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Abstract

We consider the online prediction of a varying Bernoulli process (sequence of varying
Bernoulli probabilities) from a single binary sequence. A real-valued online prediction
method has been proposed as a prior work that incorporates the smoothness of the predic-
tion sequence into the concept of the regret. Also, a Bayesian prediction method for the
varying Bernoulli processes has been developed based on the variational inference. How-
ever, the former is not applicable to loss functions other than the squared error function,
and the latter has no guarantee on the regret as an online prediction method. We pro-
pose a new online prediction method of a varying Bernoulli process from a single binary
sequence with a guarantee to minimize the maximum regret under variational approxima-
tion. Through numerical experiments, we compare the Bayesian prediction method with
the proposed method by using the regret with/without approximation and the KL diver-
gence from the true underlying process. We discuss the prediction accuracy and influences
of the approximation of the proposed method.

Keywords: online prediction, varying Bernoulli process, minimax strategy, regret, varia-
tional approximation

1. Introduction

Online prediction methods sequentially predict future data from time series data, and solve
the concern of insufficient storage since it is unnecessary to keep historical data to obtain
the prediction sequentially. Examples of applications include stock price prediction, weather
forecast, object tracking, and so on. The regret is widely adopted as a measure of accuracy
in online prediction. Since the regret expresses the difference between the cumulative losses
of offline and online predictions, the smaller the regret, the closer the online prediction
is to the optimal prediction. There have been developed online prediction methods that
minimizes the maximum regret with some extensions (Cesa-Bianchi and Lugosi, 2006).
Cutting edge methods include collaborative filtering bandits, sequential choice bandits, and
so on (Li et al., 2015; Cao et al., 2019). In particular, some of online prediction methods
take into account the nonstationary setting where the best offline predictor can change
over time (Moroshko and Crammer, 2014). Herbster and Warmuth (2001) introduced the
smoothness of the shift in the predictor under the nonstationary setting. Such a smoothness
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has been directly modeled in the Bayesian framework by the Kalman filter (Kalman, 1960)
or more generally by state space models. More recently, Koolen et al. (2015) proposed
a prediction method that minimizes the maximum regret where the offline predictor is
assumed to have the smoothness by directly incorporating a quadratic regularization term
in a similar fashion to the Kalman filter. Although the authors succeeded in developing an
efficient implementation of this method, the key ingredients for the efficient computation are
the squared loss function and the quadratic regularization term (Koolen et al., 2014). It has
been considered difficult to use other loss functions because the derivation of this method
strongly depends on the squared loss function. This is analogous to the conjugacy of the
Gaussian likelihood and prior in Bayesian methods where other likelihood nonconjugate to
the Gaussian prior demands analytically intractable computation.

In this study, we consider the prediction of the varying sequence of probabilities that an
event occurs, which we refer to as the varying Bernoulli process. More specifically, we predict
a sequence of Bernoulli distributions with varying parameters. Such a model is included in
the class of arbitrarily varying sources in information theory (Han and Kobayashi, 2007).
The prediction of such a source is desirable for predictive coding schemes such as the
arithmetic coding under nonstationary environments (Han and Kobayashi, 2007; Rissanen
and Langdon, 1981). Similar models have also been applied in the field of neuroscience
and communication engineering. For example, neuronal firing rate and congestion degree
of channel are predicted from binary sequences representing the presence or absence of an
event such as neuronal firing and arrival of communication packets. Bayesian prediction
methods which predict the varying Bernoulli processes from a binary sequence were proposed
(Koyama and Shinomoto, 2005; Cunningham et al., 2009; Watanabe and Okada, 2011;
Takiyama and Okada, 2010). However, these prediction methods have no guarantee on
the regret. Therefore, we propose a new online prediction method of varying Bernoulli
processes from a single binary sequence. This is achieved by extending the framework of
the previous study by Koolen et al. (2015) to the logistic loss function, and applying the
variational approximation to it, which has been used for Bayesian inference in the logistic
regression (Jaakkola and Jordan, 2000). This method ensures that the maximum regret
over all binary sequences is minimized under the variational approximation. That is, by
achieving the minimax regret, the worst case prediction can have the theoretical guarantee
that it will not be worse than this. In the prediction of varying Bernoulli processes, even
the optimal offline prediction is analytically intractable, and hence there is little hope for
direct derivation of an efficient online prediction algorithm. One of the main contributions
of this paper is to demonstrate that the variational approximation enables us to apply the
framework of Koolen et al. (2015), which leads to an efficient online prediction algorithm
for this problem too. Moreover, we theoretically evaluate the upper and lower bounds of
the minimax regret, and show that it grows as T/

√
λT , in the same order as the case of the

squared loss (Koolen et al., 2015), where T is the time horizon and λT is the regularization
parameter for the smoothness, which can also grow with T . We also numerically examine
the prediction accuracy by the regret with or without approximation and the KL divergence
from the true underlying process, and discuss the prediction accuracy and influences of the
approximation of the proposed method. This paper contains only Appendix A while the
supplementary material also contains Appendices B–E.
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2. Settings

2.1. Definition

We handle the time series data x = {xt}Tt=1 consisting of binary data xt ∈ {0, 1} that takes
0 if an event does not occur or 1 if an event occurs on the tth trial. We assume that xt
follows the Bernoulli distribution with parameter θt ∈ [0, 1],

p(xt|θt) = θxtt (1− θt)1−xt . (1)

The logit transformation

a(θ) = ln
θ

1− θ

yields the following model from Eq. (1),

p(xt|at) = exp{xtat − ln (1 + eat)}, (2)

where at = a(θt). By this transformation, parameter θt ∈ [0, 1] is converted into at ∈
(−∞,+∞). We define the logistic error function derived from Eq. (2) by the log-loss,
− ln p(xt|at),

E(xt, at) = −xtat + ln (1 + eat) (3)

and the regularizer inducing the smoothness of time series a = {at}Tt=1,

T+1∑
t=1

(at − at−1)2,

which corresponds to the Gaussian prior on a,

p(a) ∝ exp

{
−λ

T+1∑
t=1

(at − at−1)2
}
,

where the prior distribution induces the smoothness of the prediction sequence and let
a0 = aT+1 = 0. Here, λ works as the regularization coefficient which determines the
smoothness of the sequence to be predicted.

2.2. Regret

In this study, we use the regret, which is widely known in the field of online prediction,
as a performance measure of a prediction algorithm. The regret evaluates the relative
loss of the prediction sequentially observing time series data (online prediction) compared
to the loss of the prediction after observing all time series data (offline prediction). Let
the predicted sequence by online prediction be a1, . . . , aT , predicted sequence by offline
prediction be â1, . . . , âT and the loss function on an input x and a prediction a be l(x, a).
The regret incorporating the smoothness of the predicted sequence R is defined by the
following equation,

R =

T∑
t=1

l(xt, at)− min
â1,...,âT

{ T∑
t=1

l(xt, ât) + λ

T+1∑
t=1

(ât − ât−1)2
}
. (4)
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The previous study by Koolen et al. (2015) derived an online prediction algorithm by setting
l(x, a) to the squared error function (a− x)2, and by solving the minimax problem,

min
a1

max
x1
· · ·min

aT
max
xT

R,

where both xt and at are real values.1 In this study, we approximately solve the minimax
problem using binary input data xt ∈ {0, 1}, value to be predicted at ∈ (−∞,+∞) and the
logistic loss in Eq. (3) as the loss function l.

Let â = (â1, . . . , âT )T. The regret (4) is generally expressed as

R =

T∑
t=1

l(xt, at)− min
â1,...âT

{ T∑
t=1

l(xt, ât) + λâTKâ

}
,

where K is an arbitrary positive definite matrix. The regret in Eq. (4) corresponds to the
case where

K =


2 −1
−1 2 −1

. . .

−1 2 −1
−1 2

 . (5)

Although we use this case as a running example of this paper, the discussion before Section
3.5 also applies to the general positive definite K, as well as some results on the case of the
squared loss (Koolen et al., 2015).

3. Method

3.1. Derivation of the Loss Function l

We consider solving the minimax problem using Eq. (3) as the loss function l. However,
since the second term in Eq. (3) involves the nonquadratic term with respect to a, it
is intractable to solve the resulting minimax problem analytically. Therefore, as in the
previous works on Bayesian inference in logistic regression models, we approximate the
loss function E to a quadratic function using the variational approximation (Jaakkola and
Jordan, 2000; Watanabe and Okada, 2011). First, we define

f(a2) = ln (e

√
a2

2 + e−
√

a2

2 ). (6)

By differentiating with a2, the following equation is obtained,

f ′(a2) =
1

e

√
a2

2 + e−
√

a2

2

· 1

4
√
a2
· (e
√

a2

2 − e−
√

a2

2 ) =
1

4
√
a2
· tanh

√
a2

2
.

Also f(a2) is a concave function with respect to a2. Therefore, we approximate Eq. (6)
by the first order approximation on a2. Here, we define f ′(a2) = φ(a2). In addition, we

1. More precisely, the formulation in (Koolen et al., 2015) solves this minimax problem under some addi-
tional constraints on inputs such as the boundedness of xt.
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introduce variational parameter ξ and we obtain the following inequality

f(a2) ≤ f(ξ2) + φ(ξ2)(a2 − ξ2).

Since ln (1 + ea) = f(a2) + a
2 , we have

E(x, a) ≤ −xa+
a

2
+ f(ξ2) + φ(ξ2)(a2 − ξ2). (7)

We define the loss function l in Eq. (4), by the right hand side of Eq. (7), that is,

l(xt, at) = −xtat +
at
2

+ f(ξ2t ) + φ(ξ2t )(at
2 − ξt2). (8)

Thus, the regret in Eq. (4) is obtained as

R =

T∑
t=1

{
−xtat +

at
2

+ f(ξ2t ) + φ(ξ2t )(a2t − ξ2t )
}

(9)

− min
â1,...,âT

{ T∑
t=1

{
−xtât +

ât
2

+ f(ξ2t ) + φ(ξ2t )(â2t − ξ2t )
}

+ λ
T+1∑
t=1

(ât − ât−1)2
}
.

Note that the minimax solution of this regret, which will be described later in this section, is
not directly derived from the minimax solution under the squared loss obtained in (Koolen
et al., 2015).

3.2. Offline Prediction and its Loss

The second term in Eq. (9) shows the loss caused by offline prediction,

L =

T∑
t=1

{
−xtât +

ât
2

+ f(ξ2t ) + φ(ξ2t )(â2t − ξ2t )

}
+ λ

T+1∑
t=1

(ât − ât−1)2. (10)

After observing all time series data x = (x1, . . . , xT )T, the sequence â = (â1, . . . , âT )T that
minimizes L is the optimal offline prediction. Since L is quadratic function of â, we can
explicitly express â that minimizes L with x and ξ = (ξ1, . . . , ξT )T. To solve minimization
problem, express L with vectors and matrices. Defining f = (f(ξ21), . . . , f(ξ2T ))T,

Φ =

( φ(ξ21)
. . .

φ(ξ2T )

)
,

we can express L as follows:

L = −xTâ+
1

2
1Tâ+ 1Tf + âTΦâ− ξTΦξ + λâTKâ, (11)

where 1 is a vertical vector whose size is T and whose elements are all 1. Using Eq. (11),
we find the prediction vector minimizing L, â, and the optimal loss L∗. The standard
technique for minimizing the quadratic loss yields

â =
1

2
(Φ + λK)−1

(
x− 1

2
1
)
,

L∗ = −1

4

(
x− 1

2
1
)T

(Φ + λK)−1
(
x− 1

2
1
)

+ 1Tf − ξTΦξ. (12)
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3.3. Minimax Loss at One Time Point

We derive the minimax loss at one time point, which is used in Section 3.4. For an input
x ∈ {0, 1} and a prediction a ∈ (−∞,+∞) as a prediction, let

V (a, x) = −xa+
a

2
+ φ(ξ2)a2 + α

(
x− 1

2

)
(13)

be the loss at one time point and consider

V ∗ = min
a

max
x

V (a, x)

as the minimax loss at one time point. Here, α is an arbitrary real value. It follows from
Eq. (13) that

V (a, 0) =
a

2
+ φ(ξ2)a2 − α

2
, (14)

V (a, 1) = −a
2

+ φ(ξ2)a2 +
α

2
. (15)

Moreover, completing the squares in Eq. (14) and Eq. (15) with respect to a, we have

V (a, 0) = φ(ξ2)

(
a+

1

4φ(ξ2)

)2

− 1

16φ(ξ2)
− α

2
, (16)

V (a, 1) = φ(ξ2)

(
a− 1

4φ(ξ2)

)2

− 1

16φ(ξ2)
+
α

2
. (17)

Because it holds that φ(ξ2) ≥ 0, the expressions in Eq. (16) and Eq. (17) represent two
parabolas opening upward as illustrated in Fig. 1. Equalizing Eq. (16) and Eq. (17), we

Figure 1: Two parabolas, Eq. (16) and Eq. (17).
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find the optimal a minimizing maxx V (a, x),

V (a, 0) =V (a, 1)

⇔ φ(ξ2)
(
a+

1

4φ(ξ2)

)2
− α

2
=φ(ξ2)

(
a− 1

4φ(ξ2)

)2
+
α

2

⇔ a =α.

Therefore, the minimax optimal solution is a = α, and the optimal minimax value V ∗ is
given by

V (α, 0) = V (α, 1) = φ(ξ2)α2. (18)

3.4. Derivation of Online Prediction Method

The minimax regret is
R∗ = min

a1
max
x1
· · ·min

aT
max
xT

R, (19)

where R is defined in Eq. (9). Using Eq. (19), solve the minimax problem. Let xt =
(x1, . . . , xt)

T and define V (xT ) and V (xt−1) by

V (xT ) = −L∗ (20)

V (xt−1) = min
at

max
xt

{
−xtat +

at
2

+ f(ξ2t ) + φ(ξ2t )(a2t − ξ2t ) + V (xt)

}
(21)

Then R∗ is
R∗ = V (x0).

Using the decomposition

Rt =

(
At bt
bTt ct

)
, (22)

we define a (t− 1)× (t− 1) matrix

Rt−1 =At + φ(ξ2t )btb
T
t , (23)

recursively from
RT = (ΦT + λKT )−1. (24)

The following theorem finally follows from Eq. (12) and Eq. (18).

Theorem 1 The minimax value V (xt) and the optimal prediction strategy at for the prob-
lem Eq. (19) are given by

V (xt) =
1

4

(
xt −

1

2
1t

)T
Rt

(
xt −

1

2
1t

)
− 1T

t ft + ξTt Φtξt +
1

16

T∑
s=t+1

cs, (25)

at =
1

2
(xt−1 −

1

2
1t−1)

Tbt.
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The resulting minimax regret is given by

R∗ = V (x0) =
1

16

T∑
t=1

ct.

Proof We use induction.
(i) In the case of t = T , V (xT ) is rewritten from Eq. (12) as follows:

V (xT ) =
1

4

(
xT −

1

2
1T

)T
(ΦT + λKT )−1

(
xT −

1

2
1T

)
− 1T

TfT + ξTTΦT ξT

=− L∗,

which satisfies Eq. (20).
(ii) Assuming that V (xt) is expressed by Eq. (25), we prove that V (xt−1) also satisfies Eq.
(25). From Eqs. (21) and (22), we have

V (xt−1) = min
at

max
xt

{
−xtat +

at
2

+ f(ξ2t ) + φ(ξ2t )(a2t − ξ2t )
}

+
1

4

(
xt −

1

2
1t

)T
Rt

(
xt −

1

2
1t

)
− 1T

t ft + ξTt Φtξt +
1

16

T∑
s=t+1

cs

=
1

4

(
xt−1 −

1

2
1t−1

)T
At

(
xt−1 −

1

2
1t−1

)
− 1T

t−1ft−1 + ξTt−1Φt−1ξt−1 +
1

16

T∑
s=t+1

cs + C, (26)

where C is given by

C = min
at

max
xt
−xtat +

at
2

+ φ(ξ2t )a2t +
ct
4

(
xt −

1

2

)2
+

1

2

(
xt −

1

2

)(
xt−1 −

1

2
1t−1

)
bt.

Since ct
4 (xt− 1

2)2 is ct
16 regardless of xt = 0 or 1, the above function of at and xt is expressed

as V (at, xt) in Eq. (13) with ξ = ξt and α = 1
2

(
xt−1 − 1

21t−1
)
bt. Hence, the argument in

Section 3.3 yields that the optimal prediction at and C are given by

at =
1

2

(
xt −

1

2
1t

)T
bt, (27)

C =
1

4
φ(ξ2t )

(
xt−1 −

1

2
1t−1

)T
btb

T
t

(
xt−1 −

1

2
1t−1

)
+
ct
16
. (28)

Substituting Eq. (27) and Eq. (28) into Eq. (26), and using Eq. (23), we obtain

V (xt−1) =
1

4

(
xt−1 −

1

2
1t−1

)T
Rt−1

(
xt−1 −

1

2
1t−1

)
− 1T

t−1ft−1 + ξTt−1Φt−1ξt−1 +
1

16

T∑
s=t

cs.

Therefore, V (xt−1) satisfies Eq. (25) and the theorem follows from (i) and (ii) by induction.
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3.5. Simplification of Online Prediction Formula in Special Case

If we use K in Eq. (5) and fix ξt to a constant ξ independent of t, we can simplify the online
prediction formula. Therefore, focusing on this case, we derive a prediction formula and
evaluate the upper and lower bound of the regret. First, we show the formula for obtaining
each element of Eq. (24).

Lemma 1 (Hu and O’Connell, 1996)

For sinhx = ex−e−x

2 and coshx = ex+e−x

2 , let ν = cosh−1 (1 + φ(ξ2)
2λ ). Then the ijth element

of (ΦT + λKT )−1 is

(ΦT + λKT )−1i,j =
cosh(ν(T + 1− |i− j|))− cosh(ν(T + 1− i− j))

2λ sinh(ν) sinh((T + 1)ν)
.

Here, we define zt, ht and h as follows:

zt =(Φt + λKt)
−1et,

ht =eTt (Φt + λKt)
−1et = eTt zt,

h =
2

1 + 2λ
φ(ξ2)

+
√

1 + 4λ
φ(ξ2)

, (29)

where et is a vertical vector whose size is t and in which the tth element is 1 and the other
elements are 0.

Lemma 2 It holds that

ht =
1

φ(ξ2)
·

1− ( λ
φ(ξ2)

h)2t

1− ( λ
φ(ξ2)

h)2t+2
· h.

In addition, lim
t→∞

ht =
h

φ(ξ2)
.

Next, using the formula for finding an inverse matrix of the block matrix,(
A b
bT c

)−1
=

(
A−1 +A−1b(c− bTA−1b)−1bTA−1

−(c− bTA−1b)−1bTA−1
−A−1b(c− bTA−1b)−1

(c− bTA−1b)−1
)
,

we obtain recursive formulas for ht and Zt.

Lemma 3 It holds that

ht =
1

φ(ξ2) + 2λ− λ2ht−1
,

zt =ht

(
λzt−1

1

)
. (30)

Using Lemmas 1, 2 and 3, we obtain the prediction formula at at time t.
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Theorem 2 It holds that R−1t = Φt + λKt + γtete
T
t , and that

at =
1

2
λct

(
xt−1 −

1

2
1t−1

)T

zt−1, (31)

where γt = 1
ct
− 1

ht
and ct satisfies cT = hT and the following recursive formula

ct−1 = ht−1 + λ2h2t−1ct(1 + φ(ξ2)ct). (32)

The proof is given in Appendix E.1 in the supplementary material. Finally, setting a1 = 0,
we derive the formula for finding at+1. It follows from Eq. (30) and Eq. (31) that

at+1 =
1

2
λct+1

(
xt −

1

2
1t

)T

zt (33)

=
1

2
λct+1ht

(
2
at
ct

+ xt −
1

2

)
.

As in this section, if all ξt are identically fixed, the approximation accuracy may be worse
than the case where ξt changes over time while the calculation time of the prediction can
be reduced because it is computable by a linear form as in the last expression of at+1.
However, if we change ξt at every t, we need to calculate the inverse matrix in Eq. (24),
which makes the calculation time longer. Thus, how to determine the parameter ξt entails
a trade-off between calculation time and approximation accuracy. In addition, if some prior
knowledge of ξt such as the range or the average is available, fixing all ξt to a common
value based on it enables online prediction with less calculation time while maintaining
approximation accuracy. A guideline for choosing a common value ξ of the parameter is
discussed in Appendix C in the supplementary material.

3.6. Evaluation of Upper and Lower Bounds of Regret

In this subsection, we evaluate the upper and lower bounds of the regret. The analysis
of the regret is intractable in the general case in Section 3.4 because we no longer have
the explicit expressions of the matrix RT of Eq. (24) as in Lemma 1 nor of its recursive
decomposition Rt. Hence, we analyze the regret for the special case in Section 3.5. Details
of the derivation are shown in Appendix A. As a result, the minimax regret R∗ = 1

16

∑T
t=1 ct

is upper-bounded by

O

(
T√
λ

)
and lower-bounded by

Ω

(
T√
λ

)
.

These regret bounds hold for any variational parameter ξ, and are the same orders as those
for the minimax online prediction under the squared loss (Koolen et al., 2015). The fact that
the orders of regret bounds do not depend on ξ suggests that the same regret bounds hold
for the case where the variational parameter ξt changes over time too[A1-5]. In addition,
if the approximation error of the offline prediction is the order of o( T√

λ
), it is conjectured

that the regret of online prediction without the approximation can also be upper-bounded
by O( T√

λ
).
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4. Numerical Experiments

4.1. Example of Online Prediction

We first show an example of online prediction for time varying Bernoulli process using the
proposed method. A binary sequence of length T = 360 was generated from the Bernoulli
process with parameter θ∗t = 0.4 + 0.35 sin(2πt/180) in trial t. In the proposed method, Eq.
(33) is used as the prediction strategy. The parameters λ = 4 and ξ = 0 were used. We
fixed the first predicted value a0 = 0. Fig. 2 summarizes a example of offline and online
predictions and the parameters of the Bernoulli process (“true rate”). In addition, The
lower part of the Fig. 2 shows the binary sequence generated according to the underlying
process (“true rate”).

Figure 2: An example of the result of online prediction.

4.2. Comparison between Bayesian Prediction Method and Proposed Method

The previous study by Watanabe and Okada (2011) proposed the Bayesian prediction
method which predicts the varying binomial process from the binary observation at each
time point based on the Bayesian inference. The detailed procedure of the Bayesian pre-
diction method is described in Appendix D in the supplementary material. The filtering
algorithm in that method, sequentially computes the distributions of one-step ahead pre-
diction p(at+1|xt) and filtering p(at|xt) at each time point. The mean of the one-step ahead
predictive distribution can be used as the result of online prediction. Then, smoothing esti-
mates the past states after observing the whole data sequence. The mean of the smoothing
distribution can be used as the result of offline prediction. The approximation used in the
Bayesian prediction method is described in detail in Section 3.1.

We compare prediction accuracies of the proposed method and Bayesian prediction
method by the three measures, namely the approximate regret with Eq. (8) as the loss
function Rapprox, the original regret with Eq. (3) as loss function Rlogistic and the KL
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Figure 3: The maximum regret with approximation, Rapprox.

divergence,

DKL =
T∑
t=1

{
θ∗t ln

θ∗t
θt

+ (1− θ∗t ) ln
1− θ∗t
1− θt

}
,

where θ∗t is the true underlying probability and θt = a−1(at) is the predicted probability. The
offline prediction problem in Eq. (10) corresponds to the maximum a posteriori estimation in
the Bayesian method (Watanabe and Okada, 2011). We used the one-step ahead prediction
for online prediction (Watanabe and Okada, 2011). The proposed method uses Eq. (33)
for online prediction. 500 binary sequences of length T = 360 were generated from the
Bernoulli process with parameter θ∗t = 0.35 + 0.3 sin(2πt/180) in trial t. We fixed the
variational parameter ξ to 0, 1, 2, 3, 4 and 5 in both methods, predicted each of 500 binary
sequences to compute Rapprox, Rlogistic and DKL and compared the maximum value of each
measures between the methods. In addition, the parameter λ was obtained for each ξ by the
average of the values estimated for each binary sequences in the process of offline prediction
of Bayesian prediction, and we let the first predicted value a0 = 0. Note that ξ is set
more advantageously for Bayesian prediction than for the proposed method. We show in
Fig. 3 (Rapprox), Fig. 4 (Rlogistic) and Fig. 5 (DKL) the maximum values of the respective
measures.

Fig. 3 demonstrates that the maximum regret is smaller in the proposed method than
in the Bayesian prediction method regardless of the parameter ξ. Even though this is a
result to a limited number of input sequences, this represents the validity of the guarantee
that the proposed method minimizes the maximum regret under approximation. Also, Fig.
4 shows that the maximum regret with the original logistic loss function are comparable for
ξ = 0 and 1. Since this is the maximum regret without approximation, the guarantee of
the proposed method is not effective rigorously. For ξ ≥ 2, however, the proposed method
outperforms the Bayesian method in terms of the maximum original regret (Fig. 4) and
the KL divergence from the true process (Fig. 5). This implies that if the approximation
is made by an appropriate ξ (even if it is not optimal), the proposed method can reduce
the maximum regret more than the Bayesian prediction method. In addition, we can see a
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Figure 4: The maximum regret without ap-
proximation, Rlogistic.

Figure 5: The maximum KL divergence, DKL.

similar tendency in Fig. 4 and Fig. 5, which suggests that reducing the maximum regret
leads to the improvement in the difference between the true variation and prediction. It is
desirable to determine the variational parameter ξ appropriately in the proposed method
as well as in the Bayesian prediction method. If we have some prior knowledge on the true
underlying process such as the average and the maximum variation (from probability 0.5),
we can use it to determine ξ because ξ has a one-to-one correspondence with the value of
Bernoulli probability (Jaakkola and Jordan, 2000). The influence of the parameter ξ on
prediction is discussed in Appendix B in the supplementary material. As discussed in the
last part of Appendix C in the supplementary material, setting ξ to the value corresponding
to the maximum variation from probability 0.5 (corresponding to ξ = 0) may be a guideline
for choosing ξ. The corresponding value for the case of this experiment is ξ = 2.944, for
which we have seen that the proposed method is likely to outperform the Bayesian method
in terms of the maximum regret (see the case of ξ = 3 in Figs. 3–5).

5. Conclusion

In this paper, we developed an online prediction method of varying Bernoulli process from
a single binary sequence by using variational approximation for the logistic error function,
which has a guarantee to minimize the maximum regret under approximation. The upper
and lower bounds of the minimax regret were evaluated theoretically. We discussed the
influence of the approximation on the regret and the difference between the true varying
Bernoulli process and the prediction through numerical experiments. Although the proposed
method has only a guarantee about the regret under approximation, it is suggested that
the influence of the approximation on the regret can be reduced by properly setting the
variational parameter. Our future directions include devising methods to determine the
variational parameter and the regularization parameter for smoothness, and the theoretical
verification of the influence by the variational approximation.
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Appendix A. Upper and Lower Bounds of Minimax Regret

A.1. Upper Bound

To bound the minimax regret R∗ from above, we evaluate ct from above. It follows from
Eq. (32) that

ct−1 = ht−1 + λ2h2t−1ct(1 + φ(ξ2)ct).

In addition, since ht ≤ h
φ(ξ2)

, if we put

c′t−1 =
h

φ(ξ2)
+ λ2

h2

φ(ξ2)2
c′t(1 + φ(ξ2)c′t),

c′t ≥ ct holds. While c′t grows as t decreases, it has its limit. Let C be the limit of c′t. It
satisfies the following equation:

C =
h

φ(ξ2)
+ λ2

h2

φ(ξ2)2
C(1 + φ(ξ2)C). (34)

we solve Eq. (34) for C. Putting λ
φ(ξ2)

= λ̃, we have

C =
h

φ(ξ2)
+ λ̃2h2C + λ̃2h2φ(ξ2)C2

⇔ 0 =λ̃2h2φ(ξ2)C2 + (λ̃2h2 − 1)C +
h

φ(ξ2)

⇔ C =
1− λ̃2h2 ±

√
(λ̃2h2 − 1)2 − 4λ̃2h3

2φ(ξ2)λ̃2h2

In the two solutions of C, when we bound ct from above, the smaller C provides tighter,
bound

C =

1
h2
− λ̃2 −

√(
λ̃2 − 1

h2

)2
− 4λ̃2 1

h

2φ(ξ2)λ̃2
. (35)

Substituting Eq. (29) for Eq. (35), we have

C =
1+4λ̃+

√
1+4λ̃+2λ̃

√
1+4λ̃

2

2φ(ξ2)λ̃2
−

√
1+8λ̃+12λ̃2+

√
1+4λ̃+6λ̃

√
1+4λ̃+4λ̃2

√
1+4λ̃

2

2φ(ξ2)λ̃2
(36)
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We evaluate the order on λ̃ for each term of the denominator and numerator in Eq. (36). The

order of the denominator is O(λ̃2), the first term of the numerator is O
(
λ̃
√
λ̃
)

= O(λ̃
3
2 ),

all the second term of the numerator is

(√
λ̃2
√
λ̃

)
= O(λ̃

5
4 ). Therefore, the order of C is

O

(
λ̃

3
2

λ̃2

)
= O

(
1√
λ̃

)
.

In addition, since ξ is a constant, the regret is upper-bounded by 1
16

∑T
t=1 ct = O

(
T√
λ

)
.

A.2. Lower Bound

To bound the minimax regret R∗ from below, we evaluate ct from below. It follows from
Eq. (32) that

ct−1 = ht−1 + λ2h2t−1ct(1 + φ(ξ2)ct).

Since λ,ht and ct are all non-negative, ignoring the square of ct yields

ct−1 ≥ ht−1 + λ2h2t−1ct.

Let rt = 1− (λh)2t,

ht =
hrt
rt+1

(37)

holds. Considering recursion and using Eq. (37), we can bound ct from below,

ct ≥ h
T∑
k=t

(λh)2(k−t)
r2t

rkrk+1
,

as detailed in Appendix E.4 in the supplementary material. Since
r2t

riri+1
is a decreasing

function on i,
r2t

riri+1
≥ rt

rt+1
holds and it follows that

T∑
t=1

ct ≥h
T∑
t=1

T∑
k=t

(λh)2(k−t)
rt
rt+1

≥ h
∫ T−1

0

∫ T

t+1
(λh)2(k−t)

rt
rt+1

dkdt = Ω

(
− hT

2 log (λh)

)
.

The derivation of the last step is detailed in Appendix E.5 in the supplementary material.
Here, since

− ln (λh) =− ln

 2

1
λ + 2

φ(ξ2)
+ 1

λ

√
1 + 4 λ

φ(ξ2)

 = Ω

(
1√
λ

)
,

h =
2

1 + 2λ
φ(ξ2)

+
√

1 + 4 λ
φ(ξ2)

= Ω

(
1

λ

)
,

the regret is lower-bounded by 1
16

∑T
t=1 ct = Ω

(
T√
λ

)
.
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