
Locally Weighted Regression Pseudo-Rehearsal for
Adaptive Model Predictive Control

Grady R. Williams∗
Georgia Institute
of Technology
grady@vtr.us

Brian Goldfain†
Georgia Institute
of Technology

bgoldfain3@gatech.edu

Keuntaek Lee
Georgia Institute
of Technology

keuntaek.lee@gatech.edu

Jason Gibson
Georgia Institute
of Technology

jgibson37@gatech.edu

James M. Rehg
Georgia Institute
of Technology

rehg@gatech.edu

Evangelos A. Theodorou
Georgia Institute
of Technology

evangelos.theodorou@gatech.edu

Abstract: We consider the problem of online adaptation of a neural network de-
signed to represent system dynamics. The neural network model is intended to be
used by an MPC control law for autonomous control. This problem is challeng-
ing because both input and target distributions are non-stationary, and naive ap-
proaches to online adaptation result in catastrophic forgetting. We present a novel
online learning method, which combines the pseudo-rehearsal method with locally
weighted projection regression. We demonstrate the effectiveness of the resulting
Locally Weighted Projection Regression Pseudo-Rehearsal (LW-PR2) method on
an autonomous vehicle in simulation and real world data collected with a 1/5 scale
autonomous vehicle.

1 Introduction

Autonomous systems operating in the real world must be capable of precise control in order to satisfy
safety and performance criteria. This, in turn, requires highly accurate dynamics models which can
be difficult to obtain. One of the most promising approaches is to learn the dynamics using function
approximation methods. However, a major challenge with this approach is that the system dynamics
could be constantly changing. Therefore, models which can adapt to changing dynamics online are
desirable. In this work we examine the use of neural networks to model the system dynamics. Neural
networks have recently been demonstrated to be effective at learning system models that can be used
in high performance vehicle controllers [1], and are seeing increasing usage in the robotics control
literature [2, 3, 4, 5]. However, adapting neural networks online is a notoriously difficult problem.
The key issue that must be overcome is catastrophic forgetting [6, 7], which is the tendency for
neural networks to forget old data when fed new data from a different distribution.

In order to overcome the catastrophic forgetting problem in neural networks, we make use of a class
of modeling techniques which are naturally immune to catastrophic forgetting: locally weighted
regression (LWR) [8]. LWR models work by building a global model up from a set of many small
local models. Each model is equipped with a receptive field, which determines how much the model
should respond to a given input. The output of the global model is then computed as a weighted
average of all the local model outputs [9, 10, 11]. Since a given training pair only affects a localized
region of the state space, LWR models can safely make incremental updates. One of the most
mature local modeling methods is locally weighted projection regression (LWPR) [10]. LWPR has
proven successful in modeling robot dynamics, even for high-dimensional systems in online learning
scenarios.

∗Author’s affiliation has changed since this research was completed. New affiliation is Vtrus, Inc.
†Author’s affiliation has changed since this research was completed. New affiliation is the Toyota Research

Institute.

3rd Conference on Robot Learning (CoRL 2019), Osaka, Japan.



Given the success of LWR models at the task of learning robot dynamics, a valid question is: why
not use LWR models instead of neural networks for controlling the system? The issue with utilizing
LWR in model predictive control is the computational cost. In the past, LWR models have been
limited to inverse control, which only requires a single prediction per timestep, or offline trajec-
tory/policy optimization [8, 12]. In cases where they have been used in MPC [13], the model had
to be severely restrained in order to control the number of local models generated. The issue is that
for LWR models to achieve high accuracy, typically thousands or tens of thousands of local models
are required. Instead of utilizing LWR directly in an MPC controller, our method utilizes a neural
network model for control, but updates it online using data collected from the system combined with
pseudo-samples generated by an incrementally updated LWPR model.

2 Related Work on Neural Network Adaptation

Some of the earliest methods proposed for mitigating catastrophic forgetting in neural networks
are rehearsal and pseudo-rehearsal [7, 14, 15, 16, 17]. In rehearsal methods, the original training
data is retained and used alongside the new data in order to update the model. Pseudo-rehearsal
methods do not retain old data, but instead they randomly create input vectors (pseudo-inputs) that
are then fed through the current network in order to produce a corresponding output point (pseudo-
output). The resulting artificially generated sample (pseudo-sample) can then be used for training the
network alongside newly received data. The idea is that, by using the pseudo-samples alongside real
data, the network can be encouraged to learn the new data without forgetting the current mapping.
Recently, there has been a success using rehearsal [18] and pseudo-rehearsal based methods for
vision tasks [19, 20, 21, 22]. In these methods the primary challenge that must be overcome is either
storing previous data samples (in rehearsal methods) or randomly generating realistic inputs (for
pseudo-rehearsal methods). In the case of learning system dynamics, generating pseudo-inputs is
relatively easy due to the comparatively low dimension of the state-space. Instead, there is another
challenge that must be overcome: both the input and target distributions are non-stationary. This
means that sometimes new data must be learned while retaining old data, but other times new data
must overwrite old data.

Besides rehearsal and pseudo-rehearsal methods, there are a variety of methods for updating neural
networks which mitigate catastrophic forgetting by controlling how far the parameters of the model
can move away from the current model. For instance, this is the approach taken in [23, 24, 25].
However, as in the case of rehearsal and pseudo-rehearsal, it is not clear how well controlling
changes in the weights works when the target distribution is non-stationary, since in that case the
network weights corresponding to previously learned data will need to be changed as well. An-
other promising approach to online adaptation for neural networks that has recently been explored
is meta-learning [5]. However the meta-learning approach does not have an explicit mechanism to
combat catastrophic forgetting, and it is currently unclear how to perform the meta-training in order
to ensure that catastrophic forgetting cannot occur.

3 Problem Formulation

Consider an autonomous robot operating at some task, while performing the task the robot encoun-
ters system states, denoted z, and executes controls, denoted u. Our goal is to update the model of
the system dynamics, which we assume is as a discrete time dynamical system:

zt+1 = zt + F(zt,ut; θ)∆t (1)

Where F is a model of the system dynamics and θ denotes the parameters of the model, in our case
these are the weights of a neural network. Now, we define the following variables:

x =

(
zt
ut

)
, y =

zt+1 − zt
∆t

(2)

as the inputs and targets for our learning algorithm. As the robot navigates its environment, it
encounters states and controls according to some probability distribution: x ∼ PL(X ). The distri-
bution PL is called the Local Operating Distribution, and it is task dependent. In addition to the
local operating distribution, we assume that there is a system identification dataset, which has been
collected beforehand and designed to contain data consisting of the necessary actions that the robot

2



needs to learn in order to operate competently. This dataset can be interpreted as a set of samples
drawn from an underlying distribution: x ∼ PID(X ) which we refer to as the System Identification
Distribution. Note that we consider this distribution as stationary, but the mapping which takes in-
put points drawn from this distribution to the corresponding outputs is not. We must be sure that by
updating the model we do not forget any of the system modes contained in PID.

First consider a simple approach to performing online model adaptation based on standard stochas-
tic gradient descent (SGD). Suppose that we have access to streaming data, and that we maintain
a set of recently encountered input and output pairs. By randomly drawing pairs from this set, we
can get independent and identically distributed (I.I.D.) samples from the local operating distribu-
tion. Applying the standard SGD update law would then result in a model minimizing the objective:
Ex∼PL

[
‖y − f(x; θ)‖2

]
. However, this is not what we want! The issue with this is that the local

operating distribution will typically not contain all the actions that the robot needs to operate effec-
tively. A typical example is the case of an autonomous vehicle driving on the highway: during this
mode of operation the vehicle only needs to maintain a constant velocity and make slight turns the
vast majority of the time, if the model is updated with inputs purely drawn from a highway driving
dataset, there is no guarantee that the model will remember the basic maneuvers necessary for other
types of driving. This problem, known as catastrophic forgetting, is a well known deficiency of
neural networks, and is especially problematic when the updated model is also used for control.

If we had access to I.I.D. samples from the system identification distribution, we could instead use an
update law that jointly learns the target mapping for inputs drawn from both the system identification
distribution and the local operating distribution. Additionally we would like to ensure that the model
update rule never intentionally degrades the model on the system identification distribution. One
way to achieve this is to ensure that update steps always move in the direction of the local minima
for input data drawn from the system identification distribution. This constraint can be enforced by
ensuring that the cosine of the angle between the update direction and the gradient computed from
the system identification data is always positive, and we achieve this with the following update law:

θi+1 = θi − γ (αGL(θi) +GID(θi)) (3)
α = max

a∈[0,1]
s.t 〈aGL(θi) +GID(θi), GID(θi)〉 ≥ 0 (4)

Where γ is a learning rate, GL is the gradient of the model parameters computed with data drawn
from PL, and GID is the gradient computed with data from PID. This update law balances the
objective of simultaneously optimizing for local operating distribution and system identification
distribution, and it constrains the combined gradient to always point in the same direction as the
gradient computed from system identification data.

4 Locally Weighted Projection Regression Pseudo-Rehearsal

The problem with implementing the update rule defined by Eq. (3) is that, in an online setting,
we only have access to data generated from the local operating distribution. Additionally, since
the target mapping is changing, we cannot simply re-draw samples from the original system iden-
tification dataset or generate pseudo-outputs by running random inputs through the current model
like in standard rehearsal and pseudo-rehearsal methods. Our strategy is to use artificially generated
pseudo-training points to enforce the constraint, with the additional requirement that the pseudo-
training points must match the changing target distribution. This means that artificially generating
training points requires two steps (1) A method for generating artificial input points that are I.I.D.
samples from PID(X ), and (2) A method for computing the corresponding target, y, for an ar-
tificially generated input point. This should be a function approximator that is capable of online
adaptation, since the target mapping, y, is actively changing.

Our approach is to train an LWPR model, which will be updated online, in order to compute the tar-
get mapping for artificially generated input points. For the generation of the input points, a Gaussian
mixture model (GMM) is used. The artificial input/output pairs are then used to compute a synthetic
gradient, which is used to regularize the online stochastic gradient descent via Eq. (3). We call this
locally weighted projection regression pseudo-rehearsal (LW-PR2), the algorithm consists of four
sub-modules, which we now describe in detail. The overall flow of the algorithm is shown in Fig. 1.

Gaussian Mixture Model: The GMM generates synthetic input points consistent with the system
identification dataset. We denote a mini-batch of synthetic input points as Xs. The GMM uses

3



Figure 1: LW-PR2 Algorithm. The GMM produces synthetic input points which are combined with
predictions from LWPR to create synthetic training pairs. These are combined with randomized
mini-batches created from recently collected data in order to compute the constrained gradient.

diagonal covariance matrices, and is trained using standard expectation maximization. We use the
Bayesian Information Criterion (BIC) in order to select the number of Gaussian models used. After
the initial training the GMM is not modified again.

LWPR Module: The LWPR module takes in the synthetic input points generated by the Gaussian
mixture model, and then runs those input points forward through the LWPR model in order to
produce synthetic output points. If we let yi and ci be the mean and center of the ith local model
and let Di be the distance metric which defines the receptive field for the ith model, then LWPR
computes the global prediction as:

y =

L∑
i=1

wi · fi(x− ci), wi =
exp

(
− 1

2 (x− ci)
TDi(x− ci)

)∑L
j=1 exp

(
− 1

2 (x− cj)TDj(x− cj)
) (5)

Where fi is the function defining the local model. Since the response of a given model to an input
decays exponentially fast, model updates have only a negligible impact on models with centers far
from the current input point. This is the feature that makes LWPR largely immune to catastrophic
forgetting, and enables it to be safely updated online. The mini-batch output of the LWPR module
is denoted Ys. The LWPR model is initially trained over several epochs on the system identification
dataset using the standard LWPR update rule. Online, the local linear models making up the LWPR
model are continually updated.

Local Operating Set: The local operating set consists of the last several seconds of training points
received from the stream of data generated by the system. Out of this set of data, randomized
mini-batches are created (denoted as (Xd, Yd)) and then fed into the model updater.

Model Update: The last module in the LW-PR2 algorithm is the computation of the constrained
gradient and the actual model update. First, the gradient for the local operating distribution, GL, is
computed using the mini-batch received from the local operating distribution, and then the gradient
for the system identification dataset, GID, is computed using the artificial mini-batch received from
the GMM and LWPR modules. The constrained gradient is computed via equation (3). After the
constrained gradient is computed we use the ADAM optimizer [26] to perform the actual gradient
descent update step.

5 Experimental Setup

We tested the LW-PR2 algorithm on the task of learning vehicle dynamics on the AutoRally system
[27]. The AutoRally system consists of a 1/5 scale ground vehicle built for high speed autonomous
off-road driving, as well as a Gazebo simulation toolkit. For collecting the system identification
dataset, we followed the procedure described in [28] and had an expert RC driver perform a set of
choreographed maneuvers on a dirt test track. Collecting the system identification data is expensive,
since it requires an expert driver to collect the data, followed by analysis and testing to ensure that
enough data has been collected in the appropriate dynamic regimes. The notions of what constitutes

4



“enough data” and “appropriate dynamics regimes” are highly subjective and should be considered
as a type of expert knowledge. The goal of remembering the system identification dataset can
therefore be interpreted as an effort to preserve this expert knowledge.

We used a neural network structure with 2 hidden layers of 32 neurons each (the same structure
as described in [28]). The input dimension is 6 and the output dimension is 4. Before the model
adaptation algorithm can be applied, an initial model needs to be trained on the original system
identification dataset. One option is to initialize the model using standard stochastic gradient descent
like in [28], but we have found it is more effective to jointly train the initial model with the LWPR
model and GMM model. This means that the actual system identification dataset takes the place of
the local operating set, but synthetic data is still generated by the GMM and LWPR modules, which
is used to compute the constrained gradient. We have observed that training the initial model in this
manner has a negligible effect on the performance of the initial trained model, but helps with the
adaptation since it synchronizes the neural network predictions with the LWPR predictions.

For a model predictive control algorithm we used Model Predictive Path Integral Control (MPPI)
[28]. MPPI is a sampling based, gradient free, method which computes the optimal control as a
cost weighted average over randomly sampled trajectories. We used a highly optimized GPU based
implementation of MPPI in all of our experiments.

It is important to note that the LWPR model we use for generating synthetic data would not be feasi-
ble for usage with MPPI in a real-time control loop. Table 1 details the computational requirements
of the neural network and LWPR respectively. For these calculations, we assume that a dot product
operation takes 2N − 1 floating point operations (FLOPs) for vectors of dimension N , and that a
matrix-vector multiplication takes 2MN −M FLOPs where the matrix has dimension M ×N . We
also assume that any non-linear function (exp, tanh, (·)2) takes a single FLOP. For LWPR it can be
difficult to predict the throughput required since the number of active local models can vary greatly,
so we compute a lower bound based only on the minimum number of local model activations that
must be computed. Computing a local model activation requires first subtracting the mean for the lo-
cal model from the current input point (6 FLOPs), then individually squaring each result (6 FLOPs),
then computing the dot product between the result and the receptive field weight (2 · 6− 1 FLOPs),
and then computing the negative exponential of the result (2 FLOPs). This results in a total of 25
floating point operations for each local model, plus the additional computations required to actually
compute the weighted average. The neural network simply consists of matrix-vector multiplies, the
additions of the bias, and tanh non-linearities.

Table 1: Model Computation Comparison
Size FLOPs/Prediction

LWPR 5,645 (Receptive Fields) > 141, 125
Neural Network 1,412 (Weights and Biases) 2, 688

The key takeaway from Table 1 is that making predictions with the neural network is two orders
of magnitude cheaper than making predictions with an equally accurate LWPR model. Since MPPI
needs to make millions of predictions per second, this is crucial. In contrast, the synthetic data gen-
eration rate only needs to match the rate of incoming real data points, which in our implementation
is 40 Hz and easily achievable on modern hardware.

6 Results

We tested our LW-PR2 approach using four different sets of experiments. Our first experiment, titled
Catastrophic Interference Test, investigates the algorithm’s ability to prevent catastrophic forgetting,
using a dataset designed specifically to induce catastrophic forgetting on naive adaptation methods.
The second experiment, titled Modified Dynamics Test, investigates the method’s ability to adapt to
drastic changes in the system dynamics using a driving dataset collected on a novel road surface. The
third experiment, named Simulated Autonomous Driving Test, investigates how effective the updated
model is when used as part of the MPC algorithm. Lastly, the fourth experiment, named AutoRally
Experimental Results, consists of running the model adaptation during a full day of testing with the
1/5 scale autonomous driving system, and measures how well the algorithm works in a practical
setting. Throughout these experiments there are 3 different types of experimental modes that are

5



run: (1) An offline test is a test where the model is not allowed to adapt during the experiment, (2)
An online test is a test where the model is allowed to adapt during the experiment, but the adapted
model is not used to control the vehicle, and (3) An active test is a test where the model is allowed
to adapt during the experiment, and the adapted model is used to control the vehicle.

In an online training scenario, there is not an explicit training, validation, and test set. Instead,
as each training pair is received, we compute the current error on that training pair, and we then
record the result. After the error has been computed and recorded, the training pair is fed into the
model updater. We compare our method against the base model (no adaptation), and the base model
adapted with standard stochastic gradient descent. We also record the performance of the LWPR
model used to generate synthetic training inputs.

Catastrophic Interference Test: Here we test our method on two off-road autonomous driving
datasets, which we selected from the dataset accompanying [1]. The first dataset we call the online
training dataset and the second is called the offline validation dataset. The online training dataset
consists of 100 laps of slow speed driving around a roughly elliptical track in the clockwise direction.
In order to test how well the model adaptation is able to remember other system modes, we utilize
the offline validation dataset. The offline validation dataset consists of the same type of low speed
monotonous driving in the opposite (counter-clockwise) direction of the online training dataset.

Table 2: Catastrophic Forgetting Test Results.
Online Training Dataset Offline Validation Dataset

Base SGD LW-PR2 LWPR Base SGD LW-PR2 LWPR
Roll Rate 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00

Long. Acc. 0.35 0.33 0.32 0.33 0.20 0.22 0.20 0.1
Lat. Acc. 0.69 0.63 0.61 0.65 0.99 1.56 1.10 0.83

Head. Acc. 2.11 0.46 0.49 0.53 1.47 2.11 0.83 0.42
Total MSE 0.79 0.36 0.36 0.38 0.67 0.97 0.53 0.36

The testing procedure works as follows: we first test the online performance of each of the methods
using the online training dataset. Then, after the online test is finished, the final adapted model is
frozen and an offline test (no adaptation allowed) is performed on the offline validation dataset. The
results of these tests are shown in Table 2. All of the adaptive methods perform similarly on the
online training dataset, and they all significantly decrease the total mean-squared error of the model
predictions compared with the base neural network model. However, when using the final adapted
model from the online training dataset on the offline validation dataset, the differences between
the methods become apparent. The standard SGD method suffers from characteristic catastrophic
forgetting, particularly in the heading acceleration which makes intuitive sense given the difference
in the direction of travel between the two datasets. As expected, LWPR is unaffected by the change
in local operating distribution, and performs better than the base network. Our LW-PR2 method
performs only slightly worse than LWPR and outperforms the base network, demonstrating its ability
to overcome catastrophic forgetting.

Modified Dynamics Test: In this experiment we test the ability of the algorithm to adapt to highly
modified vehicle dynamics. The dynamics are modified by running the vehicle on tarmac instead
of dirt. All of the system identification data was collected on a dirt surface, so this is a completely
novel dynamics regime for the system. In order to collect this dataset we ran MPPI (with the base
model) for 100 laps in the clockwise direction (which generates the online training dataset), and
then we ran the same algorithm for 100 laps in the counter-clockwise direction (which generates
the offline validations dataset). The challenge in this test is that the target distribution has changed,
which makes standard rehearsal or pseudo-rehearsal methods problematic since old data will be
out of sync with the new data (i.e. the same input point may map to multiple outputs). By using
incrementally updated LWPR to generate synthetic data, we can overcome this challenge since the
artificially generated targets will eventually synchronize with current target distribution.

Table 3 shows the performance on the online training dataset and the offline validation dataset re-
spectively. All of the online adaptation methods improve on the online training set, with LW-PR2

and LWPR performing best. Interestingly, the standard SGD method performs best on the offline
validation dataset. In this case SGD is able to correctly generalize knowledge gained from the clock-
wise direction to the counter-clockwise direction, whereas the local nature of LWPR and LW-PR2

6



restricts the ability of the model to transfer knowledge about the clockwise direction to the counter-
clockwise direction. This is a trade-off which is required to prevent catastrophic forgetting, and even
though standard SGD worked well in this case, there is no guarantee that it will generalize knowl-
edge correctly and it can instead forget previously learned knowledge (as shown in the previous
experiment).

Table 3: Modified Dynamics Test Results
Online Training (Tarmac) Offline Validation (Tarmac)

Base SGD LW-PR2 LWPR Base SGD LW-PR2 LWPR
Roll Rate 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Long. Acc. 0.60 0.99 0.54 0.38 1.11 0.47 0.52 0.74
Lat. Acc. 0.58 0.24 0.35 0.16 1.75 0.43 0.49 0.84

Head. Acc. 1.04 0.76 0.53 0.48 2.84 1.66 1.82 2.32
Total MSE 0.56 0.50 0.36 0.26 1.43 0.64 0.71 0.98

Simulated Autonomous Driving Tests: In this experiment, we test the algorithm in an active setting
where MPPI uses the updated model to control the vehicle. We use an open source Gazebo simula-
tion of the AutoRally vehicle from [27] for these experiments. The system identification dataset that
we use to train the base model is the same as in the previous sections (i.e. it is based on real world
data). Note that the simulation dynamics are significantly different from the real-world AutoRally
dynamics, so the starting base model is highly inaccurate.

We ran three different model adaptation settings: standard SGD, LW-PR2, and no adaptation. For
each setting we performed trials running 10 laps around the track, and we collected 5 trials for each
different setting. The desired speed is set at 8m/s. The results of all of the trials are shown in
Table 4. Using the base model or the LW-PR2 adapted model, the controller is able to successfully
navigate around the track. However, when using standard SGD to update the model the controller
consistently fails after completing 1 lap, typically the controller tries to take a turn at too high of a
speed, resulting the vehicle rolling onto its side.

Table 4: Gazebo Simulation Results
Base Network SGD LW-PR2

Avg. Laps Completed 10 1 10
Avg. Trial MSE 1.84 2.49 0.65
Avg. Lap Time 34.78 N/A 32.04

Figure 2 shows the progression of lap times and total MSE per lap as each trial progresses. On
average, it takes less than one lap for MPPI to start benefiting from the model adaptation: as the
model adapts it realizes it can go faster without slipping in the simulation than it can in the real
world and the result is a performance increase. The performance on the second lap is significantly
better with the LW-PR2 adapted model than with the base model. After the second lap, the model
continues to make small improvements in the per lap MSE.

AutoRally Experimental Results: In this section, we examine how the model adaptation scheme
works in a practical setting - the model adaptation is turned on at the beginning of a day of testing
and allowed to run uninterrupted for the entire day. The resulting dataset consists of over 1 hour of
autonomous data collected over a period of 4.5 hours. The 1 hour of autonomous data consists of
approximately 18 kilometers of driving data with speeds up to 50 kph. Note that this dataset contains
a significant amount of natural variation: the early morning runs are with a fresh damp track, whereas
test runs in the afternoon are with a drier track that has less grip. Many of the tests start when the
vehicle has a fully charged battery, and then end with a dead battery, and then are continued with
another fully charged battery, this means that the adaptation has to constantly re-learn similar parts
of the dynamics over again.

For this dataset we record the same performance metrics as in the earlier online dataset experi-
ments for each of the four adaptation strategies. Additionally, we have available the active perfor-
mance of LW-PR2 data since the model produced by LW-PR2 was being used to drive the vehicle
autonomously. Note that the errors produced in these experiments are on average higher than the

7



0 1 2 3 4 5 6 7 8 9

Lap Number

30

31

32

33

34

35

36

La
p

Ti
m

e

Base Model
LWRR Model

−2 0 2 4 6 8 10

Lap Number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
od

el
M

S
E

Base Model
LWRR Model

Figure 2: Lap time (in seconds) and total MSE accumulated per lap for LW-PR2 and the base model.

Base SGD LW-PR2 LWPR
Roll Rate 0.01 0.01 0.01 0.01

Long. Acc. 2.73 2.28 2.30 2.06
Lat. Acc. 1.71 1.29 1.24 1.28

Head. Acc. 8.28 4.48 4.87 4.54
Total MSE 3.18 2.10 2.11 1.97

Active MSE N/A N/A 2.54 N/A
Table 5: Autonomous Field Test Results Figure 3: AutoRally during field test

with MPPI and LW-PR2

errors reported in the previous sections, this is due to the vehicle moving faster and producing higher
accelerations which in turn lead to higher errors. The results over the full day of testing are given
in Table 5. Once again, all of the incremental methods significantly improve the performance from
the base model. The SGD and LW-PR2 methods perform nearly identically on the online test, but
unlike the model produced by SGD, which resulted in crashes during the simulation tests, the model
updated with LW-PR2 can be utilized by MPPI to competently control the system.

7 Conclusion

In this paper we have presented LW-PR2, which is a novel method for pseudo-rehearsal that is
applicable to learning dynamics models in changing environments. The key contribution is the use
of an incrementally updated LWPR model in order to create artificial training pairs. The use of
incrementally updated LWPR enables pseudo-rehearsal to be applied to systems where both the
input and target distributions are non-stationary. The usage of LWPR enables a constrained gradient
update to be used, which ensures that the adaptation does not degrade the model performance on
the system identification distribution. In order to test our method we created a series of datasets and
simulation tests that stressed essential requirements for an online adaptation scheme: the ability to
prevent catastrophic forgetting, adapt to drastic changes in the dynamics, and the ability to produce
models usable by an MPC controller. These experiments demonstrated the capability and practicality
of our approach on a challenging real world system.

Acknowledgments

Supported by Sandia National Laboratories, a multimission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of
Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Ad-
ministration under contract DE-NA-0003525. Also supported in part by Amazon Web Services
(AWS) and Komatsu Ltd.

8



References
[1] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou. Information-theoretic

model predictive control: Theory and applications to autonomous driving. IEEE Transactions
on Robotics, 34(6):1603–1622, 2018. URL https://ieeexplore.ieee.org/document/
8558663.

[2] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine. Neural network dynamics for model-
based deep reinforcement learning with model-free fine-tuning. In International Conference
on Robotics and Automation (ICRA), pages 7559–7566. IEEE, 2018. URL https://arxiv.
org/abs/1708.02596.

[3] I. Lenz, R. A. Knepper, and A. Saxena. Deepmpc: Learning deep latent features for model
predictive control. In Robotics Science and Systems (RSS), 2015. URL http://www.
roboticsproceedings.org/rss11/p12.html.

[4] C. Finn and S. Levine. Deep visual foresight for planning robot motion. In International
Conference on Robotics and Automation (ICRA), pages 2786–2793. IEEE, 2017. URL https:
//arxiv.org/pdf/1610.00696.pdf.

[5] I. Clavera, A. Nagabandi, R. S. Fearing, P. Abbeel, S. Levine, and C. Finn. Learning to
adapt: Meta-learning for model-based control. CoRR, abs/1803.11347, 2018. URL http:
//arxiv.org/abs/1803.11347.

[6] M. McCloskey and N. J. Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pages
109–165. Elsevier, 1989.

[7] R. Ratcliff. Connectionist models of recognition memory: constraints imposed by learning and
forgetting functions. Psychological review, 97(2):285, 1990.

[8] C. G. Atkeson, A. W. Moore, and S. Schaal. Locally weighted learning for control. In Lazy
learning, pages 75–113. Springer, 1997.

[9] S. Schaal and C. G. Atkeson. Constructive incremental learning from only local information.
Neural computation, 10(8):2047–2084, 1998.

[10] S. Vijayakumar, A. D’souza, and S. Schaal. Incremental online learning in high dimensions.
Neural computation, 17(12):2602–2634, 2005.

[11] F. Meier, P. Hennig, and S. Schaal. Incremental local gaussian regression. In Advances in
Neural Information Processing Systems, pages 972–980, 2014.

[12] D. Mitrovic, S. Klanke, and S. Vijayakumar. Adaptive optimal control for redun-
dantly actuated arms. In International Conference on Simulation of Adaptive Behavior,
pages 93–102. Springer, 2008. URL https://link.springer.com/chapter/10.1007/
978-3-540-69134-1_10.

[13] G. Williams, E. Rombokas, and T. Daniel. Gpu based path integral control with learned dynam-
ics. In Neural Informations Processing Systems: Autonomously Learning Robots Workshop,
2014. URL https://arxiv.org/abs/1503.00330.

[14] A. Robins. Catastrophic forgetting in neural networks: the role of rehearsal mechanisms. In
First New Zealand International Two-Stream Conference on Artificial Neural Networks and
Expert Systems, pages 65–68. IEEE, 1993.

[15] A. Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Journal of Neural Comput-
ing, Artificial Intelligence and Cognitive Research, 7:123–146, 1995.

[16] A. Robins. Sequential learning in neural networks: A review and a discussion of pseudore-
hearsal based methods. Intelligent Data Analysis, 8(3):301–322, 2004.

[17] R. M. French. Using pseudo-recurrent connectionist networks to solve the problem of se-
quential learning. In Proceedings of the 19th Annual Cognitive Science Society Conference,
volume 16, 1997.

9

https://ieeexplore.ieee.org/document/8558663
https://ieeexplore.ieee.org/document/8558663
https://arxiv.org/abs/1708.02596
https://arxiv.org/abs/1708.02596
http://www.roboticsproceedings.org/rss11/p12.html
http://www.roboticsproceedings.org/rss11/p12.html
https://arxiv.org/pdf/1610.00696.pdf
https://arxiv.org/pdf/1610.00696.pdf
http://arxiv.org/abs/1803.11347
http://arxiv.org/abs/1803.11347
https://link.springer.com/chapter/10.1007/978-3-540-69134-1_10
https://link.springer.com/chapter/10.1007/978-3-540-69134-1_10
https://arxiv.org/abs/1503.00330


[18] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert. icarl: Incremental classifier and
representation learning. In Conference on Computer Vision and Pattern Recognition (CVPR),
pages 5533–5542. IEEE, 2017. URL https://arxiv.org/abs/1611.07725.

[19] H. Shin, J. K. Lee, J. Kim, and J. Kim. Continual learning with deep generative replay. In
Advances in Neural Information Processing Systems, pages 2990–2999, 2017. URL https:
//arxiv.org/abs/1705.08690.

[20] C. Atkinson, B. McCane, L. Szymanski, and A. V. Robins. Pseudo-rehearsal: Achieving deep
reinforcement learning without catastrophic forgetting. CoRR, abs/1812.02464, 2018. URL
http://arxiv.org/abs/1812.02464.

[21] D. Mellado, C. Saavedra, S. Chabert, and R. Salas. Pseudorehearsal approach for incremental
learning of deep convolutional neural networks. In Latin American Workshop on Computa-
tional Neuroscience, pages 118–126. Springer, 2017. URL https://link.springer.com/
chapter/10.1007/978-3-319-71011-2_10.

[22] R. Kemker and C. Kanan. Fearnet: Brain-inspired model for incremental learning. CoRR,
abs/1711.10563, 2017. URL http://arxiv.org/abs/1711.10563.

[23] S. Wan and L. E. Banta. Parameter incremental learning algorithm for neural networks. IEEE
Transactions on Neural Networks, 17(6):1424–1438, Nov 2006. ISSN 1045-9227. doi:10.
1109/TNN.2006.880581.

[24] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan,
J. Quan, T. Ramalho, A. Grabska-Barwinska, et al. Overcoming catastrophic forgetting in
neural networks. Proceedings of the national academy of sciences, page 201611835, 2017.
URL https://arxiv.org/abs/1612.00796.

[25] Z. Li and D. Hoiem. Learning without forgetting. Transactions on Pattern Analysis and Ma-
chine Intelligence, 40(12):2935–2947, 2018. URL https://arxiv.org/abs/1606.09282.

[26] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980,
2014. URL http://arxiv.org/abs/1412.6980.

[27] B. Goldfain, P. Drews, C. You, M. Barulic, O. Velev, P. Tsiotras, and J. M. Rehg. Autorally:
An open platform for aggressive autonomous driving. IEEE Control Systems Magazine, 39(1):
26–55, Feb 2019. URL https://ieeexplore.ieee.org/document/8616931.

[28] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots, and E. A. Theodorou.
Information theoretic mpc for model-based reinforcement learning. In Robotics and Automa-
tion (ICRA), 2017 IEEE International Conference on, pages 1714–1721. IEEE, 2017.

10

https://arxiv.org/abs/1611.07725
https://arxiv.org/abs/1705.08690
https://arxiv.org/abs/1705.08690
http://arxiv.org/abs/1812.02464
https://link.springer.com/chapter/10.1007/978-3-319-71011-2_10
https://link.springer.com/chapter/10.1007/978-3-319-71011-2_10
http://arxiv.org/abs/1711.10563
http://dx.doi.org/10.1109/TNN.2006.880581
http://dx.doi.org/10.1109/TNN.2006.880581
https://arxiv.org/abs/1612.00796
https://arxiv.org/abs/1606.09282
http://arxiv.org/abs/1412.6980
https://ieeexplore.ieee.org/document/8616931

	Introduction
	Related Work on Neural Network Adaptation
	Problem Formulation
	Locally Weighted Projection Regression Pseudo-Rehearsal
	Experimental Setup
	Results
	Conclusion

