
Variational Inference MPC for
Bayesian Model-based Reinforcement Learning

Masashi Okada
Panasonic Corp., Japan

okada.masashi001@jp.panasonic.com

Tadahiro Taniguchi
Ritsumeikan Univ. & Panasonic Corp., Japan

taniguchi@em.ci.ritsumei.ac.jp

Abstract: In recent studies on model-based reinforcement learning (MBRL), in-
corporating uncertainty in forward dynamics is a state-of-the-art strategy to en-
hance learning performance, making MBRLs competitive to cutting-edge model-
free methods, especially in simulated robotics tasks. Probabilistic ensembles
with trajectory sampling (PETS) is a leading type of MBRL, which employs
Bayesian inference to dynamics modeling and model predictive control (MPC)
with stochastic optimization via the cross entropy method (CEM). In this paper,
we propose a novel extension to the uncertainty-aware MBRL. Our main contri-
butions are twofold: Firstly, we introduce a variational inference MPC (VI-MPC),
which reformulates various stochastic methods, including CEM, in a Bayesian
fashion. Secondly, we propose a novel instance of the framework, called prob-
abilistic action ensembles with trajectory sampling (PaETS). As a result, our
Bayesian MBRL can involve multimodal uncertainties both in dynamics and op-
timal trajectories. In comparison to PETS, our method consistently improves
asymptotic performance on several challenging locomotion tasks.

Keywords: model predictive control, variational inference, model-based rein-
forcement learning

1 Introduction

Model predictive control (MPC) is a powerful and accepted technology for advanced control systems
such as manufacturing processes [1], HVAC systems [2], power electronics [3], autonomous vehi-
cles [4], and humanoids [5]. MPC utilizes the specified models of system dynamics to predict future
states and rewards (or costs) to plan future actions that maximize the total reward over the predicted
trajectories. Especially for industrial applications, the clear explainability of such a decision-making
process is advantageous. Furthermore, in some tasks (e.g., games) [6], planning-based policies of
this nature could outperform reactive-policies (e.g., full neural network policies).

Model-based reinforcement learning (MBRL) methods that employ expressive function approxima-
tors (e.g., deep neural networks: DNNs) [7, 8, 9] present appealing approaches for MPC. The main
difficulty in introducing MPC to practical systems is specifying the forward dynamics models of tar-
get systems. However, accurate system identification is challenging in many advanced applications.
Take robotics for example, where robots encounter floors and walls, and must be able to manipu-
late some objects, making the dynamics highly non-linear. The main objective of MBRL is to train
approximators of complex dynamics through experiences in real systems. The general procedure
of MBRL is summarized as; (1. training-step) train the approximate model with a given training
dataset, then (2. test-step) execute the actions (or policies) optimized with the dynamics model in
a real environment and augment the dataset with the observed results. The above training and test
steps are iteratively conducted to collect sufficient and diverse data so as to achieve the desired
performance.

One feature of MBRL is its considerable sample efficiency compared to model-free reinforcement
learning (MFRL), which directly trains policies through experiences. In other words, MBRL re-
quires much less test time in real environments. In addition, MBRL benefits from the generalizabil-
ity of the trained model, which can be easily applied to new tasks in the same system. However, the
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(a) Vanilla CEM used in PETS [13]:
VIMPC(‘CEM’, ‘Gaussian’, False)

(b) PaETS (Ours):
VIMPC(‘CEM’, ‘GMM(M=5)’, True)

Figure 1: Toy task examples that illustrate the concept of our method. The objective of this task
is to navigate a point mass on the x-y plane by actuating at = (∆x,∆y) with maximum magni-
tude ||at|| = 0.05, while avoiding obstacles •. This task is designed to have multiple (sub-)optimal
trajectories. (a) A trajectory found by vanilla CEM. (b) Multiple trajectories found by PaETS that
approximates the trajectory posterior via variational inference with a Gaussian mixture model. The
line-width indicates the magnitude of mixture-coefficients. Exploiting diverse plans encourages ac-
tive exploration in state-action spaces, improving the optimization performance and training dataset
diversity. The notation of VIMPC() is introduced in Sec. 3.

asymptotic performance of MBRL is generally inferior to that of model-free methods. This discrep-
ancy is primarily due to the overfitting of dynamics models to the few data available during initial
MBRL steps, which is called the model-bias problem [7]. Several studies have demonstrated that
incorporating uncertainty in dynamics models can alleviate this issue. The uncertainty-aware mod-
eling is realized by Bayesian inference employing a Gaussian Process [7], dropout as variational
inference [10, 11, 12], or neural network ensembles [13, 14, 15].

Probabilistic ensembles with trajectory sampling (PETS) [13] is one type of uncertainty-aware
MBRL. As an MPC-oriented MBRL method, PETS conducts trajectory optimization via the cross
entropy method (CEM) [16] by using trajectories probabilistically sampled from the ensemble net-
works. Experiments have demonstrated that PETS can achieve competitive performance over state-
of-the-art MFRL methods like Soft Actor Critic (SAC) [17], while yielding much higher sample
efficiency. Since our primary interest is MPC and its application to practical systems, this paper
mainly focuses on PETS and treats this method as a strong baseline.

Considering the success of probabilistic dynamics modeling, incorporating uncertainty in optimal
trajectories appears very promising for MBRL. However, an optimization scheme that can utilize un-
certainty has not yet been discussed. Although several stochastic approaches, including CEM, model
predictive path integral (MPPI) [18, 8], covariance matrix adaptation evolution strategy (CMA-
ES) [19], and proportional CEM (Prop-CEM) [20], have been proposed, they are not uncertainty-
aware and tend to underestimate uncertainty. In addition, although their optimization procedures are
very similar, they have been independently derived. Consequently, theoretical relations among these
methods are unclear, preventing us from systematically understanding and reformulating them to be
uncertainty-aware in a Bayesian fashion.

Motivated by these, in this paper, we propose a novel MPC concept for Bayesian MBRL. The or-
ganization and contributions of this paper are summarized as follows. (1) In Sec. 3, we introduce
a novel MPC framework, variational inference MPC (VI-MPC), which generalizes and reformu-
lates various stochastic MPC methods in a Bayesian fashion. The key observations for deriving
this framework are organized in Sec. 2, where we point out that general stochastic optimization
methods can be regarded as the moment matching of the optimal trajectory posterior, which appear
in a Bayesian MBRL formulation. (2) In Sec. 4, we propose a novel instance of the framework,
called probabilistic action ensembles with trajectory sampling (PaETS). Toy task examples and the
concept of our method are exhibited in Fig. 1. (3) In Sec. 5, we demonstrate that our method consis-
tently outperforms PETS via experiments with challenging locomotion tasks in the MuJoCo physics
simulator [21].
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2 Model-based Reinforcement Learning as Bayesian Inference

In this section, we describe MBRL as a Bayesian inference problem using control as inference
framework [22]. Fig. 2 displays the graphical model for the formulation, with which an MBRL
procedure can be re-written in a Bayesian fashion: (1. training-step) do inference of p(θ|D). (2. test-
step) do inference of p(τ |O1:T = 1), then, sample actions from the posterior and execute the actions
in a real environment. We denote a trajectory as τ := {(st,at)}Tt=1, where st and at respectively
represent state and action. Given a state-action pair at time t, the next state can be predicted by
a forward-dynamics model st+1 ∼ p(st+1|st,at, θ) parameterized with θ. The posterior of θ is
inferred from training datasetD, whereD = {(st,at, st+1)} consists of states and actions observed
during the test step. To formulate optimal control as inference, we auxiliarly introduce a binary
random variable Ot ∈ {0, 1} to represent the optimality of (st, at). Given p(θ|D), trajectory
optimization can be expressed as an inference problem:

p(τ |O) ∝
∫ { T∏

t=1

p(Ot = 1|st,at)

}
︸ ︷︷ ︸

:=p(O|τ)

· p (s1)

{
T∏
t=1

p (st+1|st,at, θ)

}
︸ ︷︷ ︸

:=p(s|a,θ)

· p(θ|D)︸ ︷︷ ︸
:=pD(θ)

dθ, (1)

where uninformative action prior (i.e., p(at) = U : uniform distribution) is supposed. For readabil-
ity, O1:T = 1 is simply denoted as O. For the same reason, we omit the subscripts of sequences
a1:T , s1:T . In the remainder of the paper, this simplified notation is employed. In Sec. 2.1–2.2, we
review how these inference problems have been approximately handled in previous works.

2.1 Inference of Forward-dynamics Posterior pD(θ)

…

Latent @ training-step
Given @ test-step

Figure 2: Graphical model for
Bayesian MBRL.

Given a sufficiently parameterized expressive model, i.e.,
DNNs, one of the most practical and promising schemes for
approximating the posterior pD(θ) is to utilize neural network
ensembles [13, 14, 15]. This process approximates the pos-
terior as a set of particles pD(θ) ' 1

E

∑E
i δ(θ − θi), where

δ is Dirac delta function and E is the number of networks.
Each particle θi is independently trained by stochastic gradient
descent so as to (sub-)optimize log pD(θ) ∝ log p(D|θ)p(θ).
Although this approximation is incompletely Bayesian, this
scheme has several useful features. First, we can simply im-
plement this process in standard deep learning frameworks.
Furthermore, the ensemble model successfully involves mul-
timodal uncertainty in the exact posterior.

Another possible way to infer pD(θ) is dropout as variational inference [10, 11, 12], which ap-
proximates pD(θ) as a Gaussian distribution q(θ). It is proofed that the variational inference prob-
lem: argminq KL(q(θ)||pD(θ)) approximately equivalent to training networks with dropout, where
KL(·||·) denote Kullback-Leibler (KL) divergence. Although this scheme is also simple and theo-
retically supported, approximation by a single Gaussian distribution tends to underestimate uncer-
tainty (or multimodality) in the posterior. To remedy this problem, α-divergence dropout has been
proposed [23], which replaces KL-divergence to α-divergence so as to prevent q(θ) from overfitting
a single mode. However, as long as q(θ) is Gaussian, the multimodality cannot be managed well.

In our preliminary experiments of MBRL, we have tested the above two schemes and observed that
the ensemble performs much better than (α-)dropout (this result is summarized in Sec. A). This
result provides us with the insight that capturing multimodality in the posterior has crucial effects
in MBRL literature. Therefore, in this paper, we also employ this ensemble scheme to approximate
pD(θ) in the same way as our baseline: PETS [13]. In Sec. 4, we also attempt to incorporate
multimodality in the posterior p(τ |O).

2.2 Moment Matching of Trajectory Posterior p(τ |O)

This section clarifies the connection between trajectory optimization and the posterior approxima-
tion problem. The key observation delineated here is that several MPC methods, including CEM
used in PETS and MPPI, can be regarded as the moment matching of the posterior.
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Table 1: Optimization algorithms derived by moment matching of p(τ |O) and different f defini-
tions; 1 indicates an indicator function, g : R 7→ N denotes rank-preserving transformation.

MPPI [18] CEM [16] Prop-CEM [20] CMA-ES [19]

f(r(τ)) ∝ er(τ) 1 [r(τ) > rthd]
r(τ)− rmin
rmax − rmin

∝ log g(r(τ)) · 1 [r(τ) > rthd]

Given an inferred model posterior pD(θ), we can sample trajectories from (1).1 Let us approximate
the action posterior with a Gaussian distribution q(a;µ,Σ). The mean of posterior action sequence
µ can be estimated by moment matching:

µ = E [a · p(τ |O)] =
Es∼p(s|a,θ),θ∼pD(θ),a∼U [a · p(O|τ)]

Es∼p(s|a,θ),θ∼pD(θ),a∼U [p(O|τ)]
=

Ea∼U [a · W(a)]

Ea∼U [W(a)]
, (2)

where
W(a) := Est+1∼p(st+1|st,at,θ),θ∼pD(θ) [p(O|τ)] . (3)

Eq. (2) can be viewed as a weighted average where each sampled action is weighted by the likelihood
of optimality W(a). In the same way, we can also estimate the variance of the posterior Σ =
Ea∼U

[
(a− µ)2W(a)

]
/Ea∼U [W(a)].

In practice, sampling from uniform distribution U is quite inefficient and requires almost infinite
samples. Hence, let us consider iteratively estimating the parameters by incorporating importance
sampling. Let µ(j), Σ(j) be the estimated parameters at iteration j; we can rearrange (2) as

µ(j+1) ← {RHS of (2)} × q(a;µ(j),Σ(j))

q(a;µ(j),Σ(j))
=

Ea∼q(a;µ(j),Σ(j)) [a · W(a)]

Ea∼q(a;µ(j),Σ(j)) [W(a)]
. (4)

It is worth noting that a similar iterative law can also be derived by solving the optimization problem
argmaxq(a;µ,Σ) E [log p(O|τ)] by mirror descent [24, 25]. To connect this inference problem to
trajectory optimization, we define the optimality likelihood with trajectory reward r(τ) and a mono-
tonically increasing function f(·), as p(O|τ) := f(r(τ)). If we define f(r(τ)) ∝ er(τ) the same
as [22, 26], an optimization algorithm similar to MPPI [18, 8, 25] is recovered. As summarized in
Table 1, other similarities to well-known optimization algorithms, including CEM, can be observed
with different optimality definitions. 2

There is a discrepancy between (4) and the CEM implementation in [13]; in which W ′(a) =
f(E[r(τ)]) is used instead ofW(a) = E[f(r(τ))]. Since f is a convex function, Jensen’s inequality
holds in this case, thusW ≥W ′. The equality holds when f(·) is constant, implying thatW 'W ′
for low-variance r(τ) and W > W ′ for high-variance (or more uncertain) r(τ). Namely, W ′(a)
underestimates the optimality likelihood if a generates uncertain trajectories. Since we have experi-
mentally observed that this uncertainty avoidance behavior byW ′ demonstrates higher optimization
performance thanW (see Sec. B), this paper heuristically employs the use ofW ′.
In practice, expectation operators E[·] should be implemented on digital computers through the
Monte Carlo integration with K sampled actions and P trajectories for each action: µ(j+1) '∑K
k=1 [ak · W ′(ak)]/

∑K
k=1 [W ′(ak)] andW ′(ak) ' f

(
1
P

∑P
i=1 r(τk,i)

)
.

3 Variational Inference MPC: From Moment Matching to Inference

Given uncertainty in a dynamics model, it is natural to suppose that optimal trajectories are also
uncertain. However, as exhibited in the previous section, PETS employs the moment matching of
the trajectory posterior, ignoring almost uncertainty in optimal trajectories. In this section, we newly
introduce a variational inference MPC (VI-MPC) framework to formulate MBRL as fully Bayesian
and involve uncertainty both in the dynamics and optimalities.

1 Trajectory sampling methods with pD(θ) have been discussed and experimented in [13]. In this paper, we
employ the TS1 method suggested in the reference (see `3–6 in Alg. 1).

2 We implicitly assume the existence of step-wise likelihood p(Ot|st,at) corresponding to each definition.
Since another graphical model with a single unified optimality can be defined, the existence is not critical.
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Let us consider a variational inference problem: KL (qθ(τ)||p(τ, θ|O)). We assume the variational
distribution qθ(τ) is decomposed to qθ(τ) = q(a)p(s|a, θ)pD(θ); hence, we introduce p(τ, θ|O)(=
p(O|τ)p(s|a, θ)pD(θ)) as a posterior, which takes the similar decomposable form as qθ(τ). This
assumption forces optimal state transitions to be controlled only by p(st+1|st,at, θ) [22]. As
shown in Sec. C.1, this inference problem can be transformed to the maximization problem:
argmaxqθ(τ) E [log p(O|τ)− log q(a)]. A notable property is that this objective has an entropy
regularization term − log q(a), which encourages q(a) to have broader shape to capture more
uncertainty. For the sake of convenience, we introduce a tunable hyperparameter α(> 0) to
the optimality likelihood p(O|τ) → p

1
α (O|τ). Then the above objective can be transformed as

argmaxqθ(τ) E [log p(O|τ)− α log q(a)]. By applying mirror descent [27] to this optimization
problem, we can derive an update law for q(a) (see Sec. C.2 for the detailed derivation):

q(j+1)(a)← q(j)(a) · W ′(a)
1
λ · (q(j)(a))−κ

/
Eq(j)(a)

[
W ′(a)

1
λ · (q(j)(a))−κ

]
, (5)

where λ(> 0), κ(> 0) are hyperparameters and α is absorbed into them. λ is inverted step-size to
control optimization speed and κ is the weight of the entropy regularization term q−κ.

Eq. (5) suggests a novel and general MPC framework, which we call variational inference MPC
(VI-MPC). To realize a specific VI-MPC method, we specify the following parameters: (1) opti-
mality definition (or f(·); see Table 1), (2) variational distribution model q, and (3) entropy reg-
ularization κ > 0 or κ = 0. We did not include λ into the specifications since it is highly
dependent on the optimality definition (see Sec. G). In this paper, we describe the above spec-
ifications as VIMPC(<optimality def>, <variational dist>, <max ent>). For example,
we respectively express vanilla CEM and MPPI as VIMPC(‘CEM’, ‘Gaussian’, False) and
VIMPC(‘MPPI’, ‘Gaussian’, False). In Sec. 4, we propose a new instance of VI-MPC to
incorporate multimodal uncertainty in the posterior.

4 Probabilistic Action Ensembles with Trajectory Sampling

As reviewed in Sec. 2.1, previous methods have successfully involved multimodality in pD(θ) with
network ensembles. If this multimodality in pD(θ) is given, other distributions depending on pD(θ),
including p(O|τ), would also be multimodal. In other words, there are various possible optimal
trajectories (or actions) like Fig. 1. It is obvious that VIMPC(*, ‘Gaussian’, *) will still easily
fail to capture multimodality because of overfitting to a single mode. Inspired by the success of
the ensemble approach for dynamics modeling, we propose a novel VI-MPC method that introduces
action ensembles with a Gaussian mixture model (GMM), i.e., VIMPC(*, ‘GMM(M=*)’, *), which
we call PaETS (Probabilistic Action Ensembles with Trajectory Sampling).

PaETS defines the variational distribution q(a) as

q(j)(a) := q(a;φ(j)) =

M∑
m=1

π(j)
m N (a;µ(j)

m ,Σ(j)
m ), (6)

where φ(j) := {(π(j)
m ,µ

(j)
m ,Σ(j)

m )}Mm=1 and M is the number of components of the mixture model.
Now, we derive the iteration scheme to update the parameters of GMM. At first, drawingK samples
from q(j)(a), we approximate q(j)(a) as a discretized distribution (or a set of particles):

q(j)(a;φ) ' q(a; W(j)) :=

K∑
k=1

w
(j)
k δ(a− ak), (7)

where W(j) := {w(j)
k }Kk=1. Just after sampling, the weight of each particle is uniform: W(j) =

1/K. By substituting this approximated distribution to (5), the update law for the particle weights
is derived as

w
(j+1)
k ←W ′(ak)

1
λ · (q(j)(ak))−κ

/ K∑
k′=1

W ′(ak′)
1
λ · (q(j)(ak′))−κ. (8)

Then we estimate φ(j+1), which maximizes the observation probability of the weighted particles:

φ(j+1) = argmaxφ log p({(w(j+1)
k ,ak)}Kk=1|φ) = argmaxφ

K∑
k=1

w
(j+1)
k log q(ak;φ). (9)
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Algorithm 1: PaETS

Input: State s1, GMM param. φ(1) and pD(θ)
Output: Optimized GMM param. φ(U+1)

1 for j ← 1 to U do
2 Sample actions {ak ∼ q(a;φ(j))}Kk=1

3 Sample states {{{
4 θk,i,t ∼ pD(θ) // TS1 method

5 sk,i,t+1 ∼
p(st+1|ak,t, sk,i,t, θk,i,t),

6 }T−1
t=1 }Pi=1}Kk=1

7 Eval. {W ′(ak) ' f(
∑P

i=1 r(τk,i))}
K
k=1

8 Calc. {w(j+1)
k }Kk=1 by (8)

9 Update φ(j+1) by (10)

Algorithm 2: MBRL with PaETS
Data: initial variance Σinit

1 Init. D with a random controller for one trial
2 repeat
3 Infer pD(θ) // train ensemble DNNs

4 {µm ← N (a;0,Σinit)}Mm=1 // rand. init.

5 {(Σm, πm)← (Σinit, 1/M)}Mm=1

6 for n← 1 to H do
7 φ←Exec. Alg. 1(sn, φ, pD(θ))
8 Sample a ∼ q(a;φ)
9 Send a1 to actuators and observe sn+1

10 D ← D ∪ {(sn,a1, sn+1)}
11 {µm ← {µm,2:T ,0}}Mm=1 // warm-start

12 {(Σm, πm)← (Σinit, 1/M)}Mm=1

13 until the MPC-policy performs well

By taking the derivative ∇φ log p(·|φ) = 0 and borrowing the concept of the EM algorithm [28],
we get the update laws of φ(j+1) which take the weight-average form like (4) (see Sec. D for the
complete definition):(

µ(j+1)
m ,Σ(j+1)

m , π(j+1)
m

)
←

(
K∑
k=1

ω
(j+1)
m,k ak,

K∑
k=1

ω
(j+1)
m,k (ak − µ(j+1)

m )2,
Nm∑M
m=1Nm

)
. (10)

(a) HalfCheetah (b) Ant

(c) Hopper (b) Walker2d

Figure 3: Evaluated locomotion tasks
simulated in MuJoCo.

Fig. 8 in Sec. E illustrates how this method works in a toy
optimization task.

In summary, PaETS and MBRL utilizing it are respec-
tively described in Algs. 1 and 2, where U is the number
of iterations for optimization and H is the length of the
task episode. At `4 in Alg. 2, µms are initialized indepen-
dently at random. At `12, Σms and πms are reset to be
initial values, encouraging exploration for the next time-
step and preventing q(a;φ) from degenerating to a single
mode. If we set M = 1, these procedures are almost
equivalent to those of PETS. The use of GMM (M > 1)
does not increase computational complexity significantly
(see Sec. F).

5 Experiments

5.1 Comparison to State-of-the-art Methods

The main objective of this experiment is to demonstrate that PaETS has advantages over the state-of-
the-art MBRL baseline: PETS [13]. In this experiment, PaETS and PETS (or vanilla CEM) were im-
plemented using our same codebase with different parameters, i.e., VIMPC(‘CEM’, ‘GMM(M=5)’,
True) for PaETS, and VIMPC(‘CEM’, ‘GMM(M=1)’, False) for PETS. We also evaluated an-
other MBRL baseline with MPPI [8], realized as VIMPC(‘MPPI’, ‘GMM(M=1)’, False). These
above methods share the settings for pD(θ) inference (training of network ensembles). The state-of-
the-art MFRL method SAC [17], was also evaluated to compare asymptotic performance.3 Fig. 3
illustrates the simulated locomotion tasks evaluated in this experiment, which are complex and chal-
lenging due to their high non-linearity. Other details about our implementation and experimental
settings are described in Sec. G and Sec. H. Fig. 4 presents the experimental results, in which PaETS
consistently exhibits better asymptotic performance than that of the MBRL baselines. In addition,
PaETS outperforms or is comparable to SAC while requiring significantly fewer samples (about x10
more sample efficient).

3We used the open-source code: https://github.com/pranz24/pytorch-soft-actor-critic
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Figure 4: Learning curves for different tasks and algorithms. These are averaged results of 8 (for
MBRL) and 20 (for SAC) trials with different random seeds. We stopped the training when conver-
gence was observed or after reaching the specified test steps (500 for MBRL and 5, 000 for SAC).
The asymptotic performances (averages of the last 10 test steps) are depicted in dashed lines.
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Figure 5: Asymptotic performance comparison with varyingMs and κs. These are averaged results
over 8 different MBRL trials and the last 10 test steps. The error bars denote confidence intervals
(95%). Symbols ‘**’ and ‘n.s.’ respectively mean p < 0.01 and p ≥ 0.01 in Welch’s t-test.

5.2 Ablation Study

This experiment clarifies which component of PaETS (GMM and entropy-regularization) con-
tributed to the overall improvement. Fig. 5 expresses the results of this ablation study and Welch’s
t-test for some selected representative pairs. From this figure, one can observe that the use of GMM
(M = 5) significantly improves performance. The effect of the regularization (κ > 0) is relatively
small, but not negligible. In certain tasks, setting κ to particular values could improve the perfor-
mance. In the case of M > 1, the regularization sheds light on actions sampled from low πm, thus
encouraging q(a;φ) to be multimodal. In some tasks which requires rather delicate controls (e.g.,
Hopper, Walker2d), the effect of κ seems less significant. Fig. 6 examines sensitivity with the num-
ber of mixture components M , for which M = 5 achieved the highest performance. If infinite or
enough samples are given (K � 0), it would be reasonable to set M to be large enough to capture
multimodality. However, in practice, K is finite and could be small enough due to computational
constraints. In this case, larger M makes it difficult to approximate q(a;φ) as a set of particles
q(a; W), resulting in degradation of the optimization performance.
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6 Related Work
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Figure 6: Asymptotic performance compar-
ison with varyingMs. Only the HalfCheetah
task is evaluated in this test.

Dynamics Posterior Inference Recent MBRL
methods, MB-MPO (Model-Based Meta-Policy-
Optimization) [15] and ME-TRPO (Model Ensem-
ble Trust Region Optimization) [14], also employ
network ensembles to model dynamics, but they uti-
lize the ensembles differently than we do: to train
policy networks, not MPC.

Trajectory Optimization Sequential Monte-
Carlo based MPC, described as VIMPC(*,
‘Particles’, False), has been introduced
in [29], but it requires well-designed proposal
distribution to sample particles for the next itera-
tion j + 1. Another particle-based method has been
derived [26] by utilizing the control as inference
framework. However, this method relies on not only a dynamics model, but also policy and value
functions to manage particles, so MFRL methods must be incorporated.

Recent studies have demonstrated that entropy regularization is a promising strategy in policy train-
ing [30, 31, 32, 17]. However, to the best of our knowledge, the introduction of entropy regu-
larization to MPC is novel along with explicit multimodal expression to successfully realize their
synergistic effect.

Ref. [33] also systematically organizes the stochastic MPC methods from the perspective of online
learning, but uncertainty-aware discussions from a Bayesian viewpoint are not conducted.

Bayesian Reformulation Ref. [34] proposes a novel approach to generative adversarial imitation
learning (GAIL) [35], which reformulates general GAIL in a Bayesian fashion and utilizes ensem-
bles to infer discriminator posteriors. Another Bayesian reformulation of GAIL integrates imitation
and reinforcement learning by introducing another optimality (i.e., imitation optimality OIt ) [36].

7 Conclusion & Discussions

This paper introduces a novel VI-MPC framework that systematically generalizes and reformulates
various stochastic MPC methods in a Bayesian fashion. We also devise a novel instance of this
framework, called PaETS, which can successfully incorporate multimodal uncertainty in optimal
trajectories. By combining our method and the recent uncertainty-aware dynamics modeling with
neural network ensembles, our Bayesian MBRL is able to involve multimodalities both in dynamics
and optimalities. In addition, our method is a quite simple extension of general stochastic methods
and requires no significant additional computational complexity. Our experiments demonstrate that
PaETS can improve asymptotic performance compared to the leading MBRL baseline PETS, and
thus substantially enhances MBRL potential to be more competitive to the state-of-the-art MFRL.

Considering the simplicity and generalizability of VI-MPC and PaETS, we expect that our concept is
applicable to a variety of tasks, such as traditional MPC with deterministic dynamics and advanced
MPC with latent dynamics from pixels by Deep Planning Network [37]. By introducing a categor-
ical mixture model as a variational distribution, application to combinational optimizations is also
feasible. In fact, our ongoing work includes experiments of discrete MPC for a practical system.

A question that remains is how to determine VI-MPC specifications. As implied in Fig. 4, the best
optimality definition could be task dependent (e.g., MPPI outperformed vanilla CEM in the Ant but
not in other tasks). The regularization weight κ also has task dependency as shown in Fig. 5. It
would be challenging but interesting future work to add the parameters to the graphical model in
Fig. 2 as latent variables to infer promising parameters along with optimal trajectories, like infinite
GMM [38]. Another appealing endeavor for future work is to introduce the concept of parallel
tempering [39] in Markov Chain Monte Carlo. By adaptively varying different temperatures (λ in
our case) of ensemble actions, we can expect the ensemble diversity to improve.
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A Preliminary Experiment for Uncertainty Modeling

Fig. 7 shows the result of a preliminary experiment, in which different uncertainty modeling ap-
proaches were evaluated on the HalfCheetah task. For all trials, vanilla CEM was introduced for
trajectory optimization. This result suggests that (α-)dropout is insufficient to capture uncertainty in
dynamics, resulting in worse local optima.
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Figure 7: Comparison of uncertainty modeling approaches: ensemble and (α-)dropout.

B Comparison BetweenW andW ′

We evaluated the impact ofW andW ′ on the optimization performance of (vanilla) CEM and MPPI,
the results of which are summarized in Table 2, whereW ′ gained much higher rewards thanW .

Table 2: Episode reward of HalfCheetah task withW andW ′. A common dynamics model (suffi-
ciently trained ensemble neural network by MBRL) was employed for this test. Ten different trials
were conducted and the results were averaged.

CEM MPPI
W W ′ W W ′

5603.24± 541.31 11843.05± 295.80 2789.03± 647.82 9765.27± 231.04

C Derivations

C.1 Derivation of the Variational Inference Objective

By using the assumption of qθ(τ) = q(a)p(s|a, θ)pD(θ), the KL-divergence can be transformed as

KL (qθ(τ)||p(τ, θ|O)) =

∫
qθ(τ) log

qθ(τ)

p(τ, θ|O)
dτdθ (11)

=

∫
qθ(τ) log

q(a)p(s|a, θ)pD(θ)

p(O|τ)p(s|a, θ)pD(θ)
dτdθ (12)

= −Eqθ(τ) [log p(O|τ)− log q(a)] . (13)
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C.2 Derivation of (5)

In this section, we simply denote qa as q(a) and qτ as q(τ)(= qap(s|a, θ)pD(θ)) for readability.
Let us consider the optimization problem:

argminqτ J = argminqτ Eqτ [− log p(O|τ) + α log qa] . (14)

By applying mirror descent [27], the iterative update law of q(j+1)
τ is given as

q(j+1)
τ = argminqτ 〈∇qτJ , qτ 〉+ β ·KL(qτ ||q(j)τ ) + γ

(
1−

∫
qτ · dτdθ

)
, (15)

where 〈·, ·〉 is the inner-product operator, β is a hyper-parameter related to the step-size, and γ is the
Lagrange multiplier for the constraint

∫
qτ · dτdθ = 1. The arguments in the argmin operator can

be rearranged as∫
qτ ·

(
− log p(O|τ) + α log qa + β log qa − β log q(j)a − γ

)
dτdθ + γ, (16)

where, we used the relations:
〈∇qτJ , qτ 〉 = J , (17)

KL(qτ ||q(j)τ ) =

∫
qτ log

qτ

q
(j)
τ

dτdθ =

∫
qτ log

qa

q
(j)
a

dτdθ. (18)

The integrand of (16) can be organized as

qτ · log
qα+βa

p(O|τ)e−γ(q
(j)
a )β

∝ qτ · log
qa

p(O|τ)
1

α+β · e
−γ
α+β · (q(j)a )

β
α+β

(19)

= qτ · log
p(s|a, θ)pD(θ)qa

(p(s|a, θ)pD(θ)q
(j)
a ) · p(O|τ)

1
α+β · e

−γ
α+β · (q(j)a )

−α
α+β

(20)

= qτ · log
qτ

q
(j)
τ · p(O|τ)

1
α+β · e

−γ
α+β · (q(j)a )

−α
α+β

. (21)

Integrating the above equation yields,

(16) = KL(qτ ||q(j)τ · p(O|τ)
1

α+β · e
−γ
α+β · (q(j)a )

−α
α+β ) + γ. (22)

By minimizing this equation, we get:

q(j+1)
τ = q(j)τ · p(O|τ)

1
α+β · e

−γ
α+β · (q(j)a )

−α
α+β . (23)

The Lagrange multiplier can be removed using the constraint
∫
q
(j+1)
τ · dτdθ = 1:

e
γ

α+β = E
q
(j)
τ

[
p(O|τ)

1
α+β · (q(j)a )

−α
α+β

]
(24)

= Ea∼qa (j)

Es∼p(s|a,θ),θ∼pD(θ)

[
p(O|τ)

1
α+β

]
︸ ︷︷ ︸

(∗)

·(q(j)a )
−α
α+β

 . (25)

Considering the discussion in Sec. 2.2 and Sec. B, we compute (∗) as

(∗) ' f(E[r(τ)])
1

α+β =W ′(a)
1

α+β . (26)
Substituting (25) to (23) results in:

q(j+1)
τ =

q
(j)
τ · p(O|τ)

1
α+β · (q(j)a )

−α
α+β

E
a∼q(j)a

[
W ′(a)

1
α+β · (q(j)a )

−α
α+β

] . (27)

Marginalizing (s, θ), we finally obtain:

q(j+1)
a =

q
(j)
a · W ′(a)

1
α+β · (q(j)a )

−α
α+β

E
a∼q(j)a

[
W ′(a)

1
α+β · (q(j)a )

−α
α+β

] . (28)

In (5), we replaced λ := α+ β, κ := α/(α+ β).
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D Complete Definition of PaETS

ηm(ak) := π(j)
m N (ak;µ(j)

m ,Σ(j)
m )
/ M∑
m′=1

π
(j)
m′N (ak;µ

(j)
m′ ,Σ

(j)
m′) (29)

ω
(j+1)
m,k := ηm(ak)w

(j+1)
k

/ K∑
k′=1

ηm(ak′)w
(j+1)
k′︸ ︷︷ ︸

:=Nm

(30)

µ(j+1)
m ←

K∑
k=1

ω
(j+1)
m,k ak (31)

Σ(j+1)
m ←

K∑
k=1

ω
(j+1)
m,k (ak − µ(j+1)

m )2 (32)

π(j+1)
m ← Nm

/ M∑
m=1

Nm. (33)

E Optimization of Toy Objective Function by PaETS

Fig. 8 illustrates how PaETS optimizes q(a;φ(j)) in a toy multimodal objective function.

j=1
(j)

(j + 1)

j=2 j=3

j=4 j=5 j=6

Figure 8: The optimization process of a 2D multimodal objective function by PaETS
(VIMPC(‘MPPI’, ‘GMM(M=2)’, True)), in which two distribution components are successfully
optimized to fit the two modals. • depict particles that approximates q(a;φ(j)).

F Computational Complexity

The main computational bottleneck of PaETS (and PETS) is the execution of `3–6 in Alg. 1, in
which total K × P trajectories must be sampled. In our experiment, K and P were respectively
set as K = 500, P = 20 as in [13]. Compared to PETS, PaETS requires additional procedures
like action sampling from GMM (`2) and GMM parameter update (`9). However, these additional
procedures are easily parallelizable on GPUs, and their computation times are much shorter than
the above mentioned bottleneck. In the experiments with our early prototype in TensorFlow, it took
about 57 ms for M = 5 and 55 ms for M = 1 (equivalent to PETS) to execute one iteration of
the for-loop in Alg. 1 on a single NVIDIA RTX2080 GPU. The above execution time does not
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meet the real-time constraints (e.g., 30 Hz). However, considering the success of the real-time
implementation of MPPI in [18, 8], we believe real-time implantation of our method is feasible with
optimized implementation using compiled language, low-level GPU APIs, and thorough tuning of
hyperparameters (e.g., K, P and DNN complexity).

G Implementation Notes

Cross Entropy Method It is general technique to adaptively determine rthd in Table 1 so that only
the top-e% samples satisfies the threshold condition. We employ this technique and the eliteness
ratio is set to be e = 10%. λ has no effect on CEM optimization since f(·) takes binary values.

MPPI Reward normalization heuristics, as suggested in [40], were also introduced for our MPPI
implementation as

W ′(ak)
1
λ = exp

{
1

λ
· r(τk)−min{r(τk′)}Kk′=1

max{r(τk′)}Kk′=1 −min{r(τk′)}Kk′=1

}
, (34)

where r(τk) = 1
P

∑P
i=1 r(τk,i). λ was set to be λ = 0.1 as also suggested in [40].

Entropy Regularization The value of κ is very sensitive to task settings, especially for the di-
mensionalities of action spaces. To make κ insensitive, we introduced the following normalization
trick inspired by the above heuristics. First, we rearrange (8) as

w
(j+1)
k ∝ W ′(a)

1
λ exp

{
κ · (− log q(j)(ak))

}
. (35)

Then, we replace − log q(j)(ak) to normalized one:

− log q(j)(ak)→ − log q(j)(ak)−min{− log q(j)(ak′)}Kk′=1

max{− log q(j)(ak′)}Kk′=1 −min{− log q(j)(ak′)}Kk′=1

∈ [0, 1]. (36)

By applying these heuristics, the range of entropy bonus is limited to [1, eκ], where the action with
the lowest probability among K samples gains the highest entropy bonus of eκ.

H Experimental Setup

We used MuJoCo tasks modified from standard OpenAI Gym tasks.4 Table 3 summarizes the task
settings, where vx, ϕ and z respectively denote the velocity, orientation angle, and height of the
agents. Penalty functions Φ, Ψ are newly introduced to encourage the agents to move forward in
the proper form. Instead, done flags used originally for early task stopping are removed. Φ, Ψ are
defined as

Φ(z, zdes) = e−(z−zdes)
2

, (37)

Ψ(ϕ) =
1 + cos(2ϕ)

2
. (38)

We modified the range of actions (i.e., torques) from [−1, 1] to [−5, 5] to exaggerate uncertainties in
the optimal trajectory posteriors.

Table 3: MuJoCo task settings.

Task Reward Function st ∈ at ∈ Misc.

HalfCheetah vx · 1+sign(cos(ϕ))
2 − 0.1 · ||at||2 R18 R6 —

Ant vx · Φ(z, zdes)− 10−3 · ||at||2 R28 R8 zdes = 0.75
Hopper vx · Φ(z, zdes) ·Ψ(ϕ)− 10−3 · ||at||2 R12 R3 zdes = 1.2

Walker2d vx · Φ(z, zdes) ·Ψ(ϕ)− 10−3 · ||at||2 R18 R6 zdes = 1.2

Table 4 summarizes the shared parameter settings for MBRL (PaETS, PETS, and MPPI). For SAC,
we used the default parameters from the original codebase.

4https://github.com/openai/gym
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Table 4: MBRL parameters.

HalfCheetah Ant Hopper Walker2d
T : prediction horizon 30 30 60 45

κ: weight of entropy regularizer 0.5 0.25 0.5 0.5
K: # sampled actions 500

P : # trajectories for each action 20
U : # optimization-iterations 5

H: # episode length 1000
E: # neural networks 5

hidden nodes (200, 200, 200, 200)
activation function Swish

optimizer Adam
learning rate 10−3

batch-size 160

I Diversity Analysis of D

In this section, we analyzes the diversity of training dataD collected by different MPC-policies. The
distributions (histograms) of the data samples are illustrated in Fig. 9, in which the dimension of a
sample (s, a) was reduced by t-SNE. This figure suggests that incorporating uncertainty both in the
dynamics and optimalities can improve the diversity of D (i.e., coverage of state-action space).

PETS (CR=58.1%) PaETS (CR=61.5%) dropout (CR=44.0%) -dropout (CR=52.7%)

Figure 9: Comparison of training data distributions collected by different MPC-policies. CR (cover
ratio) indicates the ratio of non-zero bins in each 2D histogram.
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