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1 Preliminaries

In this section we briefly introduce some preliminary results on using TP-GMMs and hidden semi-
Markov models (HSMMs) for robot skill learning, and more importantly their adaptation to Rie-
mannian Manifold.

1.1 TP-GMMs

The basic idea of LfD is to fit a prescribed skill model such as GMMs to a handful of demonstra-
tions. It is assumed we are given M demonstrations, each of which contains Tm data points for a
dataset of N “

řM
m“1 Tm total observations ξ “ tξtu

N
t“1, where ξt P Rd for sake of clarity. Also,

we assume the same demonstrations are recorded from the perspective of P different coordinate
systems TP (also called task parameters). One common way to obtain such data is to transform the
demonstrations from global frame to frame p P TP by ξppqt “ T´1

pb
ppq
t ,A

ppq
t q
pξtq “ A

ppq´1

t pξt ´ b
ppq
t q,

where
`

b
ppq
t ,A

ppq
t

˘

is the translation and rotation of frame p w.r.t. the world frame at time t,
which we assume is available in this work. Then, a TP-GMM is described by the parameters
tπk, tµ

ppq
k ,Σ

ppq
k upPTPu

K
k“1 where K represents the number of Gaussian components in the mix-

ture model, πk is the prior probability of each component, and µppqk ,Σ
ppq
k are mean and covariance

of the k-th component within frame p. Differently from standard GMM learning described in [1], the
mixture model above can not be learned independently for each frame. Indeed, the mixing coeffi-
cients πk are shared by all frames and the k-th component in frame pmust map to the corresponding
k-th component in the global frame. Expectation-Maximization (EM) in [2] is a well-established
method to learn such models.

Once learned, the TP-GMM can be used during execution to reproduce a trajectory for the learned
skill. Namely, given the observed frames tbppqt ,A

ppq
t upPTP, the learned TP-GMM is converted into

one single GMM with parameters tπk, µ̂t,k, Σ̂t,ku
K
k“1, by multiplying the affine-transformed Gaus-

sian components across different frames, as follows
´

Σ̂t,k

¯´1

“
ÿ

pPTP

´

Σ̂
ppq

t,k

¯´1

, µ̂t,k“Σ̂t,k

ÿ

pPTP

´

Σ̂
ppq

t,k

¯´1

µ̂
ppq
t,k , (1)

where the parameters of the updated Gaussian at each frame p are computed as µ̂ppqt,k “ A
ppq
t µ

ppq
k `

b
ppq
t and Σ̂

ppq

t,k “ A
ppq
t Σ

ppq
k A

ppqT

t . More details can be found in the review paper by [3].

1.2 HSMMs

Hidden semi-Markov Models (HSMMs) extend standard hidden Markov Models (HMMs) by em-
bedding temporal information of the underlying stochastic process. That is, while in HMM the
underlying hidden process is assumed to be Markov, i.e., the probability of transitioning to the next
state depends only on the current state, in HSMM the state process is assumed semi-Markov. This
means that a transition to the next state depends on the current state as well as on the elapsed time
since the state was entered. HSMMs have been extensively applied in the past in speech synthesis,
see [4]. Recently, they have been successfully applied, in combination with TP-GMMs, for robot
skill encoding to learn spatio-temporal features of the demonstrations from [5]. More specifically, a
task-parametrized HSMM model consists of the following parameters

θ “
!

takhu
K
h“1, pµ

D
k , σ

D
k q, tπk, tµ

ppq
k ,Σ

ppq
k upPTPu

)K

k“1
, (2)

where akh is the transition probability from state k to h; pµDk , σ
D
k q describe the Gaussian distri-

butions for the duration of state k, i.e., the probability of staying in state k for a certain number
of consecutive steps; tπk, tµ

ppq
k ,Σ

ppq
k upPTPu

K
k“1 is the TP-GMM introduced earlier and, for each

k, describe the emission probability, i.e., probability of observation, corresponding to state k. The
prior πk, however, describes in an HSMM only the probability distribution of the initial component
at t “ 1. The probability distribution of the components at subsequent time steps is determined via
the underlying Semi-Markov Model. Note that in an HSMM each state corresponds to a Gaussian
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component in the associated TP-GMM. In many cases, we want the structure of the Semi-Markov
Model to be linear, which means the sequence of states is deterministic and only the duration in
each state is probabilistic. We can fix this linear structure beforehand to speed up the training algo-
rithm by setting πk “ δ1k and akh “ δpk`1qh with δij “ 0 for i ‰ j and δij “ 1 for i “ j. In
the following we assume that the structure is always linear, which means that we assume that each
skill always follows the same segments and that we train for each skill a separate model such that
no bifurcations are needed. Remember that these skills are very basic, like grasp object, move
object, or release object. Hence, this assumption does not exclude complex assembling tasks
it only requires the bifurcations to be on the skill level, e.g. after grasp object we can either
execute move object or release object, but grasp object itself has only one way to execute
it (move robot arm towards the object and close the gripper).

Furthermore, given a starting state k0 and a desired goal state kT at a desired time instant T , the
most-likely sequence of states k‹ in the absence of observations can be determined with Viterbi’s
algorithm for HSMMs, as shown in [6]. Denote by k‹ “ k0k1 ¨ ¨ ¨ kT , where kt P t1, ¨ ¨ ¨ ,Ku. Thus,
k‹ is the sequence of states that should be tracked during reproduction of the skill. For instance, a
LQG-based minimal intervention control is used in [3] to design the controller that reproduce such
sequence of Gaussian components.

Last but not least, we experienced that for robot manipulation tasks, we often face a non-Euclidean
state space, e.g., rotation matrices SOp3q Ă R3ˆ3 or unit quaternions S3 Ă R4 are frequently used
to describe orientations of objects or robot end effectors. Straightforward approach that projects the
solution of the Euclidean computation back onto the manifold often suffers from low accuracy and
can sometimes lead to disastrous consequences due to sign-flips as mentioned in [7]. Therefore, we
adapt fully the aforementioned TP-HSMM formalism to Rimannian manifold. The detailed theory
and derivations can be found in Sec.2 of this document and more in [8].

2 Riemannian Manifold

For robot manipulation tasks, we often face a non-Euclidean state space, e.g., rotation matrices
SOp3q Ă R3ˆ3 or unit quaternions S3 Ă R4 are frequently used to describe orientations of objects
or robot end effectors. Many basic operations such as computing distances, mean, or derivatives
should be performed differently as in Euclidean space. Most recent work relies on a straightforward
approach that projects the solution of the Euclidean computation back onto the manifold, see [9].
However, this approach often suffers from low accuracy and can sometimes lead to disastrous con-
sequences due to sign-flips as mentioned in [7]. Therefore, we adapt fully the aforementioned TP-
HSMM formalism to Rimannian manifold. The detailed theory and derivations can be found in [8].
We briefly summarize below the concepts essential for this work.

Consider a Riemannian manifold M, one point p P M and its tangent space TpM at p. Note that
M is equipped with a proper definition of inner product over its tangent space and distance on the
manifold. The exponential map Expp : TpM Ñ M maps any point in the tangent space at point
p to the manifold while preserving its distance to p. Inversely, the logarithmic map Logp : M Ñ

TpM maps any point on the manifold to a point on the tangent space at point p. Moreover, the
generalization of a Gaussian normal distribution to Riemannian manifolds is given by

NMpp|µ,Σq „ exp

ˆ

´
1

2
Logµppq

JΣ´1 Logµppq

˙

, (3)

where the mean µ lies on the manifold and the covariance Σ lies in the tangent space TµM. Given
a set of points within M, the associated Gaussian distribution can not be analytically determined
but only empirically via an iterative likelihood maximization algorithm as shown by [8]. Further-
more, given several Gaussians within M, the resulting product can be computed similarly in a
empirical way by projecting the means to a tangent space and parallel transporting the covariance
matrices. These operations are useful for the EM algorithm and during reproduction as discussed in
Section 1.1.

Lastly, a task parameter pb, Aq in the Riemannian context consists of the translation on the mani-
fold b PM and rotation matrix in the tangent space TeM at the manifold origin e. As a result, the
transformation between a observation ξ1 in the local frame and the corresponding observation ξ in
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translate atl insert ais
TPt Success Rate TPi Success Rate

td, ru 0.08 tb1, ru 0.05
td, r, ou 0.26 tb1, r, ou 0.44
td, ou 0.37 tb1, ou 0.71
tr, ou 0.99 tr, ou 0.99

Table 1: The choice of task parameters and associated success rate, for skills translate and
insert used in the experiment. Note that r stands for the robot arm pose, o the object pose, b1
the pose of the container to insert the object, and d the destination frame of the transition skill
translate. Detailed descriptions are given in Sec.6 of the original paper.

the world frame is given by

ξ “ Expb
`

ALogepξ
1q
˘

, ξ1 “ Expe
`

A´1 Logbpξq
˘

, (4)

which are useful for converting observations between different frames.

3 Choice of Task Parameters

As emphasized in Sec.4.1 of the original paper, the success of both learning and reproducing skills
with TP-GMMs heavily depends on a good choice of task parameters, which the user has to provide.
As shown in Table 1, different choices of task parameters can result in significant changes in the per-
formance. For example, a proper choice of task parameters for the skill grasp peg is a coordinate
frame attached to the peg and one at the robot arm initial pose. This allows the learned trajectory to
have a smooth start and more importantly adapt to new poses of the peg for successful grasping. As
rule of thumb, attaching frames to all involved objects Oa and to the robot arm initial pose indexed
by r as well as using the free task parameters Fa for transition skills, i.e. TPa “ Oa Y Fa Y tru,
covers many cases. However, this is not always the best choice, since some objects might produce
irrelevant task parameters, which not only increases the computation cost but can also decrease the
performance of reproduction. A problem that arises with time-varying task parameters like an object
pose is that the TP-HSMM only encodes how the task parameter influences the robot arm motion,
but not how the robot arm motion affects the objects pose. For example, while executing the skill
move object the trajectory of the robot arm in the frame attached to the object is only a single
constant point, because the object follows every motion of the robot arm while it is grasped. Thus,
the robot arm will follow the object during reproduction, i.e. stay where the object is, since the tra-
jectory generation does not know that the robot arm can be moved freely without leaving the single
point component in the object frame. In this case, it is better to not to use the object frame as task
parameter.

In order to automate the choice of a proper set of task parameters TPa Ď Oa Y Fa Y tru, we can
validate a choice by computing its reproduction error. For this we need a ground truth, which is
given as demonstration. Usually, the set of demonstrations Da is rather small, such that we have to
use the same set of demonstrations Da for training and validation. This yields to the validation:

V pTPaq “

Ma
ÿ

m“1

Tm
ÿ

t“1

∥∥∥Logξtpξ̂tq∥∥∥ , (5)

where ξ̂t is the trajectory retrieved from model θapTPaq for the task parameters from demonstration
Dm.

The number of involved objects for a skill is usually small, then we can train the model for all
combinations of task parameters and validate each choice. If the number of objects is higher, the
user has to preselect some promising choices of task parameters to reduce the computation time.
The examples in Table 1 for the skills translate (object o to destination d) and insert (object o
into box b) show that in both cases it is better to not use the object frame as task parameter due to the
reasons described above. The choices of not using the robot initial arm position r or the destination
d or box b are as to expect even worse.
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Precondition Model γ1,a

TPa o d r
o – (3.4e-2, 3.2e-2) (9.1e-3, 4.8e-5)
d (-1.2e-2, 2.8e-2) – (-3.4e-3, 2.7e-2)
r (-1.2e-2, 1.1e-5) (9.6e-2, 2.3e-2) –

Effect Model γT,a
TPa o d r
o (3.4e-2, 3.2e-2) (3.5e-2, 3.3e-2) (3.8e-2, 3.2e-2)
d (2.5e-5, 1.0e-5) (0.0, 1.0e-5) (7.2e-3, 4.9e-5)
r (9.6e-3, 2.4e-2) (9.6e-2, 2.3e-2) (1.0e-1, 2.4e-2)

Table 2: The learned task-parameterized precondition model γ1,a from (3) of the original paper and
effect model γT,a from (4) of the original paper of the translate skill atl, which moves object o to
the destination frame d via the robot arm r. Due to limited space, only the mean and variance of the
TP-Gs in the x-direction is shown here.

4 Training the Precondition and Prediction Model

The precondition and prediction models have the structure of Task Parameterized Gaussians. Since
a TP-G has one component, we do not need to train them with an EM-algorithm, but we can directly
compute the means and covariances. First, we clarify some notations. We denote the empirical
mean and covariance on the manifold M of the points X Ď M with meanMpXq, covMpXq
and the Gaussian product on the manifold M with

ś

M. Further, we denote the mapping from
the object pose po of object o P Oa to the reference frame attached to it with pbppoq,Appoqq.
The transformation (4) from world coordinates to the reference frame pbppoq,Appoqq is denoted
ξ “ Tpo

pξ1q and its inverse ξ1 “ T´1
po
pξq and so is the transformation of Riemannian Gaussians

NMpµ,Σq “ Tpo
pNMpµ

poq,Σpoqqq. For simplification, we will use this notation also for transfor-
mations in the pose space Mp and not only in the observation space Mξ, although these are in fact
different mappings.

Thus, we can compute the models from the demonstrations from (1) of the original paper as follows:
Initial-initial-precondition model, for each o P Oa Y Fa and each p P Oa Y Fa Y tr,wu compute

µ
ppq
1,o “ meanMp

ˆ

!

T´1
p1,p
pp1,oq

ˇ

ˇDm

)Ma

m“1

˙

, Σ
ppq
1,o “ covMp

ˆ

!

T´1
p1,p
pp1,oq

ˇ

ˇDm

)Ma

m“1

˙

.

Initial-final-prediction model, for each o P Oa and for each p P TPa compute

µ
ppq
T,o “ meanMp

ˆ

!

T´1
p1,p
ppTm,oq

ˇ

ˇDm

)Ma

m“1

˙

, Σ
ppq
T,o “ covMp

ˆ

!

T´1
p1,p
ppTm,oq

ˇ

ˇDm

)Ma

m“1

˙

.

For a given state s,pF, we can combine the Gaussians in the world frame in order to compute
µ̂1,o, Σ̂1,o and µ̂T,o, Σ̂T,o as follows

N
`

µ̂1,o, Σ̂1,o

˘

“
ź

Mp

pPOaYFaYtr,wu

Tpp

´

N
`

µ
ppq
1,o,Σ

ppq
1,o

˘

¯

(6)

N
`

µ̂T,o, Σ̂T,o

˘

“
ź

Mp

pPTPa

Tpp

´

N
`

µ
ppq
T,o,Σ

ppq
T,o

˘

¯

. (7)

We suggest to choose the task parameters for the precondition model as all involved objects Oa,
the free task parameters Fa as well as the robot arm initial state r and even the world frame w to
incorporate not only relative but also absolute conditions, i.e. TP1,a “ Oa Y Fa Y tr,wu. Thereby,
we cover all possible relations in between two or more of the objects involved. Further, for the
prediction we suggest to use the same set of task parameters as used in the TP-HSMM θa, since
these are the only ones influencing the reproduced trajectory of the robot arm and thus the only
ones that have impact on the outcome of the skill execution, i.e. TPT,a “ TPa. For example, the
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Figure 1: Example for the measure of confidence in R2 with three (left) and five (right) demonstra-
tions. The task parameters are indicated by coordinates with gray arrows. The contour plots show
the values of the confidence measure given different origins of the task parameter.

SLSQP Nelder-Mead
Dim. Time (s) ca Time (s) ca

1 12.58 143.24 7.74 143.19
2 33.87 195.62 18.67 195.78
3 48.49 192.63 42.69 200.52
4 51.38 188.69 55.84 201.75
5 73.70 ´81.68 61.82 202.75

Table 3: Computation time and the optimized confidence for the sequence of four skills used in the
experiment under different solver and dimensions.

skill move peg uses as task parameters the robot initial arm pose and the goal pose for the motion,
but not the peg itself. The precondition that the peg has to be grasped involves the peg and thus
the task parameter set for the preconditions must include this task parameter that is not in TPa.
The prediction of the final peg pose, however, does only depend on the robot arm trajectory, which
depends on the robot arm initial pose and on the desired goal pose, i.e. on TPa.

Examples of the learned precondition and effect models for the skill translate used in the experi-
ment section of the original paper are given in Table 2.

5 Numerical Examples

5.1 2D Example of Confidence Measure

A 2D example of the computed confidence measure is given in Figure 1. It shows that the confidence
is higher close to the demonstrations and adaptive to the directions of variation in the demonstrated
task parameters. Further, the area of highly confident task parameters can be enlarged by adding
more demonstrations.

5.2 Computation Complexity for Optimization

Consider d P Fa as the destination frame of the transition skill a. We optimize first in the d di-
rections that have the largest variations demonstrated, i.e., over λ P Rd where pd “ µ̂1,d ` V λ

and V “ rv1, . . . ,vds are the eigenvectors of Σ̂1,d corresponding to its d largest eigenvalues, with
pµ̂1,d, Σ̂1,dq being the mean and covariance of the destination frame based on the demonstrations of
skill a. For example, when moving an object on a table the horizontal x and y directions should be
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Figure 2: Demonstrations and the learned TP-GMMs in the global frame for skill “grasp top”.
Note that each point on the trajectory is marked by same color as the Gaussian component it belongs
to.
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Figure 3: Demonstrations and the learned TP-GMMs in the global frame for skill “grasp side”.
Note that each point on the trajectory is marked by same color as the Gaussian component it belongs
to.

optimized, but the vertical z direction is fixed since we can not place the object in the air or inside the
table and thus is unnecessary to optimize. An example of the optimized complexity under different
solvers and dimensions is shown in Table 3.

5.3 Detailed Models Learned for the Experiments

In this section, we show for each skill used in the experiment section of the actual paper: actual
demonstrations performed and the learned TP-HSMM models.

The demonstrations and the learned GMMs in the global frame for grasp top skill agt and the
translate skill atl are shown in Fig. 2.

5.4 Confidence Comparison for Different Scenarios

After learning the skill models above, given desired sequence a and the observed scenario s0, the
confidence cap¨q can be maximized if it contains the transition skill atl. The criterion to choose a1
or a11 is as follows: a11 is chosen if the relative improvement (IR) defined by pca11 ´ ca1q{pca1 ´
cminq, where cmin is a predefined confidence lower bound, which is set to ´10 here. The same rule
applies to the choice of a2 and a12. A comparison of confidences for a selection of initial object
poses is shown in Table 4, where optimal choice for free TP destination d is shown along with the
computation time. The distribution of IR over the whole workspace is shown in Figure 7. It can be
seen that: (I) for tasks a1 and a11, the difference in their confidences is mostly negligible as the skill
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Figure 4: Demonstrations and the learned TP-GMMs in the global frame for skill “drop”. Note that
each point on the trajectory is marked by same color as the Gaussian component it belongs to.
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Figure 5: Demonstrations and the learned TP-GMMs in the global frame for skill “insert”. Note
that each point on the trajectory is marked by same color as the Gaussian component it belongs to.

grasp top has quite high confidence across the workspace. However, it is worth noticing that close
to top-left corner, a11 is preferred over a1 because skill drop has never been demonstrated around that
area, thus it is beneficial to translate the box to the center area where skill drop is more confident.
(II) for tasks a2 and a12, it is almost always beneficial to translate the object onto the platform first
when the object is initially on the table, while this translation is unnecessary if the object is already
on the platform. The main reason is that skill grasp side is unsafe for the robot due to potential
collision with the table, thus only demonstrated on the platform. Examples of execution trajectory
of tasks a11 and a12 are shown in Fig. 8.
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Figure 6: Demonstrations and the learned TP-GMMs in the global frame for skill “translate”.
Note that each point on the trajectory is marked by same color as the Gaussian component it belongs
to.

pbox ca2 ca12 p‹d Topt (s) ca1 ca11 p‹d Topt (s)

(0.5, 0.0, 0.03) -580 37 (0.36, 0.27, 0.07) 13.6 38 37 (0.42, 0.12, 0.03) 21.7
(0.6, 0.1, 0.03) -800 32 (0.37, 0.28, 0.07) 16.5 32 31 (0.40, 0.12, 0.03) 15.2
(0.6, 0.2, 0.03) -800 33 (0.36, 0.28, 0.07) 15.8 32 30 (0.40, 0.12, 0.03) 21.3

(0.3, -0.08, 0.03) -197 20 (0.36, 0.19, 0.07) 16.5 -1.2 19 (0.40, 0.1, 0.03) 12.2
(0.35, -0.0, 0.03) -70 28.5 (0.37, 0.19, 0.07) 13.5 15.5 28 (0.44, 0.1, 0.03) 11.2
(0.3, 0.2, 0.07) 46 31 (0.36, 0.24, 0.07) 15.1 30 31 (0.41, 0.12, 0.03) 19.1
(0.4, 0.3, 0.07) 41 34 (0.36, 0.28, 0.07) 16.7 31 31 (0.41, 0.13, 0.03) 22.2
(0.3, 0.4, 0.07) 28 32 (0.36, 0.30, 0.07) 24.6 30 31 (0.42, 0.13, 0.03) 20.6

Table 4: Comparison of the confidence measure at different initial object poses, for both tasks with
(i.e., a11 and a12) and without transition skills (i.e., a1 and a2).
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Figure 7: Heatmap of relative improvement over the workspace (X, Y-axis in m) when comparing
a1 and a11 (Left), and a2 and a12 (Right). The area within the black lines is elevated by the platform.
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Figure 8: Left: One execution trajectory for task a11 “ agtatlagtadp. Right: One execution tra-
jectory for task a12 “ agtatsagsais. Boxes in shaded magenta are the predicted intermediate poses
during execution, while box in solid black is the initial pose.
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