https://github.com/bmazoure/sparseMuJoCo
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Figure 3: Performance of SAC-NF against SAC across 6 MuJoCo tasks (higher is better). Curves are
averaged over 5 random seeds and then smoothed using Savitzky-Golay filtering with window size 7.

with a learning rate of 3E−4. Every 10, 000 environment steps, we evaluate our policy 10 times and
report the average. The best observed reward for each method can be found in Table 1.

Figure 3 displays the performance of both SAC and SAC-NF. We observe that SAC-NF shows
faster convergence, which translates into better sample efficiency, compared to the baseline. SAC-NF
takes advantage of the expressivity of normalizing flows to allow for better exploration and thus
discover new policies. In particular, we notice that SAC-NF performs well on three challenging tasks:
Humanoid-v2, Humanoid (rllab) and Ant-v2. High rewards collected by SAC-NF agents
suggest that Gaussian policies that are widely used for continuous control [25, 32] might not be best
suited for certain domains (see Supplementary Material for a shape analysis of SAC-NF policies on
Ant-v2).

Table 1 not only shows better performance from SAC-NF in most of the environments, but shows
the ratio in the number of parameters in the policy architecture between SAC-NF and vanilla SAC.
For instance, on Hopper-v2, we could reduce by up to 95% the number of parameters (70, 406
parameters for SAC baseline versus 3, 861 for SAC-NF) and by 41% the number of parameters in
Humanoid-v2, while performing at least as well as the baseline. For space constraints, we also
reported results from TD [12] in the Supplementary material.

SAC SAC-NF #{SAC-NF}
#{SAC}

Ant-v2 4, 372± 900 4912 ± 954 ≈ 0.31
HalfCheetah-v2 11410 ± 537 8429 ± 818 ≈ 0.09

Hopper-v2 3095± 730 3538 ± 108 ≈ 0.06
Humanoid-v2 5505 ± 116 5506 ± 147 ≈ 0.6

Humanoid (rllab) 2079± 1432 5531 ± 4435 ≈ 0.4
Walker2d-v2 3813± 374 5196 ± 527 ≈ 0.09

SparseHumanoid-v2 88 ± 159 547 ± 268 ≈ 0.6

Table 1: Maximal average return ± one standard deviation across 5 random seeds for SAC and
SAC-NF. Last column shows the ratio in number of policy parameters between the two methods.

Learning curve for SparseHumanoid-v2 can be found in the Appendix.

SAC could be run with fewer parameters for better comparison with the small architecture of SAC-NF.
We also run SAC with a reduced number of hidden units (64 and 128 for the policy network only).
In general, running SAC with fewer parameters achieves worse results: best results with either 64
or 128 units are as follows (5 seeds, after 1M steps, 3M for Rllab): 7300 versus 11,410 for the 256
units architecture (HalfCheetah), 4400 versus 5505 (Humanoid), 2900 versus 2079 (Humanoid-rllab),
3800 versus 3813 (Ant).
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Figure 4: Performance of SAC-NF with IAF, planar, and radial flows compared against SAC
(Gaussian policy) accross 3 Roboschool PyBullet domains (higher is better). Curves are averaged

over 5 random seeds and then smoothed using Savitzky-Golay filtering with window size 7. Radial
flows perform consistently well across the 3 robotics environments.

SAC Radial Planar IAF
Humanoid (PyBullet) 1263± 290 1755 ± 131 1561± 238 1130± 206

Humanoid Flagrun Hard (PyBullet) 31± 33 46 ± 61 −10± 16 −2± 33
Humanoid Flagrun (PyBullet) 67± 41 106± 23 128± 42 152 ± 173

Table 2: Maximal average return obtained on three Roboschool PyBullet environments by Gaussian,
IAF, planar, and radial policies ± one standard deviation across 5 random seeds.

Realistic continuous control with Bullet Roboschool

To assess the behaviour of SAC-NF in realistic environments, we tested our algorithm on the PyBullet
Gym implementation5 of Roboschool tasks [4]. The Bullet library is among the most realistic collision
detection and multi-physics simulation engines available up to now, and is widely used for sim-to-real
transfer tasks.

To assess the impact of flow family on performance, we compared three types of normalizing flows:
radial, planar, and IAF6. Figure 4 displays the performance of both SAC and SAC-NF for all three
flows families obtained using the same setup as for MuJoCo.

The best observed reward for each method can be found in Supp. Table 2. SAC-NF with radial flows
consistently ranks better (performance and parameter-wise, see Supp. Table 4) than the Gaussian
policy and, in some domains, better than planar and IAF flows.

6 Conclusion

We proposed an algorithm which combines soft actor-critic updates together with a sequence of
normalizing flows of arbitrary length. The high expressivity of the later allows to (1) quickly discover
richer policies (2) compress the cumbersome Gaussian policy into a lighter network and (3) better
avoid local optima. Our proposed algorithm leverages connections between maximum entropy
reinforcement learning and the evidence lower bound used to optimize variational approximations.
Finally, we validated the model on six MuJoCo tasks, three Bullet Roboschool tasks and one sparse
domains, on which SAC-NF showed significant improvement against the SAC baseline in terms of
convergence rate as well as performance. Interesting challenges for future work include studying the
generalization and theoretical properties of normalizing flow SAC policies to better transfer from rich
simulators to real robots.
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Supplementary Material

Reproducibility Checklist

We follow the reproducibility checklist [33] and point to relevant sections explaining them here.
For all algorithms presented, check if you include:

• A clear description of the algorithm, see main paper and included codebase. The pro-
posed approach is completely described by Alg. 1.

• An analysis of the complexity (time, space, sample size) of the algorithm. Experimen-
tally, we demonstrate improvement in sample complexity as discussed in our main paper. In
term of computation time, the proposed method retains the same running time as SAC, since
the overhead for training the NF layers is minimal in comparison. The biggest advantage of
SAC-NF with radial flows over SAC is its significantly reduced number of parameters. For
instance, in the MuJoCo Hopper environment, SAC-NF uses only 5.5% of neural network
parameters used by SAC while achieving much better performance.

• A link to a downloadable source code, including all dependencies. The code is included
with Supplemental Material as a zip file; all dependencies can be installed using Python’s
package manager. Upon publication, the code would be available on Github.

For all figures and tables that present empirical results, check if you include:

• A complete description of the data collection process, including sample size. We use
standard benchmarks provided in OpenAI Gym (Brockman et al., 2016) and PyBullet.

• A link to downloadable version of the dataset or simulation environment. See: http:
//www.mujoco.org/ and https://pybullet.org/wordpress/.
• An explanation of how samples were allocated for training / validation / testing. We do

not use a training-validation-test split, but instead report the mean performance (and one
standard deviation) of the policy at evaluation time across 5 random seeds.

• An explanation of any data that were excluded. We did not compare on easy environ-
ments (e.g. Reacher-v2) because all existing methods perform well on them. In that case,
the improvement of our method upon baselines is incremental and not worth mentioning.

• The exact number of evaluation runs. 5 seeds for all experiments, 1M, 2M or 3M envi-
ronment steps depending on the domain.

• A description of how experiments were run. See Section 5 in the main paper and didactic
example details in Appendix.

• A clear definition of the specific measure or statistics used to report results. Undis-
counted returns across the whole episode are reported, and in turn averaged across 5 seeds.

• Clearly defined error bars. Confidence intervals and table values are always mean± 1
standard deviation over 5 seeds.

• A description of results with central tendency (e.g. mean) and variation (e.g. stddev).
All results use the mean and standard deviation.
• A description of the computing infrastructure used. All runs used 1 CPU for all experi-

ments (toy, MuJoCo and PyBullet) with 8Gb of memory.

11

http://www.mujoco.org/
http://www.mujoco.org/
https://pybullet.org/wordpress/


Experimental setup for ablation study

We compare the SAC-NF agent (Algorithm 1 with mini-batch size m = 256, 4 flows and one hidden
layer of 8 neurons), which can represent radial policies, with a classical SAC agent(two hidden layers
of 16 units) that models Gaussian policies. Both agents are trained over T = 500 epochs, each epoch
consisting of 20 time steps.

Model parameters

We provide a table of hyperparameters used to obtain results in the MuJoCo and PyBullet domains.
Note that h1 corresponds to the average and h2 to the conditional models.

NF parameters
# flows Type Alpha Model

Ant-v2 4 radial 0.05 average
HalfCheetah-v2 3 radial 0.05 conditional

Hopper-v2 5 radial 0.05 average
Humanoid-v2 4 radial 0.05 average

Walker-v2 5 radial 0.05 conditional
Humanoid (Rllab) 2 radial 0.05 conditional

HumanoidPyBulletEnv-v0 3 radial 0.05 average
HumanoidFlagrunPyBulletEnv-v0 5 radial 0.05 conditional

HumanoidFlagrunHarderPyBulletEnv-v0 3 radial 0.05 conditional
HumanoidPyBulletEnv-v0 3 IAF 0.01 conditional

HumanoidFlagrunPyBulletEnv-v0 4 IAF 0.05 conditional
HumanoidFlagrunHarderPyBulletEnv-v0 3 IAF 0.01 average

HumanoidPyBulletEnv-v0 4 planar 0.01 conditional
HumanoidFlagrunPyBulletEnv-v0 3 planar 0.05 average

HumanoidFlagrunHarderPyBulletEnv-v0 3 planar 0.05 average
Adam Optimizer parameters

αγ 3.10−4

αω 3.10−4

αθ 3.10−4

αφ 3.10−4

Algorithm parameters
m 256
B size 106

Table 3: SAC-NF parameters.

Environment Gaussian Radial IAF Planar
HumanoidPyBulletEnv-v0 82,463 (1) 15,963 (0.19) 17,436 (0.21) 13,594 (0.16)
HumanoidFlagrunPyBulletEnv-v0 82,463 (1) 12,397 (0.15) 18,864 (0.23) 16,875 (0.20)
HumanoidFlagrunHarderPyBulletEnv-v0 82,463 (1) 12,359 (0.15) 21,040 (0.26) 16,875(0.20)

Table 4: Number of model parameters for SAC (Gaussian), SAC-NF (Radial, Planar and IAF) used to
achieve results on the PyBullet environments. In parentheses, the ratio of parameters with respect to
SAC (Gaussian) is shown. A value lower than 1.0 means a lower number of parameters than SAC

baseline. While having the lowest number of parameters, radial flows achieve consistently best
performances.

12



Performances against other baselines

SAC SAC-NF TD3
Ant-v2 4, 372± 900 4912 ± 954 4, 372± 900

HalfCheetah-v2 11410 ± 537 8429 ± 818 9, 543± 978
Hopper-v2 3095± 730 3538 ± 108 3,564 ± 114

Humanoid-v2 5505 ± 116 5506 ± 147 71± 10
Humanoid (rllab) 2079± 1432 5531 ± 4435 286± 151

Walker2d-v2 3813± 374 5196 ± 527 4, 682± 539
SparseHalfCheetah-v2 767± 247 939 ± 4 809± 92
SparseHumanoid-v2 88 ± 159 547 ± 268 0± 0

Table 5: Maximal average return ± one standard deviation across 5 random seeds for SAC, TD3 and
SAC-NF.

Toy navigation task

We conduct a synthetic experiment to illustrate how the augmentation of a base policy with normaliz-
ing flows allows to represent multi-modal policies. We consider a navigation task environment with
continuous state and action spaces consisting of four goal states symmetrically placed around the
origin. The agent starts at the origin and, on each time t, receives reward rt corresponding to the
Euclidean distance to the closest goal. We consider a SAC-NF agent (Algorithm 1 with mini-batch
size m = 256, 4 flows and one hidden layer of 8 neurons) which can represent radial policies. The
agent is trained over T = 500 epochs, each epoch consisting of 20 time steps.

Figure 5 displays some trajectories sampled by the SAC-NF agent along with the kernel density
estimation (KDE) of terminal state visitations by the agent. Trajectories are obtained by sampling
from respective policy distributions instead of taking the average action. We observe that the SAC-NF
agent, following a flow-based policy, is able to successfully visit all four modes.

Figure 5: 4-goals navigation task outlining the ability of normalizing flows to learn multi-modal
policies. The left subfigure shows some trajectories sampled from the SAC-NF agent. The right

subfigure shows a KDE plot of terminal state visitations by the agent.
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6.1 Assessing the shape of SAC-NF and its multimodality

While in simple domains the shape of a policy might not matter much, using a Gaussian policy in
more complicated environments can yield suboptimal behaviour due to rigidity of its shape. To test
whether SAC-NF with radial flows implicitly learns a Gaussian policy (i.e. most learning happens at
the noise and not at the flow layers), we examine the KL divergence between a Gaussian distribution
and SAC-NF policies trained on MuJoCo’s Ant-v2 environment.
As argued previously, heavy regularization of radial and planar flows approximately recovers the
identity map f(z) = z, in which case the normalizing flow policy has a Gaussian shape centered at
µ(s). However, when the flows are unconstrained, the policy is allowed to evolve as to maximize the
evidence lower bound.

Figure 6 shows the evolution over time of a radial policy on the MuJoCo Ant-v2 environment. The
average KL divergence conditional on an observed state is computed between zero mean and unit
variance radial flow and Gaussian policies, respectively. This standardization is done to eliminate the
dependence of KL on the location and scale of the policy. For two multivariate Gaussian policies
π1 ∼ N (µ1, I), π2 ∼ N (µ2, I) in a single state environment, the KL divergence follows this
proportionality: DKL(π1||π2) ∝ (µ1 − µ2)

>(µ1 − µ2).
To ensure that the KL reports the difference in shape and not in location-scale, it is necessary to
re-center and re-scale both policies (equivalent to superposing both policies on top of each other):

Es[DKL{πNF (a|s)||πGaussian(a|s)}]
= Es[DKL{πNF (a|s)||N (0, I)}], (10)

and Eπ[πNF (a|s)] = 0,Vπ[πNF (a|s)] = 1 for all states s observed during rollouts. The differences
in log probabilities for every given action are summed over all actions in the sample and averaged
across states. We see that as training progresses, the state-averaged KL between the normalizing flow
policy and the reference unit Gaussian increases.

Figure 6: Average KL divergence between 500 MC action samples taken from a radial flow policy
scored against the standard Gaussian distribution and averaged over 1,000 states every 100k

iterations. The KL divergence increases over the time, suggesting that the radial flow policy’s shape
gets further from that of a Gaussian distribution.

Now, we check the key property of SAC-NF, as a proposed improvement to unimodal Gaussian
policies in SAC, is its ability to produce rich, multimodal policies. We can measure the degree
of multimodality using the gap statistic method [34] for k-means hyperparameter selection. Once
computed, this coefficient measures goodness-of-fit of k clusters (i.e. modes) to a given distribution.
For that purpose, we collect 500 states from the given policy rollout, under which we sample 250
actions from the SAC-NF policy and evaluate the number of modes with the aforementioned test for
each state separately. Differences between GS values for k=1 and k=2, and between k=1 and k=10
are given respectively and are averaged across all states: 6.8, 11.8 (Ant), 16.8, 31 (Walker), 3.2, 7.3
(Humanoid-rllab). Here, k is the number of clusters, higher difference means more likely to have
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more than one mode. In comparison, all gap statistics for SAC have differences less than 1. These
results suggest that the SAC-NF policies are multimodal (have at least 2 modes, note this is for each
state, not marginalized over states). Since modes are not always clearly identifiable, we computed
skewness (symmetry measure) and excess kurtosis (non-Gaussianity measure), respectively, for the
same policy samples: -0.017, -0.26 (Ant), -0.34, -0.9 (Humanoid-rllab), -0.53, -0.57 (Walker). All
three policies have large negative excess kurtosis (suggesting that they do not have a Gaussian shape),
and have negative skew (policies learned on Humanoid-rllab and Walker are hence not symmetric).
This evidence indicates that the shape of the policies learned by SAC-NF is, on average, not likely to
be Gaussian.

6.2 Sparse rewards environments

Even if SAC-NF is meant to better track suboptimal solutions, we tested whether adding normalizing
flow layers improves performance within sparse reward environments. To do so, we evaluated on
Sparse Humanoid (SparseHU). For SparseHU, a reward of +1 is granted when the agent reaches a
distance threshold above 0.6. As shown in Figure 7, SAC-NF has better performance than its SAC
counterpart and TD3 which struggle to take off.

Figure 7: Performance of SAC-NF compared against SAC (Gaussian policy) for a sparse
environment in which reward is observed after the agent reaches a certain threshold distance.

15


	Introduction
	Related Work
	Background
	Markov Decision Process
	Soft Actor-Critic
	Normalizing Flows

	Augmenting SAC with Normalizing Flows
	Exploration through normalizing flows

	Experiments
	Robustness to confounding rewards
	Continuous control tasks
	MuJoCo locomotion benchmarks
	Realistic continuous control with Bullet Roboschool


	Conclusion
	Assessing the shape of SAC-NF and its multimodality
	Sparse rewards environments


