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Abstract

Deep Neural Networks (DNNs) usually suffer performance penalties when there is a skewed
label distribution. This phenomenon, class-imbalance, is most often mitigated peripheral
to the classification algorithm itself, usually by modifying the amount of examples per class,
for oversampling at the expense of computational efficiency, and for undersampling at the
expense of statistical efficiency. In our solution, we combine discriminative feature learning
with cost-sensitive learning to tackle the class imbalance problem by using a two step loss
function, which we call the Focused Anchors loss (FAL). We evaluate FAL and its variant,
Focused Anchor Mean Loss (FAML), on 6 different datasets in comparison of traditional
cross entropy loss and we observe a significant gain in balanced accuracy for all datasets.
We also perform better than time-costly re-sampling and ensemble methods like SMOTE
and Near Miss in 4 out of 6 datasets across Fl-score, AUC-ROC and balanced accuracy.
We also extend our evaluation to image domain and use long-tailed CIFAR10 to evaluate
our loss function where we consistently report significant improvement in accuracy. We
then go on to test our loss function under extreme imbalance on a propriety dataset and
achieve a gain of 0.1 AUC-ROC over the baseline.

Keywords: imbalanced classification, discriminative learning, cost-sensitive learning, deep
learning

1. Introduction

In recent years, Deep Neural Networks (DNNs) have led the benchmarks on a variety of
problems, such as image classification, image segmentation and object detection. However,
part of the success on these benchmarks can safely be attributed to the inherent uniformity
of the large-scale datasets available in the stated domains. In practice, these models tend
to struggle on datasets with skewed distributions of labels, which are very common in real
world applications such as fraud detection, anomaly detection, face recognition and medical
imaging.

A number of techniques have been proposed to remedy this. The most common and
widely used techniques are re-sampling and cost-sensitive methods. Re-sampling methods
Liu et al. (2009); Bowyer et al. (2011) balance the data distribution by either oversampling
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the minority class or undersampling the majority class. Oversampling methods have several
disadvantages. Firstly, they are computationally expensive due to the increase in number
of data points. Secondly, they are more prone to over-fitting due to the duplication of data
points. Undersampling methods, on the other hand, may end up throwing away important
data points. Cost-sensitive methods take a different approach to deal with imbalance by
assigning weights to the data points in accordance to their class proportion in the dataset.
However, recently, cost-sensitive methods that are class-agnostic have been gaining traction
such as Lin et al. (2017). These methods assign weights according to the ”"hardness” to
classify of a data point.

Huang et al. (2016) observed that minority class generally has less examples with high
variability. Due to this, the number of ”imposter” nearest neighbours, which should have
lied on the different side of a decision boundary, increase for the minority class, this can be
seen in figure la. Thus, the problem of class imbalance is two-fold: (1) imposter neighbours
and (2) hard examples. Although cost-sensitive learning caters for hard examples, it does
not deal with the problem of imposter neighbours. To deal with this problem, we use
discriminative feature learning i.e. explicitly constraining the network to learn distinct
representations of data Wen et al. (2016).
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(a) Using Cross-Entropy. (b) Using FAL.

Figure 1: Visualization of the embedding space using cross entropy and FAL loss func-
tions on MNIST dataset after synthetically inducing imbalance in it. We observe that our
proposed method has the effect of creating a well-separated cluster for each class in the
embedding space. It is also visible that the feature vectors for the minority class have
significantly less intra-class variance.

In our solution, we propose to combine discriminative and cost-sensitive learning to
better model imbalanced datasets. We handle the two problems using a two stage loss
function. In the first stage, following a similar thought as Huang et al. (2016), we use a
variation of Large Margin Gaussian Mixture Loss (LGM) Wan et al. (2018) to increase the
inter-class variance and reduce the intra-class variance in the learned feature vectors. Then,
we apply Focal Loss Lin et al. (2017) over the obtained class probabilities to handle the hard
examples. As is visible from Fig. 1b, our loss leads to well separated clusters of each class
in the embedding space with a very small cluster for the minority class. This palliates the
intrusion by imposter neighbours when compared with the ”de facto” loss - cross entropy in
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Fig. la. In order to further demonstrate the effectiveness of our loss function, we evaluate
it on six highly imbalanced fraud detection datasets along with long-tailed CIFAR10.

Contributions This work belongs in a smaller class of recent approaches that change
the way over-represented and under-represented examples are viewed. The principal con-
tributions are:

e Combining discriminative feature learning with cost-sensitive learning to tackle the
class imbalance problem, which to the best our knowledge, has not been utilized
before.

e Synthesizing a two-stage loss function using a variation of LGM and Focal Loss. We
call this loss the Focused Anchor Loss (FAL).

2. Literature Review

Previous attempts at mitigating class imbalance can be classified into two main approaches
: Re-sampling Methods and Cost-Sensitive Learning.

2.1. Re-sampling Methods

The re-sampling methods neutralize the problem of class imbalance by either oversampling
the minority class or undersampling the majority class. The general problem with over-
sampling is that it only replicates the data and no new information is incorporated in the
dataset. Smote Bowyer et al. (2011) is a well known algorithm in this regard, as it works
by generating new minority class data points through interpolation. Several variations of
Smote have been proposed,some of these are described in Batista et al. (2004). He et al.
(2008) is another re-sampling based algorithm which works by giving weight to minority
classes according to the difficulty in learning, and thus more data is generated for the class
which is harder to learn. However, since oversampling leads to increased computation cost,
undersampling is often preferred over oversampling. In fact, Drummond and Holte (2003)
experimentally proves that undersampling methods generally perform better than oversam-
pling methods. Another general class of algorithms try to learn the underlying distribution
of data and try to generate new data-points belonging to the minority class.Mariani et al.
(2018) used Generative adversarial Networks (GANs) for generating examples of minority
class in order to tackle imbalanced datasets.

2.2. Cost-Sensitive Learning

In cost-sensitive learning instead of modifying the distribution of the training data, the
classes are weighted differently in the loss function to tackle the imbalance problem in the
algorithm itself. There are two ways to implement cost-sensitive learning. One way is to
assign cost to data points according to the proportion of data points belonging to its class
Zadrozny et al. (2003) and the other way is to modify the loss function so that mistakes on
minority class are heavily penalized essentially fitting the class sensitive framework to the
classifier itself. Cao et al. (2013) follows the first paradigm and presents a weighted form
of SVM classifier. Bahnsen et al. (2015) combine the idea of cost-sensitive learning with
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decision trees and presents a cost-sensitive measure for pruning a subtree of the decision
tree. Khan et al. (2018) uses a learn-able cost matrix for weighting the classes. The paper
argues that weights of cost matrix should be selected based on the distribution of classes
and not the frequency. It provides with a cost function for cost matrix which uses class
separability and histogram of classes. Focal loss Lin et al. (2017) is a unique loss function
which penalizes hard examples in a dataset, fairly assuming that the hard examples will
belong to the minority class.

2.3. Discriminative Feature Learning

Discriminative feature learning is another class of algorithms that warrant a place here.
Although, discriminative feature learning is not specifically applied to data imbalance but
it has been shown to produce great results in certain works. Huang et al. (2016) introduces
the idea of reducing the bias of class boundary by constraining the network to respect inter-
class and intra-class margins over clusters of classes. They introduce quintuplet loss which
is an extension to the triplet loss Schroff et al. (2015). Wan et al. (2018) introduces another
loss function which works by learning mixture of Gaussian distribution over classes in the
dataset and imposing a large margin to maximize the inter-class variance.

3. Methodology

In this section, we synthesize a loss function for imbalanced classification by combining
the discriminative prowess of Large-Margin Gaussian Mixture Loss Wan et al. (2018) and
the cost-sensitivity of Focal Loss Lin et al. (2017). We explain both the techniques before
introducing our loss function.

3.1. Focal Loss

Focal loss is designed to deal with highly imbalanced datasets. The loss function uses hard
examples as a proxy to solving class imbalance. Hard examples are those examples which
have large errors i.e the model miss-classifies them with high confidence. They introduce a
modulating factor which decays the error contribution from easy examples to prevent them
from overwhelming the loss function. This effectively focuses the model to hard examples.

As shown in figure 2, the incurred cost on positive examples for which the algorithm is
already predicting a probability greater than 0.5 is not substantial but when summed over
all the data points in the dataset, this loss overwhelms the loss from hard examples. In
focal loss this cost is reduced significantly.

Focal loss is defined as:

FL(pt) = —ay(1 — pi)" log(pe) (1)
where p; is defined as:

o= 1P y=1
I—-p y=0

In Eq. 1, v acts as the modulating factor. As shown in figure 3, the higher the value of
v, the lesser the cost incurred by well classified examples. And «; is defined as,
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Figure 2: Comparison of Focal loss(FL) and Cross Entropy. The difference between Focal
loss and Cross Entropy is the cost incurred on examples which are being classified correctly
(Easy Examples). As shown, the cost incurred by FL when the classifier outputs 0.9 for a
positive example is only 0.01 while for Cross entropy it is 0.1. This decrease in incurred
cost makes the classifier to focus on examples which are not being classified correctly (Hard
Examples)

« y=1
ap =
l—-a y=0

where « € [0, 1] is a weighting factor for error contribution from majority and minority
classes. a-balanced loss works better in practice than the non-a-balanced loss.

CE(m) = ]ugli;k_:l — -'3'5
—

FL() = =1 — @ )" log(m) -
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Figure 3: Focal loss: impact of hyperparameter +.
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3.2. Large Margin Gaussian Mixture (LGM) Loss

Large Margin Gaussian Mixture (LGM) Loss is a discriminative loss function which assumes
a Gaussian Mixture distribution over the embedding space. It fits a Gaussian for each class
k with mean u and covariance ;. The probability of the extracted feature x; given the
corresponding class label z; € [1, K] can be expressed as in Eq. 2,

p($z|zz) = N(IL‘“ Kz EZi) (2)

Similarly, the corresponding posterior probability can be expressed as in Eq. 3.

N (i3 pzy, X2y )p(24)

S N (@ s i) (k)

where p(k) is the prior probability of class k. Maximizing the above probability, for
the true class, can act as a classification loss but does not encourage separation among
the gaussians. To fix this, a margin m is added to the mahalanobis distance computed for
N (243 p1z,, 02,) which enforces large margin among the gaussians in the embedding space.
Cross-Entropy is then computed over the posterior probability distribution and the one-hot
labels as shown in Eq. 4. An extra regularization term is added known as the likelihood
regularization term given in Eq. 5 which penalizes the distance of the feature vector z;
and the class mean f,; resulting in tighter class distribution and more space for the large
margin. The final formulation of the LGM loss is given in Eq. 6

3)

p(zilz;) =

N
1
'Ccls = _N Z lng(zi‘xi) (4)
i—1
N
Likg =— > _log N'(s; iz, z,) ()
i=1
Loyv = Les + Ajka (6)

3.3. Focused Anchors Loss (FAL)

We aim to leverage the discriminative power of LGM and the cost-sensitivity of Focal Loss
to solve the data imbalance problem. We present the formulation of our two-stage loss for
the binary class problem for simplicity. In the first stage, we get the probabilities of each
class as done in LGM and in the second stage we apply Focal Loss over these probabilities
to get the final loss. In order words, we have backed focal loss into LGM. Below we first
describe the modifications that we have made to LGM loss and then present the final form
of our loss function.

LGM is aimed at explicit probabilistic modeling of the learned features. But, since we
only want the discriminative aspect of the loss function, we drop the probabilistic perspec-
tive. Under our modification, LGM becomes a simple euclidean distance between feature
vectors z; and the means, we call them anchors, ¢; and the probability p(z;|x;) is calculated
by taking a softmax over negative of the euclidean distance from each of the anchors ¢;.
The likelihood regularization term also becomes the sum of distance between feature vector
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and corresponding class anchors. But, because we are dealing with class imbalance, the
regularization residual from majority class may overwhelm the loss and the network may
not pay any attention to the minority class examples. Therefore, we take the means of the
distances weighted by the respective class ratios as given in Eq. 8.

oI F @) =62, |5 -1i=2x }m

i) = !
Pl K e IF@)—gul3—1{k=2x}m "
K <N 2
1 o1z =k} ||xs — 24
;C/lkd = E E Ez_l {N } ” ¢ H2 (8)
k=1 2z Wz =k}

We now present the formulation of our loss function. We first use Eq. 7 to find the
class probabilities p(k|z;) for each feature vector x; from the neural network. Instead of
computing cross-entropy over these probabilities and the one-hot labels, we use focal loss
to maximize p(z;|z;). The modified likelihood regularization in Eq. 8 is then added to the
loss from focal loss as in Eq. 9.

FAL = —a(l — p)" log(pt) + BL 1ka 9)

where p; is defined as:

I p(zilz:) y=1
bt =
1—p(zilzi) y=0

and [ is a hyper-parameter used to control the likelihood penalty.

Figure 4: Visualization of the embedding space on the MNIST dataset. The cross represents
the class anchors. Each anchor is approximately the mean of the feature vectors of the
corresponding class.

3.4. Focused Anchors (Mean Update) Loss (FAML)

We propose another variation of the FAL. We observe that the Maximum Likelihood Esti-
mate of the mean of the class anchors is essentially the mean of the feature vectors belonging
to that class in the embedding space. This can be seen very easily from figure 4. So, Instead
of learning the anchors, we run them through a hand-crafted update schedule. This is done
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by updating the anchor of each class to the mean of the feature vectors F'(x;) being gener-
ated for that class. This makes the anchors a better representative of their respective class
in the embedding space. This also helps the network to learn as there is one fewer thing to
model. Therefore, we achieve a slight increase in performance over FAL. The update rule
is given below :

Class anchors are updated as:

G = Ak puge + (L= A) x4y (10)

Where iy, is the mean of feature vectors belonging to kth class and A is a hyperparameter
which controls how much importance shall be given to the means. In our experiments, we
initialized it to 0.9 and decay it quadratically.

The mean for each class uy is computed as:

n

pe =Y _ar' x 1{z; == k}F(x;) (11)

=1

where n is the number of steps we take before updating the anchor, z; is the class label
of the ith example. a and r are hyperparameters which have been introduced in order to
model the relative importance of feature vectors as a geometric progression. Since we want
to keep the sum of the geometric series to be 1, we compute a as:
1—-r"
1—r

a =

(12)

4. Experiments

In order to evaluate our proposed loss function we have used two sets of experiments. First
one is based on Fraud Detection whereas the second one is based on Image Classification.

4.1. Fraud Detection

Class imbalance is very common in the domain of Fraud Detection. Therefore, we use six
highly imbalanced fraud detection datasets to evaluate our loss function.

4.1.1. EXPERIMENTAL SETUP

We use a 2-layer network!, the 1st layer consists of 16 neurons and the 2nd layer consists

of 8 neurons. We use Adagrad optimizer with varying learning rate for each dataset. We

compare the performance of our loss function with that of Cross entropy as well as Smote

and Near Miss. We have used a simple architecture because the datasets used contain only a

small number of features and large architectures did not add much in terms of generalization.
Below we describe each of the techniques used in the experiments:

e Cross-Entropy (CE): This is the baseline model where we use baseline Cross-
Entropy loss.

e Focal Loss (FL): Under this setting, we replace Cross-Entropy loss with Focal Loss.
The hyperparameters for Focal loss were cross-validated using grid search.

1. We use a small network because of the lower-dimensionality of numerical data
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Dataset Size Attributes Ratio
Credit Card 284,807 24 1:578
Home Credit 307511 344 1:11
PaySim 6362620 344 1:737
SatImage 6435 36 1:10
CC Fraud 10000000 8 1:15
Give Me Some | 150000 11 1:14
Credit(GMSC)

Table 1: Description of the datasets.

e FAL: The Cross-Entropy is replaced with the loss proposed in 3.3.The hyperparameter
£ was set to 0.1 in all experiments.

e FAML: The FAML loss proposed in 3.4 is used instead of FAL. The hyperparameter
r is set to 1.3 and A is set to 0.999 while the number of steps n was set to 200 across
all experiments.

e CE4+SMOTE: We combine baseline cross entropy with an over-sampling method,
SMOTE Bowyer et al. (2011).

e CE4+NEAR-MISS: Baseline cross entropy is combined with an under-sampling
method, NEAR-MISS Zhang and Mani (2003)

e FL+LGM: For sake of completeness we also applied focal loss over LGM Wan et al.
(2018).

Each model was run on each dataset. The number of epochs is set to 50 for all datasets.

4.1.2. EVALUATION CRITERIA

Accuracy is not considered to be a good evaluation measure for class imbalanced datasets
as the majority class overwhelms the errors on minority class. Hence in this work we use
the Fl-score, AUC-ROC score and balanced accuracy as the evaluation criteria. These
measures have been defined in Drummond and Holte (2003). However, AUC-ROC is not
considered to be a good metric in cases where positive is the minority class Davis and
Goadrich (2006), which is the case with all our datasets. Therefore, the primary measures
in our evaluations are F1-Score and balanced accuracy.

4.1.3. DATASETS

Description of datasets have been provided in Table 1. CreditCard, HomeCredit, PaySim,
Give Me Some Credit(GMSC) and CCFraud are taken from Kaggle.com while SatImage is
taken from UCI Machine Learning Repository.
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4.1.4. RESULTS WITH HOLDOUT CROSS VALIDATION

Results from these experiments are summarized below in table 2. We use holdout validation
strategy with 80% data in the training set and 20% data in the test set. From the results
we observe that both FAML and FAL loss functions produce better AUC, Fl-score and
balanced accuracy than Cross Entropy as well as Focal Loss on all datasets. For instance,
on the credit card dataset, FAML achieves a gain of 0.04 F-1. On the SatImage dataset,
FAL achieves a gain of 3% balanced accuracy. We also observe a significant increase in
balanced accuracy for all datasets, which indicates that our proposed algorithm is able to
model the minority class much better than cross entropy. Furthermore, although both Near-
Miss and SMOTE are time costly methods, without an equivalent gain in their predictive
performance. In fact, both FAL and FAML outperform Near-Miss and SMOTE on 4 out
of the 6 datasets used across all metrics.

4.1.5. RESULTS WITH K-FOLD CROSS VALIDATION

In order to obtain a more robust estimate of the minority class distribution and to make
sure that each of the data point becomes the part of the test set at least once, we have also
used 10-fold nested cross-validation. Overall, we observe that each method’s performance
decreases, this can be attributed to the fact the test is effectively increased by a factor of 10.
The results are given in table 3. Since, Paysim is the largest dataset in our experiments, we
used FAL as well as FAML on Paysim. We observe that our proposed loss function works
considerably better than cross entropy, a gain of 0.18 fl on PaySim and a slight gain in f1
on all of the other datasets.

4.2. Image Classification

We use an imbalanced version of CIFARI10 i.e. long-tailed CIFAR10 for evaluating our
loss function. In this dataset, the number of training examples per class are reduced by
using an exponential function n = n; X u; where ¢ is the class index and n; is the original
number of samples and pu is the imbalance factor. The number of examples with respect to
the imbalance factor is shown in Figure 5. Cui et al. (2019) from Alphabet inc. came out
during the writing of this paper. Therefore, for the sake of completeness we benchmark our
loss against their work on CIFAR10. We under-perform by a small margin but our loss can
be combined with their weighting scheme and a thorough analysis is required which could
not be completed due to time constraints.

4.3. Results on extreme imbalance

We also test our loss function on a large scale real world propriety dataset of suspicious
activity reporting (SAR) by a commercial bank. The problem was a binary classification
problem and the dataset comprised of 10 million records and an imbalance factor of 1:2222.
The results are given in Table. 5. From the results, we observe that our method performs
considerably better than the other three techniques used. We acheive a gain of 0.1 AUC over
decision tree with Smote and a gain of 0.02 AUC over XGBOOST with BAGAN although
both of these techniques are much more data intensive than FAL.
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Dataset Method AUC- F1-Score | Balanced-
ROC Accuracy
CreditCard| CE 0.9765 0.7892 0.9286
CE+SM 0.9714 0.7136 0.9312
CE+NM 0.9546 0.7293 0.9294
FL 0.9765 0.8044 0.9286
FAL 0.9795 0.8268 0.9264
FAML 0.9819 0.8398 0.9345
FL+LGM | 0.9794 0.8508 0.9079
PaySim CE 0.9870 0.7702 0.9542
CE+SM 0.9983 0.7973 0.9828
CE+NM 0.7951 0.0072 0.8743
FL 0.9913 0.7724 0.9625
FAL 0.9962 0.8011 0.9653
FAML 0.9979 0.8085 0.9825
FL+LGM | 0.9959 0.8171 0.9792 -
CCFraud | CE 0.9574 0.6173 0.8321
CE+SM 0.9580 0.6192 0.8895
CE+NM 0.9580 0.6189 0.8875
FL 0.9580 0.6192 0.8612
FAL 0.9579 0.6191 0.8895
FAML 0.9578 0.6195 0.8897
FL+LGM | 0.9565 0.6205 0.8899
GMSC CE 0.8341 0.4210 0.7255
CE+SM 0.8293 0.4067 0.7626
CE+NM 0.75481 0.3028 0.6978
FL 0.8343 0.4198 0.7435
FAL 0.8373 0.4230 0.7608
FAML 0.8344 0.4268 0.7620
FL+LGM | 0.8385 0.4253 0.7645
Satlmage | CE 0.9346 0.6165 0.8517
CE+SM 0.9454 0.3071 0.7425
CE+NM 0.9077 0.5741 0.8526
FL 0.9349 0.6224 0.8647
FAL 0.9577 0.6821 0.8899
FAML 0.9497 0.6620 0.8840
FL+LGM | 0.9467 0.6827 0.8910
HomeCredit CE 0.7725 0.3233 0.7036
CE+SM 0.7394 0.2883 0.6790
CE+NM 0.7723 0.3283 0.7037
FL 0.7705 0.3147 0.7032
FAL 0.7741 0.3216 0.7057
FAML 0.7777 0.3251 0.7094
FL+LGM | 0.7760 0.3283 0.7075

Table 2: Comparison of our method with Cross-Entropy (CE), Focal Loss (FL) and sam-
pling methods. We have used SMOTE (Slg/% for oversampling and Near-Miss (NM) for
undersampling.
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Dataset Methods | AUC- Std Er- | Bal acc | Std Er- | F1 Std
ROC ror ror Error
CreditCard CE 0.9776 | 0.007 0.9275 | 0.016 0.7851 | 0.028
FAL 0.9756 | 0.007 0.9258 | 0.0119 | 0.7936 | 0.0274
FAML 0.9812 | 0.009 0.9321 | 0.0163 | 0.7945 | 0.0225
SatImage CE 0.9295 | 0.018 0.8532 | 0.032 0.5295 | 0.076
FAL 0.9050 | 0.09 0.8724 | 0.079 0.5354 | 0.065
FAML 0.9126 | 0.036 0.8625 | 0.053 0.5384 | 0.068
GMSC CE 0.8264 | 0.002 0.7582 | 0.0156 | 0.4121 | 0.0081
FAL 0.8285 | 0.0022 | 0.7790 | 0.0156 | 0.4214 | 0.0091
FAML 0.9049 | 0.090 0.8724 | 0.079 0.5353 | 0.065
HomeCredit CE 0.7646 | 0.0028 | 0.6953 | 0.0186 | 0.3115 | 0.087
FAL 0.7704 | 0.0412 | 0.7030 | 0.0658 | 0.3165 | 0.0296
FAML 0.7725 | 0.0458 | 0.7046 | 0.0565 | 0.3146 | 0.0305
PaySim CE 0.9263 | 0.0032 | 0.9036 | 0.0131 | 0.6388 | 0.0663
FAL 0.9756 | 0.007 0.9257 | 0.0119 | 0.7936 | 0.0274
FAML 0.9852 | 0.0041 | 0.9324 | 0.0124 | 0.8126 | 0.0654

Table 3: 10-fold cross validation results for the 6 fraud datasets.

’ Imbalance Factor ‘ 10 ‘ 100 ‘
Softmax Loss 13.61 29.64
Focal Loss 13.68 30.41
Class Balanced Loss | 12.51 25.43
FAL Loss 13.53 27.02

Table 4: Error rate for Long-Tailed CIFAR10.

w 500
v
)
(%)
= 400
]
= W
g \
g 300 b\
£ N
= 200 \\
B N
p-
00 —
£ —
3 S —
= 0 v v v o
0 10 20 30 40 50 60 70 B0 90
CIFAR-100 class index

Figure 5: Long-Tailed CIFAR10: number of examples per class with different class imbal-
ance ratio. Image taken from Cui et al. (2019).
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Method AUC-ROC
D-Tree 0.871
D-Tree + Smote 0.881
BAGAN + XG- | 0.950
BOOST

FAL Loss 0.977

Table 5: Results on the proprietary financial data.

5. Conclusions

Imposter neighbours and hard examples are key issues due to which DNNs have difficulty
in modeling the datasets with skewed distribution. In our work, we propose an end-to-
end solution to these problems by formulating a two stage loss function that combines
discriminative prowess of large margin gaussian mixture (LGM) loss and class agnostic cost
sensitive learning of focal loss, which we call Focused Anchors Loss (FAL). We evaluate
our loss function across range of different settings which include: (i) numeric and image
based datasets, (ii) binary and multi-class classification and (iii) Multi-layer Perceptrons
and Convolutional Neural Networks. We achieve up-to 17% gain in Fl-score and 3% gain
in balanced accuracy in our experiments.
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