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Abstract: Deep reinforcement learning (DRL) is a promising approach for de-
veloping legged locomotion skills. However, current work commonly describes
DRL as being a one-shot process, where the state, action and reward are assumed
to be well defined and are directly used by an RL algorithm to obtain policies. In
this paper, we describe and document an iterative design approach, which reflects
the multiple design iterations of the reward that are often (if not always) needed
in practice. Throughout the process, transfer learning is achieved via Determin-
istic Action Stochastic State (DASS) tuples, representing the deterministic policy
actions associated with states visited by the stochastic policy. We demonstrate
the transfer of policies learned in simulation to the physical robot without dynam-
ics randomization. We also identify several key components that are critical for
sim-to-real transfer in our setting.
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1 Introduction

Recent successes in deep reinforcement learning (DRL) have inspired multiple efforts towards
learning locomotion policies for legged robots. Impressive results have been demonstrated on
quadrupeds [1, 2]. However, it remains to be seen whether similar performance can be demonstrated
on human-scale bipeds. In this paper, we demonstrate that locomotion policies can be successfully
learned in simulation, and then deployed on the physical robot, as demonstrated on the large-scale
Cassie biped. We make the following specific contributions:

• We describe a multi-step design process that reflects the practical, iterative nature of con-
troller design (often left undocumented). This is supported via mixed policy gradients
learning. Transfer learning between design iterations is enabled via state-action samples
taken from the policies at the previous iteration.
• We apply this design process to train various locomotion policies on a simulated model of

the bipedal robot Cassie. These policies are successfully transferred to the physical robot
without further tuning or adaptation.
• We investigate the key components that contribute to the sim-to-real success in our setting.

Notably, in contrast to other recent sim-to-real results for legged locomotion, no dynamics
randomization or learned actuator dynamics models are necessary in our case.

To the best of our knowledge, this is the first time that learned neural network policies for variable-
speed locomotion have been successfully deployed on a large 3D-bipedal robot such as Cassie. The
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physical robot reaches speeds of 1.24m/s with the learned policy, which is 20% faster than other
gaits reported in the literature, e.g., [3]. We believe that the iterative design process that we propose
may better reflect the realities of controller design than the more conventional view of controller
design as a purely algorithmic problem.

2 Related Work

Imitation Learning Imitation learning seeks to approximate an expert policy. In its simplest form,
one can collect a sufficiently large number of state-action pairs from an expert and apply supervised
learning. This is also referred to as behavior cloning, as used in early seminal autonomous driving
work, e.g., Pomerleau [4]. However, this method often fails due to compounding errors and co-
variate shift [5]. DAGGER [6] is proposed to solve this by iteratively querying the expert policy
to augment the dataset. DART [7] injects adaptive noise into the expert policy to reduce expert
queries. Recent work uses efficient policy cloning to learn generalized tracking policies via learned
latent spaces [8]. Another line of work is to formulate imitation learning as reinforcement learning
by inferring the reward signal from expert demonstration using methods such as GAIL [9]. Expert
trajectories can also be stored in the experience buffer to accelerate the reinforcement learning pro-
cess [10, 11]. Imitation learning is also used to combined multiple policies. It is used to train policies
to play multiple Atari games [12, 13] and simulated humanoids to traverse different terrains [14].

Bipedal Locomotion Bipedal locomotion skills are important for robots to traverse terrains that
are typical in human environments. Many methods use the ZMP to plan stable walking motions,
e.g., [15, 16]. Simple models such as SLIP can be used to simplify the robot dynamics [17, 18] for
faster planning. To utilize the full dynamics of the robots, trajectory optimization [19] is used to
generate trajectories, and tracking controllers based on quadratic programming [20] or feedback lin-
earization [3] can be designed along them. Reinforcement learning has also been applied to bipedal
locomotion, with results on physical robots demonstrated on either 2D bipeds [21, 22] or small
bipeds with large feet [23, 24]. More recently, DRL has been applied to 3D bipedal locomotion,
e.g., [25, 26, 27]. However, they have not yet been shown to be suitable for physical robots.

Sim-to-real Due to the large number of interactions needed for RL algorithms, training directly
on robots is usually impractical. Therefore policies are usually trained in simulation and transferred
to the physical robots. Discrepancy between simulation and the physical robot, known as the reality-
gap, usually causes naive transfer to fail. Robust policies that cross the reality gap can be obtained
by randomizing the dynamic properties of the robot across episodes during training. This approach
succeeds in various manipulation [28, 29] and quadruped [1, 2] sim-to-real tasks. Another approach
is to train policies that are conditioned on the unknown dynamic parameters and to then use physical
robot data to do system identification online [24]. Actuator dynamics can be difficult to model and
is another potential contributor to the reality gap. Experimental data from actuators can be used to
learn a model of the actuator dynamics, which can then be leveraged during training [24, 1].

3 Preliminaries

In this section we briefly outline the reinforcement learning and imitation learning framework.

In reinforcement learning, we wish to learn an optimal policy for a Markov Decision Process (MDP).
The MDP is defined by a tuple {S,A, P, r, γ}, where S ∈ Rn, A ∈ Rm are the state and action space
of the problem, the transition function P : S×S×A→ [0,∞) is a probability density function, with
P (st+1 | st, at) being the probability density of visiting st+1 given that at state st, the system takes
the action at. The reward function r : S×A→ R gives a scalar reward for each transition.γ ∈ [0, 1]
is the discount factor. The goal of reinforcement learning is to find a parameterized policy πθ, where
πθ : S×A→ [0,∞) is the probability density of at given st, that solves the following optimization:

max
θ
JRL(θ) =E

[ ∞∑
t=0

γtr(st, at)

]
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Policy gradient algorithms [30] are a popular approach to solving this problem, where ∇θJRL is
estimated using on-policy samples, i.e., using data collected from the current stochastic policy.

In imitation learning, we have an MDP as defined above, and an expert policy πe that can be queried.
The goal of imitation learning is to find a parameterized policy πθ that minimizes the difference
between πθ and πe. More formally, we aim to solve the following optimization problem:

min
θ
Jimit(θ) =Es∼pe(s)[(a− ae)

2] (1)

subject to a ∼ πθ(. | s)
ae ∼ πe(. | s)

where pe(s) is the probability density of s with policy πe: pe(s) =
∑∞
i=0 γ

ip(st = s | πe). The
expectation in the objective is often estimated by collecting a dataset of expert demonstrations. In
behavior cloning, the expert policy is assumed to be deterministic. It suffers from a common failure
mode wherein the student policy will accumulate errors over time and drift to states that are dissim-
ilar to the states seen by the expert during data collection. Popular remedies to this issue include
DAGGER [6] and DART [7], which query the expert policy iteratively to augment the dataset.

4 Iterative Design Process

Given a fully-defined RL problem and policy parameterization, there exists an ever-growing number
of algorithms for learning the solutions. However, a purely algorithmic perspective does not fully
reflect the iterative design process that needs to occur in practice and often goes undocumented.
In the following, we describe our iterative design process that is well adapted for learning control
policies that can reliably run on a physical robot.

The design process relies on three building blocks: reinforcement learning, constrained reinforce-
ment learning and supervised learning. These are shown in Figure 1. An initial policy is obtained
using RL with motion tracking rewards. Constrained reinforcement learning, which is realized using
a form of mixed policy gradients, is used to iteratively refine the policy as needed. Finally, policy
distillation, via supervised learning, can be used to combine and compress multiple policies. We
now describe each component in detail, before describing results in Section 5.

4.1 Motion Tracking

It is difficult to obtain policies that can be directly run on a physical robot with the use of simple
forward progress rewards, as commonly seen in benchmark locomotion tasks from OpenAI Gym.
This naive approach can lead to motions that are unnatural or that have other undesirable properties,
including peak torques or impact forces that are incompatible with hardware, e.g., [27]. Instead, we
begin with the approach described in [31] and define a reward in terms of tracking a reference motion
in order to establish a suitable and predictable initial control policy. Note that the reference motion
can be a crude “sketch” of the desired motion, i.e., it can be unphysical and even kinematically
inconsistent, having body and foot velocities that are mutually incompatible. We further note that the
tracking problem is still an RL problem, and not an imitation learning problem, because the actions
that are needed to achieve robust tracking are not observable and therefore need to be learned.
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Figure 1: Three building blocks for our design process.
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4.2 Policy Transfer Using Sample Tuples

We employ sets of sample tuples to achieve transfer between successive refinements of control
policies. This is more flexible than simply transfering the weights in two ways: (i) they can be mixed
with RL policy gradient updates, yielding mixed policy-gradient updates in support of learning
policy refinements that are constrained in scope; (ii) they directly support distillation to compress
and combine policies.

We use a simple and effective expert (s, a) tuple collection technique we refer to as Deterministic
Actions Stochastic States (DASS). Intuitively, this is motivated by the fact that actions recorded
from a deterministic expert policy will only cover the limit cycle of a motion such as walking. As a
result, the student will not observe the feedback that needs to be applied for perturbed states which
need to be guided back to the limit cycle. The stochastic actions of a stochastic expert policy does
produce (and therefore visit) perturbed states, and for these states we then record the deterministic
(noise-free) version of the actions. The learned feedback is illustrated schematically in Figure 2,
where the blue curves represent the limit cycle produced by a deterministic policy, and the green
arrows represent the deterministic feedback actions associated with the additional states resulting
from the execution of the stochastic policy.

Formally, if we assume πe(. | s) and πθ(. | s) are Gaussian distributions with the same co-
variance, minimizing the imitation objective function (1) is equivalent to minimizing J(θ) =
Es∼pe(s)[(µe(s) − µθ(s))

2], where µe and µθ are the means of πe and πθ. It is generally
impractical to calculate this expectation exactly; in practice, we will collect an expert dataset
D = {(si, µe(si))}Ni=1 of size N , where si is the state visited by the expert during policy exe-
cution, and minimize training error over D, i.e, we thus solve the following supervised learning
problem:

min
θ
JSL(θ) =Es∼D[(µθ(s)− µe(s))2] (2)

The DASS tuples are closely related to [7], where adaptive noise is added to the expert policy
to prevent covariate shift, and Merel et al. [8], where it is used to combine multiple locomotion
policies. Algorithm 1 summarizes the data collection procedure.

Figure 2: A walking policy produces a limit
cycle, represented by the closed blue curve,
and the green arrows indicate the required
feedback to return to the limit cycle.

Algorithm 1 DASS

1: Initialize D = {}
2: Reset from some initial state distribution
s0 ∼ p0(.)

3: for i = 0, 1 . . . , N do
4: D = D ∪ {(si, µe(si)}
5: ai ∼ πe(. | si), si+1 ∼ P (. | si, ai)
6: if si+1 ∈ T for some termination set
T then

7: si+1 ∼ p0(.)

4.3 Policy Refinement

During policy design, it is common to introduce multiple reward terms to achieve desired behaviors.
For example, Hwangbo et al. [1] uses up to 11 reward terms to achieve a desired behavior. Instead
of doing iterative addition of reward terms and reward reweighting, we choose to iteratively refine
policies with the help of DASS. Specifically, at each design iteration, we have access to the policy
from previous iteration as our expert policy πe and a new behavior reward specification, r, and aim

4



to solve the following problem:

max
θ
JRL(θ) =E

[ ∞∑
t=0

γtr(st, at)

]
subject to st+1 ∼ P (. | st, at)

at ∼ πθ(. | st)
JSL(θ) ≤ ε

To make this problem easier, we make JSL a soft constraint and rewrite the objective to be Jtotal =
JRL − wJSL. At each policy update, we will estimate ∇θtJRL using the usual policy gradient
algorithm, and update θ according to the mixed policy gradient defined by θt+1 = θt+α(∇θtJRL−
w∇θtJSL). The resulting policy πθ will become our expert policy for the next design iteration.

4.4 Policy Distillation

During the design process, we may progressively develop a variety of new policies for the robot,
i.e., forwards, backwards, and sideways walking. Instead of training everything from scratch, DASS
allows us to train policies specifically for individual new tasks. DASS samples from each policies
can then be used to distill them together. This allows for new skills to be obtained without forgetting
old skills, and affords experimentation with different neural network architectures.

5 Results

Figure 3: Cassie.

We evaluate our design process using the Cassie robot, shown in Fig-
ure 3. It stands approximately 1 meter tall and has a mass of 31 kg, with
most of the weight concentrated in the pelvis. There are two leaf springs
in each leg to make them more compliant. This introduces extra under-
actuation into the system and makes the control design more difficult for
traditional control techniques.

We train multiple policies following our design process, as illustrated by
the design paths shown in Appendix A. The results are best seen in the
supplementary video, which shows the policies running on the physical
robot, after training in simulation.

5.1 Reference Motion Tracking

To learn well behaved policies, we begin the design with policies that
attempt to track reference motions while also following desired body
velocities. As noted earlier, the reference motions need not be physically feasible. We use three
reference motions in our experiments: a stepping-in-place motion (RM1); a walking forwards mo-
tion (RM2), and another stepping-in-place motion (RM3). RM1 and RM2 are recorded from an
existing functional heuristic-based controller. RM3 is designed using simple keyframes for the foot
positions, and inverse kinematics. In all cases, reference motions for various forward speeds and
side-stepping are generated by simply translating the pelvis of the robot at the desired speed while
leaving the leg motions unchanged. This leads to unphysical artifacts in the reference motion, such
as sliding feet, but these do not impede the learning of the tracking control policies.

The input to the policy is S = {X, X̂}, where X is the state of the robot that evolves according to
the robot’s dynamics, and X̂ is the reference motion that evolves deterministically according to the
reference motion. The output of the policy are the residual PD target angles for the active joints,
which are then added to the reference joint angles and fed to a low level PD controller. The reward is
defined as follows: r = wjrj+wrprrp+wrorro, where rj measures how similar the joint angles are
to the reference joint angles. rrp and rro measure similarity of the pelvis position and orientation.
The joint reward is computed as rj = exp(−||xj − x̂j ||2). The remaining terms are similar in
structure. The weights are 0.5, 0.3, 0.2, respectively. Further details are described in Appendix B.1.

The RM1 tracking policy successfully transfers to the physical robot. However, it demonstrates
shaky behavior that is ill-suited to the hardware. This motivates subsequent policy refinement.
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5.2 Policy Refinement

The policies trained with tracking reference motions alone exhibit undesirable motions, with the
pelvis shaking. We make use of mixed policy gradients, with DASS samples, to remain close to these
original policies while refining them with a new reward. For the following experiments, we define
rewards r = 0.5rdesign+0.5rrp, where rrp rewards tracking the original desired body positions and
rdesign rewards behavior specified by the designers. The gradient of policy parameters θ then takes
the form of ∇θ = ∇θJRL − w∇θJSL, where w is a hyperparameter (w = 10 in our experiments).
We use rdesign = exp (−‖ωpelvis‖2), where ωpelvis is the angular velocity of the pelvis. The
resulting policies yield stable walking motion, with significant less pelvis shaking.

We find that the policy trained from tracking RM3 impacts its feet into the ground in a way which
could damage the legs. We design a reward rdesign = exp (−v2lfoot − v2rfoot), where vlfoot and
vrfoot are vertical velocities for the left foot and right foot respectively. The optimized motion
exhibits much softer foot impact and is safe to run on the robot.

We also experiment with other stylistic rewards. We observe that the policies trained from RM2 still
exhibit some unnecessarily rough movements, and we thus optimize for reduced joint accelerations.
We also experiment with a reward to lift the feet of the robot higher. While the previous policies
lift the feet up to 10 cm during each step, here we penalize the policy for lifting the foot less than
20 cm. We test these policies on the physical robot. The motions on the robot are comparable to
the motions in simulation. The policy that rewards low joint accelerations makes significantly softer
and quieter ground contact. The policy optimized for higher stepping also achieves its goals, lifting
its foot up to 20 cm while maintaining good walking motions.

5.3 Policy Distillation

Compression In deep reinforcement learning, network size can play an important role in deter-
mining the end result [32]. It is shown in [12] that for learning to play Atari game, a large network
is necessary during RL training to achieve good performance, but that the final policy can be com-
pressed using supervised learning without degrading the performance. For our problem, we also
observe that using a larger network size for reinforcement learning improves learning efficiency as
well as producing more robust policies, as shown in Figure 4.

While we need a large network to efficiently do RL, we find that we can compress the expert policy
into a much smaller size network while maintaining the robustness of the final policy. With as little
as 600 samples, we can recover a stepping in place policy with a (16, 16) hidden layer size. Table 1
compares policies trained using supervised learning across varying choices of hidden layer sizes,
numbers of training samples, and the presence or absence of noise during data collection. With
only 600 samples, a large network can easily overfit the training data. We find that while larger
networks can have this issue, with validation error orders of magnitude larger than the training error,
the resulting policy still performs comparably to the original policy in terms of robustness. We also
successfully test the (16, 16) policy on the physical robot, demonstrating that the policy is indeed
robust to unmodeled perturbation.
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Figure 4: Learning Curves. Left: Network size impacts the final RL results, as computed across
the average of 3 runs. Larger network sizes learn faster and yield more stable policies. Right:
Comparison of learning skills separately and learning all the skills together.
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# samples; NN size training loss validation loss no noise 0.1 policy noise 20% mass increase 50N pushes
expert 0 0 394.53 389.82 378.32 367.28

300, (16, 16) 1.20 ± 0.08 × 10−3 2.99 ± 0.25 × 10−3 392.88 ± 0.34 366.53 ± 26.79 350.36 ± 15.08 346.27 ± 5.68

600, (16, 16) 1.33 ± 0.20 × 10−3 2.08 ± 0.12 × 10−3 394.24 ± 0.48 388.66 ± 0.37 375.03 ± 3.49 363.56 ± 3.11

600, (512, 512) 6.00 ± 1.18 × 10−6 5.45 ± 0.42 × 10−4 394.36 ± 0.34 389.49 ± 0.34 371.65 ± 4.04 351.52 ± 19.00

600, (8, 8) 5.16 ± 0.42 × 10−3 6.17 ± 0.65 × 10−3 92.52 ± 20.94 72.44 ± 10.63 60.69 ± 9.64 81.47 ± 12.94

600, (16, 16), no DASS 5.04 ± 1.73 × 10−4 8.11 ± 0.94 × 10−3 66.19 ± 8.96 50.66 ± 4.79 65.82 ± 13.47 66.59 ± 6.00

Table 1: Policies trained with various settings. We report the training/validation loss and rewards
over 400 steps after injecting action noise, changing the body mass, and using (50N, 0.2s) pushes.

Combining Policies After training a policy for a specific skill, we may want the policy to learn
additional skills. In the context of the Cassie robot, we desire a control policy to not only step in
place, but to also walk forwards and backwards on command. Distillation via supervised learning
provides a convenient way to integrate multiple policies into a single policy, where they do not
conflict, and without forgetting. We distill expert policies that are trained separately for walking
forwards (v=0.8 m/s), stepping in place, and walking backwards (v=-0.8 m/s) into one policy that
masters all three tasks. As noted earlier, the velocity is commanded via the desired body velocity
of the original reference motion, which is otherwise left unchanged. In this way, the policy is
conditioned on the commanded velocity. With remarkably few samples (600) collected from each of
these three policies, these policies are combined into one policy with hidden layer sizes of (64, 64).
This is then capable of a full range of walking forwards/backwards walking speeds while turning
towards a desired heading angle, and it successfully transfers to the physical robot.

An alternative to distillation is to simultaneously learn the desired skills, e.g., to directly train a pol-
icy that is conditioned on the desired speed, with the desired speeds for any given training episode
being sampled from the range of desired speeds. Such simultaneously learning could potentially be
advantaged by transfer effects and potentially disadvantaged by interference effects. We conduct
an experiment to compare the sample efficiency between learning forwards and backwards walking
skills separately, and learning these skills at the same time. In particular, we train 3 policies: (a)
walking forwards at speeds sampled from [0, 0.8]m/s; (b) walking backwards at speeds sampled
from [−0.8, 0]m/s; and (c) ”multiskill”: walking forwards and backwards at speeds sampled from
[−0.8, 0.8]m/s. The learning curves are shown in Figure 4(right). For fair comparison, the mul-
tiskill training cases only count samples coming from the relevant individual skills, i.e., multiskill-
forwards only counts samples from multiskill episodes that request forwards velocities. The results
show that (i) backwards walking is more difficult to learn than forwards walking; (ii) multiskill
makes no difference for learning to walk forwards; (iii) multiskill is disadvantageous for learning to
walk backwards, due to interference from the interleaved forwards learning.

6 Sim-to-real Transfer

The policies are trained in simulation and deployed on the physical robot, with hardware details
provided in Appendix B.2. Here we identify a number of the key ingredients that we find to be
critical for sim-to-real success in our setting.

System Identification Careful system identification is performed on the robot to ensure that dy-
namics properties such as the mass and inertia of each link is reasonably accurate. We specifically
note the importance of the reflected inertia of motors, in particular for the knee joint, and which is
not directly discussed in other recent work [2, 1, 24]. In the Mujoco simulator, the reflected inertia
can be modeled using the armature attribute. For the Cassie simulation, setting the reflected inertia
to 0 causes unstable dynamics, which makes learning impossible.

Despite careful system identification, modeling errors are unavoidable. A common approach for
addressing these issues is to use dynamic randomization during training, where dynamic properties
of the robot are sampled from some distributions centered around the measured values. This ap-
proach is found to be essential to achieve sim-to-real success for manipulation tasks [28, 29] and
quadrupedal locomotion [2, 1]. Surprisingly, our policies can transfer to the physical robot without
dynamic randomization during training. This is for a class of motions (dynamic bipedal walking on
small feet) that are arguably more unstable than other recent sim-to-real results.
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Actuator Dynamics Unmodeled actuator dynamics also poses a challenge for successful sim-to-
real, including for direct model-based methods. Despite such methods having theoretical guarantees,
manual tuning of control parameters remains critical to successful transfer to Cassie, e.g., [3]. One
possible solution is to learn dedicated models for the actuators using data collected from the physical
robots, e.g., [1, 24]. In our setting, we have thus far found this to be unnecessary. We hypothesize
that the action noise injected during training gives additional robustness to the policy.

State Estimation We find that using state estimation during training is critical for successful sim-
to-real transfer. While the simulation has access to the true state of the robot, the hardware requires
estimating the state from noisy sensory measurements. Policies trained using the true state in simu-
lation fail during test time in simulation, where the state estimation is used with simulated sensors.
They also fail on the physical robot. When the state estimator is employed during training, the
policies perform well at test time, in simulation and on the physical robot.

State Space Since the initial policy that we build on tracks a time-varying reference motion, the
resulting polices are also time-varying. The time-indexed nature of the policies comes into play
via the reference motions, which remain an input. However, since the reference motions remain un-
changed except for the velocity of the pelvis, it can be replaced by a motion-phase (or clock) variable
that is reset every walking cycle, in addition to providing the desired speed. We use distillation with
DASS samples to train a new policy that is conditioned only on the state, phase, and desired speed.
The resulting policy reliably runs in simulation and on the physical robot. We then attempt another
distillation without the phase information. Interestingly, this policy performs well in simulation, but
fails to take steps on the robot and eventually falls down. We speculate that this may be due in part
to some states remaining ambiguous in the absence of any memory, e.g., when stepping in place,
during double-stance the state that preceeds left-leg and right-leg step is identical.

Action Space Our policies produce a residual PD target, which is added to the reference motion
pose to produce full PD-target joint angles. In order to test the benefit of this residual-action archi-
tecture, we experiment with using distillation and DASS to train a new direct policy that produces
the full PD-target actions. As before, the policy still has access to the reference motion pose as an
input. This policy performs well in simulation but fails on the robot. We speculate that this may oc-
cur because for states that are out-of-distribution, the residual-action architecture will still perform a
general walking motion as driven by the reference motion, while the direct policy does not have this
default behavior. It is also possible to use a residual PD target with a purely state-indexed policy,
e.g., [24, 2]. However, this makes the problem non-Markovian since the open loop PD-target is time
varying. Other state space features to explore include using state and action histories [1].

Sim-to-Real Performance The policies demonstrate the desired characteristic as specified during
the refinement steps, such as more stable pelvis movement, less foot impact, and lifting the feet
higher. Furthermore, the policies are robust to perturbations such as occasional steps onto uneven
ground and pushes in various directions. Experiments also show that the learned policies do well at
tracking the desired velocities (Appendix C).

7 Conclusion

We have presented an iterative design process that uses RL to learn robust locomotion policies for
Cassie. The process is based on three well-defined building blocks, and aided by a data collection
technique (DASS) that enable us to refine, combine, and compress policies. We demonstrate walking
motions on Cassie with various styles and speeds. While the details of the specific RL algorithm
always remain important, they are only part of the story for achieving successful sim-to-real results.

We show that learned policies can be robust without resorting to dynamics randomization. We inves-
tigate the critical components needed for the success of sim-to-real in our setting, including accurate
system identification, inclusion of the state estimator, and choices of state-and-action spaces. We
do not claim that these results are fully general, as different settings may yield different (and occa-
sionally conflicting) insights, as we have already noted for dynamics randomization. An important
direction for further investigation includes determining how best to achieve sim-to-real success with
more general state-and-action spaces, e.g., removing time-related inputs and removing the need to
work with residual actions.
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Appendix A List of Policies

We train several policies following our design process. A diagram of our design choices are shown
in Figure. 5, and we demonstrate several policies running on the physical robots in the video.

RM 1 tracking 
! = 0$/&

Motion Tracking (RL)

RM2 tracking 
! ∈ 0, 0.8 $/&

RM 2 tracking
! ∈ 0.8,1.2 $/&

RM2 tracking 
! = [−0.8, 0]$/&

stable pelvis
! = 0$/& compress

! = 0$/&

Policy Refinement (RL + SL) Compress/Distill (SL)

stable pelvis 
! ∈ 0, 0.8 $/&

stable pelvis
! ∈ −0.8,1.2 $/&

less motor acc
! ∈ 0, 0.8 $/&

lift feet high
! ∈ 0, 0.8 $/&

compress
! ∈ 0, 0.8 $/&

compress
! ∈ −0.8,1.2 $/&

(16, 16)
Policy B

(64, 64)
Policy F

(64, 64)
Policy E

Final Policy

(256, 256)
Policy D

(256, 256)
Policy G

(16, 16)
Policy A

compress
! = 0$/&

RM3 tracking 
! ∈ 0, 0.8 $/&

RM3 tracking 
! ∈ −0.4, 0 $/&

stable pelvis 
! ∈ 0, 0.8 $/&

stable pelvis 
! ∈ −0.4, 0 $/&

less foot speed
! ∈ 0, 0.8 $/&
less foot speed
! ∈ 0, 0.8 $/&

distill
! ∈ −0.4,0.8 $/& (256, 256)

Policy H

RM 1 tracking 
side stepping stable pelvis

side stepping (256, 256)
Policy C

Figure 5: Our policy design process. Several tracking-based policies are used as a starting point.
DASS samples are passed from one policy to the next according to the arrows.

Appendix B Experiment Setup

B.1 Reinforcement Learning Setup

The state of the robot includes the height, orientation expressed as a unit quaternion, velocities,
angular velocities and acceleration of the pelvis, joint angles and joint velocities of each joint. Com-
bined with the reference motion, this gives us a 85D input vector. We use the commonly-adopted
Gaussian Policy as output, where the neural network will output the mean of the policy and Gaus-
sian noise is injected on top of the action during execution. The output and the reference motion
are summed to produce target joints angles for a low level PD controller. Instead of making the co-
variance of the Gaussian policy a learnable parameter, we use a fixed covariance for our policy. We
assume that the Gaussian distribution in each dimension is independent, with a standard deviation of
≈ 0.1 radians. A benefit of the fixed covariance is that because of the noise constantly injected into
the system during training, the resulting policy will adapt itself to handle unmodeled disturbances
during testing, as demonstrated in previous work [31, 33]. The network architecture is shown in
Fig. 6.

The policy is trained with an actor-critic algorithm using a simulated model of Cassie with the Mu-
JoCo simulator [34], with the gradient of the policy estimated using Proximal Policy Optimization
[35]. The simulator includes a detailed model of the robot’s rigid-body-dynamics, including the re-
flected inertia of the robot’s motors, as well as empirically measured noise and delay for the robot’s
sensors and actuators.

The reference motions we work with are symmetric and the robot itself is nearly symmetric, and
thus it is natural to enforce symmetry in the policies as well. We adopt a similar approach to [36],
where we transform the input and output every half walking cycle to their symmetric form. During
training, we apply reference state initialization and early termination techniques as suggested by
Peng et al. [33], where each rollout is started from some states sampled from the reference motions
and is terminated when the height of the pelvis is less than 0.4 meters, or whenever the reward for
any given timestep falls below a threshold of 0.3.

11



Figure 6: Network architecture used.

During training, the desire orientation of the pelvis is always facing the +x direction, and the robot
is initialize to be off the facing direction by θ ∼ [−0.1π, 0.1π] radians to enable it to learn to turn.
During test time, the orientation of the pelvis will be transformed by the desire heading commanded
by the operator to allow the robot to turn to various directions.

B.2 Hardware Tests

We deploy a selection of trained policies on a physical Cassie robot. The state of the robot is esti-
mated using sensor measurements from an IMU and joint encoders, which are fed into an Extended
Kalman Filter to estimate parts of the robot’s state, such as the pelvis velocity. This process runs
at 2 kHz on an embedded computer directly connected to the robot’s hardware. This information
is sent over a point-to-point Ethernet link to a secondary computer on board the robot, which runs
a standard Ubuntu operating system and executes the learned policy using the PyTorch framework.
The policy updates its output joint PD targets once every 30 ms based on the latest state data and
sends the targets back to the embedded computer over the Ethernet link. The embedded computer
executes a PD control loop for each joint at the full 2 kHz rate, with targets updating every 30 ms
based on new data from the policy execution.

Rapid deployment and testing is aided by the simulator using the same network-based interface as
the physical robot, which means that tests can be moved from simulation to hardware by copying
files to the robot’s on board computer and connecting to a different address. The robot has a short
homing procedure performed after powering on, and can be left on in between testing different poli-
cies. The same filtering and estimation code as used on hardware is used internally in the simulator,
rather than giving the policy direct access to the true simulation state. The network link between
two computers introduces an additional 1-2 ms of latency beyond running the simulator and policy
on the same machine.

Appendix C Sim-to-Real Performance

Figure 7 shows the performance of the speed tracking. The same sequence of speed command
is used in simulation for comparison. Although the speed has larger within-step variation on the
physical robot as compared to the simulation, the average speeds match those commanded by the
operator. This shows that although the simulation is not a perfect match to the physical robot, the
policy is able to adapt and perform well.
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Figure 7: Speed tracking performance of a learned policy, in simulation vs on the physical robot.
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