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Abstract

Autonomous agents need to make decisions in a sequential manner, under partially observ-
able environment, and in consideration of how other agents behave. In critical situations,
such decisions need to be made in real time for example to avoid collisions and recover to
safe conditions. We propose a technique of tree search where a deterministic and pessimistic
scenario is used after a specified depth. Because there is no branching with the determin-
istic scenario, the proposed technique allows us to take into account the events that can
occur far ahead in the future. The effectiveness of the proposed technique is demonstrated
in Pommerman, a multi-agent environment used in a NeurIPS 2018 competition, where the
agents that implement the proposed technique have won the first and third places.

Keywords: Pommerman, Sequential decision making, Real-time, Tree search, Multi-
agent, Partial observability.

1. Introduction

Autonomous agents, such as self-driving cars and drones, need to make decisions in real
time (under tight time constraints), which is particularly important but difficult in criti-
cal situations for example to avoid collisions. Such decisions often need to be made in a
sequential manner to achieve the eventual goal (e.g., avoiding collisions and recovering to
safe conditions), under partially observable environment, and by taking into account how
other agents behave. Towards this far-reaching goal of realizing such autonomous agents,
we propose practical techniques of sequential decision making in real time and demonstrate
their effectiveness in Pommerman, a multi-agent environment that has been used in one of
the competitions held at the Thirty-second Conference on Neural Information Processing
Systems (NeurIPS 2018) on Dec. 8, 2018 (Resnick et al., 2018a). The techniques that we
propose in this paper have been used in the Pommerman agents (HakozakiJunctions and
dypm-final) who have won the first and third places in the competition.

In Pommerman, a team of two agents competes against another team of two agents on a
board of 11×11 grids (see Figure 1 (a) for an initial configuration of the board). Each agent
can observe only a limited area of the board, and the agents cannot communicate with each
other. The goal of a team is to knock down all of the opponents. Towards this goal, the
agents place bombs to destroy wooden walls and collect power-up items that might appear
from those wooden walls, while avoiding flames and attacking opponents. See Figure 1 (b)
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(a) Initial board (b) Board after 100 steps

Figure 1: An initial board (a) and a board after 100 steps in Pommerman. The four small
windows on the right most column respectively denote the areas that the four
agents can observe.

for an example of the board in the middle of the game. See Resnick et al. (2018a) and the
GitHub repository1 for details of Pommerman.

Although Pommerman has been developed recently (initial GitHub commit was Dec. 25,
2017), it has been gaining much attention as a benchmark of multi-agent study in the field
of planning, game theory, and reinforcement learning (Kapoor, 2018; Hernandez-Leal et al.,
2018). Prior to the one at NeurIPS 2018, the first competition was held on Jun. 3, 2018.
The winning agent sets an intermediate goal with heuristics and performs depth-limited tree
search to achieve that intermediate goal (Zhou et al., 2018). Resnick et al. (2018b) propose
a technique of imitation learning with curriculum and show that, by using the behavioral
data of the winning agent, it can train an agent as strong as the winning agent.

While the community has made progress in developing strong agents for Pommerman,
the level of those agents is not yet comparable to what has been achieved for backgammon
(Tesauro, 1994), Chess (Campbell et al.), Atari video games (Mnih et al., 2015), Poker
(Bowling et al., 2015; Brown and Sandholm, 2019), and Go (Silver et al., 2017). Pommerman
has its own difficulty that prohibits effective applications of existing approaches that have
seen success in other games. For example, although deep reinforcement learning (Mnih
et al., 2015) and planning methods (Lipovetzky et al., 2015) have seen success on Atari
video games, they rely on the simulators of the video games at the phase of either learning
or planning. These methods cannot be directly applied to (or less effective in) Pommerman,
where opponents are not known in advance and cannot be simulated.

What makes Pommerman difficult is the constraint on real-time decision making (i.e., an
agent needs to choose an action in 100 milliseconds). This tight time constraint significantly

1. https://github.com/MultiAgentLearning/playground
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limits the applicability of Monte Carlo Tree Search, which would otherwise be a reasonable
approach to Pommerman (Matiisen, 2018). In Pommerman, the branching factor at each
step can be as large as 64 = 1, 296, because four agents take actions simultaneously in each
step, and there are six possible actions for each agent. The agents should plan ahead and
choose actions by taking into account the explosion of bombs, whose lifetime is 10 steps.
Tree search with insufficient depth (less than 10) would ignore the explosion of bombs,
which in turn would make the agents easily caught up in flames. Tree search with sufficient
depth (at least 10) is practically infeasible with the large branching factor. Other difficulties
of Pommerman include the following. Reward is only given at the end of an episode, which
can be as long as 800 steps. The agents can observe only a limited part of the board, and
some of the key information cannot be directly observed. The agent needs to coordinate
with its teammate without explicit communication.

Here, we propose a practical approach to real-time tree search that allows us to take
into account critical events that can occur far ahead in the future. In our approach, tree
search after a specified depth is performed under the assumption of a deterministic and
pessimistic scenario (i.e., sequence of states). Because the scenario is deterministic, there is
no branching after the specified depth, which allows us to perform the tree search with suffi-
cient depth to take into account the critical events in the distant future. This deterministic
scenario is designed to be pessimistic by allowing multiple unfavorable events can happen
(e.g., by letting opponents take multiple actions) simultaneously in a nondeterministic man-
ner. Hence, our pessimistic scenarios are unrealistic in general. Our key idea is that an
unrealistic scenario can capture critical events in the future better than a small number of
realistic scenarios that can be sampled and explored under the tight time constraint. We
adjust the level of pessimism via self-play to achieve the best overall performance.

Our approach is proposed particularly for Pommerman but can be generally applicable
to other domains that require real-time sequential decision making under tight time con-
straints. We demonstrate the flexibility of the proposed approach by instantiating it as two
variants of Pommerman agents, who need to deal with the complex environment that in-
volves multiple agents and partial observability. The effectiveness of the proposed approach
is shown with Pommerman. The new approach of real-time tree search with deterministic
and pessimistic scenarios and its application to Pommerman constitute the contributions
of this paper.

2. Related Work

There has been a significant amount of work on the techniques of tree search for real-time
(strategy) games. As we will discuss it in the following, however, the focus of the prior
work is on the techniques for reducing the search space or guiding the search towards the
most relevant subspace. The novelty in our approach is in synthesizing the deterministic
and pessimistic scenarios.

The prior work has investigated various techniques to make Monte Carlo Tree Search
(MCTS) applicable to real-time games such as Ms. Pac-Man (Pepels et al., 2014; Ikehata
and Ito, 2011), StarCraft (Uriarte and Ontañón, 2016), Wargus (Balla and Fern, 2009),
Physical Traveling Salesman Problem (Powley et al., 2012), Quantified Constraint Satis-
faction Problem (Baba et al., 2011), and µRTS (Barriga et al., 2018; Mariño et al., 2019).
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An example of a recent work in this line is Mariño et al. (2019), who study a technique of
action abstraction and apply it to MCTS among others to reduce the search space. Barriga
et al. (2018) study a technique of using non-deterministic rules to reduce the branching in
MCTS. In all of such prior work, MCTS is performed only with realistic or legal moves.

Guo et al. (2014) study the approach of using MCTS to generate training data for
learning a deep neural network that approximates a policy or a value function, and the
effectiveness of the proposed approach is demonstrated in Atari video games. This approach
is motivated by the observation that tree search (planning-based approaches) can perform
far better than model-free approaches if it were not for the tight time constraint.

Real-time tree search has also been studied for deterministic settings. Here, the search
tree is expanded on the basis of heuristic values as long as time permits. Similar to real-time
MCTS, key questions are where to expand and what actions to take given the search tree
investigated. For example, Mitchell et al. (2019) propose a risk-sensitive approach to these
questions.

Our approach of synthesizing a pessimistic scenario is also related to the null-move
heuristic, which has been studied particularly for Chess (Goetsch and Campbell, 1990),
in that it considers a scenario with illegal moves. The null-move heuristic assumes that
a player skips a move, which is illegal in chess, to estimate a lower bound of the value of
the best move. The lower bound is then used to prune the search space. In contrast, our
approach can assume that a player takes multiple moves in the pessimistic scenario.

A pessimistic scenario is also similar to delete relaxation or relaxed plan heuristics (Hoff-
mann and Nebel, 2001) in classical planning. Delete relaxation is similar to a pessimistic
scenario in the sense that it does not “delete” an opponent from a position. A difference is
that a pessimistic scenario allows an opponent to take multiple actions simultaneously.

Our approach is also similar to “variable resolution” (Mart́ınez et al., 2016) in that
exact search is limited to a certain depth. After that depth, the two approaches differ. In
particular, a pessimistic scenario cannot be obtained by “removing some information from
the planning task,” as is done in Mart́ınez et al. (2016).

3. Real-time tree search for Pommerman

In Pommerman, the dynamics of the environment is known, and much of the uncertainties
resulting from partial observability can be resolved with careful analysis of historical ob-
servations. MCTS would thus be a competitive approach if it were not for the tight time
constraint (Matiisen, 2018). For example, consider a situation where an agent can survive
only by following a particular route. Tree search is particularly suitable for finding such a
route, while model-free approaches of learning policies or value functions, if not impossible,
would require large scale functional approximators (e.g., deep neural networks) and a large
amount of data for training to be able to follow that route. The applicability of MCTS or
tree search in general is however significantly limited in Pommerman due to the tight time
constraint and the large branching factor.

One approach of tree search is to push the depth as far as possible, and this is the
approach taken by the gorogm eisenach (eisenach) agents, who won the second place in
the NeurIPS 2018 Pommerman competition. The eisenach agent was implemented in C++
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Figure 2: Tree search with deterministic and pessimistic scenarios.

with various engineering tricks to achieve the average depth of 2 in the tree search (Resnick
et al., 2019).

3.1. Tree search with pessimistic scenarios

In our approach, the tree search after a specified depth is performed under a deterministic
and pessimistic scenario, which will also be simply referred to as a deterministic scenario
or a pessimistic scenario, depending on what feature of the scenario is more relevant in
the context. Figure 2 shows an example. Here, the tree search is performed in a standard
manner until the depth of 2. In this example, the branching factor is 2, and there are
4 nodes at the depth of 2. From each of these 4 nodes, “tree search” is continued until
it reaches the depth of 5 by assuming a deterministic scenario. Because the scenario is
deterministic, there are no branches after the depth of 2.

One may also interpret our approach as evaluating the 4 leaves (at the depth of 2)
on the basis of the deterministic scenario from the depth of 2 to the depth of 5, and our
following discussion will be based on this interpretation. Our approach keeps the size of
the search tree small, because there are branches only until a limited depth L. At the same
time, our approach can take into account the events that can occur far ahead in the future,
because the leaves (nodes at depth L) can be evaluated with a deterministic scenario that
can be much longer than what would be possible with branches. What differs from the
rollout in MCTS is that we let the deterministic scenario be pessimistic, as we will discuss
in Section 3.2.

More specifically, our approach performs standard tree search (e.g., MCTS, exhaustive
tree search, etc.) but on the search tree of a limited depth L, evaluating the leaves (nodes
at the depth L) with pessimistic scenarios, and select the best action for the root node
(e.g., as is selected with minimax tree search or with multi-player tree search such as maxn

tree search (Luckhardt and Irani, 1986), paranoid search algorithm (Sturtevant and Korf,
2000), and best-reply search (Schadd and Winands, 2011)). Namely, our approach can use
any tree search algorithms for multi-player games but limit the depth of the search tree at a
given L and evaluate the leaves with pessimistic scenarios. One can choose the value of L
in consideration of real-time constraints.

Algorithm 2 shows the general framework of our real-time tree search with pessimistic
scenarios. Notice that, except at the depth of L, PessimisticTreeSearch is nothing but
the standard tree search for games, and this tree search may also be done non-exhaustively
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PessimisticTreeSearch(node)
Input: node is the root node where tree search starts; L is the depth of tree search under

stochastic scenarios
Output: The best action at node
if depth of node = L then

/* Evaluate node under a pessimistic scenario */

board← GetState(node) // Get the game state at node

board sequence← PessimisticSimulation(board)
score(node)← Evaluate(board sequence)

else if all children of node have been evaluated then
if depth of node = 0 then

Find the bast action at node based on the score of its children
Return: the best action at node

else
/* Compute the score of node from the scores of its children */

score(node)← GetScore(node)
end

end
node← FindUnevaluatedNode() // e.g., via depth/breadth first search

PessimisticTreeSearch(node) // Recursively run from node

Algorithm 1: The general framework of the real-time tree search with pessimistic scenarios

similar to MCTS. For a node at depth L, PessimisticTreeSearch evaluates the node
under a pessimistic scenario, which relies on two subroutines: PessimisticSimulation

and Evaluate. Given a state of the game, PessimisticSimulation generates a sequence
of states from that state in a pessimistic manner. Although Pommerman is an imperfect
information game and an information set can be associated with a node, we will associate
a single state to the node by resolving uncertainties, as we will discuss in Section 3.2. Then
the forward model of Pommerman can be used to simulate the transitions of states. Specific
procedures of PessimisticSimulation will be described in Section 3.2. Evaluate gives the
score of the leaf on the basis of the sequence of the states given by PessimisticSimulation.
Specific procedures of Evaluate will be described in Section 3.3.

More specifically, in the Pommerman agents that implement the proposed approach
(i.e., HakozakiJunctions (hakozaki) and dypm-final (dypm)), the depth of tree search is
set as L = 1. The hakozaki agent considers all of the leaves at depth 1 but might need
to choose an action before exhaustively searching all of the leaves due to timeout. On the
other hand, the dypm agent considers six leaves at depth L = 1 by taking into account only
its own actions, and the effect of the the actions by the other agents are taken into account
in evaluation with the deterministic scenario. In both of hakozaki and dypm, the leaves are
evaluated with a deterministic scenario with the length of at least 10 to take into account
the explosion of bombs, whose lifetime is 10. Recall that the eisenach agent can perform
the tree search only at the average depth of L = 2. Hence, if we performed the standard
tree search for 2 steps, there would be no computational budget left for the evaluation with
deterministic scenarios.
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Input: leaf is the leaf to evaluate; length is the length of a pessimistic scenario;
pessimism level is the level of pessimism;

Output: The sequence of states from the leaf under a pessimistic scenario
boards[0]← GetState(leaf) // Get the state of the game at leaf

/* Sample a sequence of states from the given state */

for ` = 1, . . . , length do
boards[`]← ForwardModel(boards[`− 1]) // One of next states of game

end
/* Make the sequence of states pessimistic */

for ` = 1, . . . , pessimism level do
for each object in boards[`− 1] do

positions ← Find the next positions of object other than the one in boards[`]
for each position in positions do

Copy and place object at position in boards[`]
end

end

end
Return: boards

Algorithm 2: An example of PessimisticSimulation, which generates a pessimistic sce-
nario for the case where the state of the game can be represented by the positions of objects.

3.2. Generating pessimistic scenarios

From each of the leaves in the search tree, we generate a deterministic scenario. A key idea
in our approach is to make this deterministic scenario be pessimistic, which we will discuss
in this section with specific instantiation as Pommerman agents.

A pessimistic scenario can be generated in a systematic manner as follows. We assume
that the state of the environment can be represented by the positions of objects. In Pom-
merman, these objects are agents, bombs, flames, power-up items, and walls. Some of those
objects change their positions randomly or by depending on the actions of the agents, which
forces the search tree to have branches. If one can tell the worst sequence of the positions of
an object among all of the possibilities, one can place and move that object accordingly in
the pessimistic scenario. It is often the case, however, that the worst positions are unknown.
Instead, we generate a pessimistic scenario by allowing the objects to be located at multiple
positions even if that is unrealistic or illegal. In Pommerman, this typically corresponds
to assuming that an opponent takes multiple actions simultaneously in a nondeterministic
manner, which means that the opponent is copied into multiple positions in the next step.
Notice that such generated pessimistic scenarios can be more adversarial than assuming the
worst possible scenarios, because an object cannot actually be at multiple positions.

Algorithm 2 shows an example of how a pessimistic scenario is generated from the leaf
(node at depth L) of the search tree. This PessimisticSimulation samples a sequence of
states from the leaf node, similar to rollout in MCTS, but the sequence of states is then
made pessimistic by allowing an object to be placed at multiple positions.

Algorithm 2 involves two hyper-parameters: length and pessimism level. Here,
length denotes the length of the pessimistic scenario used to evaluate the given leaf. One
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can choose the value of length in consideration of real-time constraints. On the other
hand, pessimism level denotes the level of pessimism and controls how pessimistic the
pessimistic scenario is. The value of pessimism level can be optimized via self-play in
a way that the overall performance is maximized, which will be further discussed in the
following.

What is essential is that a pessimistic scenario is deterministic to avoid the computa-
tional complexity resulting from branching in the search tree. Our guideline is to make
this deterministic scenario rather pessimistic, because good actions are often the ones that
perform well under pessimistic scenarios particularly in cases where safety is a primary
concern. In Pommerman, an agent dies if it cannot escape from flames, and our team loses
if both of our agents die. It is thus of critical importance to ensure that our agents can
survive, while attacking opponents or collecting power-up items.

In Pommerman, a deterministic scenario is represented by a sequence of boards, where
each board is given by the state of the game at a certain point in time. Such a deterministic
scenario can be generated by a forward model of Pommerman after resolving uncertainties.
There are two sources of uncertainties: the future actions of agents and partial observabil-
ity. These uncertainties can be resolved in arbitrary ways, but our guideline is to resolve
them in rather pessimistic manners and to optimize the level of pessimism by tuning hy-
perparameters via self-play. A caveat is that the purpose of a pessimistic scenario is not
to find a proper lower bound on the value of a leaf but to find a good action as a result
of evaluating that leaf with the pessimistic scenario. Therefore, a pessimistic scenario can
be more adversarial or less adversarial than the worst scenario. The self-play allows us to
optimize the level of pessimism.

More specifically, both of hakozaki and dypm agents generate a sequence of boards
by letting the other agents move to multiple positions simultaneously. They then record
the time when each position is first occupied by an agent. There are differences between
hakozaki and dypm in exactly what information is recorded in the sequence of boards. In
hakozaki, each position in the t-th board has the information about when that position
was occupied, if the position has been occupied by the t-th step. In dypm, each position in
the t-th board has the information about whether that position has been occupied by the
t-th step. Also, dypm assumes that the other agents take actions only for a predetermined
number of steps (a hyperparameter tuned via self-play), while hakozaki does not have this
limit.

Note that the sequence of such boards is in general illegal or unrealistic. There may be
multiple copies of an agent in the board (dypm), and an agent that might occupy a position
may be replaced by the integer value representing when that position can be occupied
(hakozaki). Also, some of the uncertainties are resolved in a way that is not necessarily
pessimistic. For example, we ignore the possibility that an agent might kick bombs in the
sequence of boards. However, the purpose of the sequence of boards is not to compute a
proper lower bound of the value but to quickly estimate the relative values of the leaves
in the search tree in a way that it gives the overall best performance. Note that the part
of tree search (with branches) can take into account all of the details, unlike the part of
evaluation with a deterministic scenario. For example, if the action of an agent within the
tree search is to kick a bomb (by moving to the bomb), the movement of the kicked bomb
is taken into account in the remaining tree search as well as in the deterministic scenario.
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Our approach of tree search with a pessimistic scenario allows us to take into account all
of the details in the near future (via tree search) as well as possibly critical events in the
distant future (via a pessimistic scenario).

3.3. Evaluation with pessimistic scenarios

This sequence of boards is then used to estimate the value of the initial board in the sequence
(i.e., a leaf). If we obtain reward sufficiently frequently, we could use Monte Carlo return
(cumulative reward obtained during the sequence of boards) as an estimate of the value.
However, in Pommerman, reward is obtained only at the end of a game, and the Monte
Carlo return has very high variance. We thus design the value in a way that choosing actions
that give high value tends to eventually achieving the goal. The goal of a Pommerman agent
is to knock down all of the opponents, while the agent or its teammate is surviving. The
value should thus reflect some notion of the survivability of the agent itself, its teammate,
and its opponents. Roughly speaking, high value should imply high survivability of the
agent itself and its teammate, low survivability of the opponents, or both.

In Pommerman, the survivability of an agent can be captured by the number of positions
that the agent can stay safely in the sequence of boards. More specifically, given a deter-
ministic scenario, dypm counts the number of the time-position pairs from which an agent
can survive at least until the end of the scenario. This number is used as the survivability
of the agent. Namely, the survivability of the agent is computed by first searching the
reachable time-position pairs in the sequence of boards and then pruning those pairs from
which one cannot survive until the end of the sequence. On the other hand, hakozaki finds
the positions that an agent can reach at the end of the sequence of boards, and compute
the survivability on the basis of the integer values that represent when the positions might
be occupied by other agents. Intuitively, an agent is considered to have high survivability
if there are many positions that the agent can reach without contacting the other agents.

Note that an agent i computes the survivability S(j, s) for each leaf (state) s and for
each agent j who is visible from i, including i itself. The survivability of an agent j 6= i is
computed on the basis of the sequence of boards that is pessimistic to j (i.e., the agents
except j move to multiple positions simultaneously)2.

Now, one can choose the best action on the basis of these survivabilities. Roughly
speaking, our agent chooses the action that maximizes the product the survivabilities of the
agent itself3 and its teammate divided by the product of the survivabilities of the opponents.
Because the survivability is defined for each leaf, which corresponds to a combination of
the actions of all agents, one needs to marginalize out the actions of the other agents to
define the survivability of an agent with a particular action. The survivability of an agent
when that agent takes a particular action can be defined to be the minimum survivability
of that agent given that the agent takes that action (i.e., worst case). The survivability
of a teammate can also be defined as the minimum survivability. On the other hand, we
find that the survivability of an opponent with that action should be defined as the average

2. In dypm, to save computational cost, a single sequence of boards with no move of agents is used to
compute the survivabilities of agents j 6= i, and those survivabilities are normalized by dividing them by
the corresponding survivabilities when the agent i does not exist.

3. To be more aggressive, the dypm agent clips its own survivability S at a threshold Sth when S exceeds
Sth, where Sth is tuned via self-play.
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survivability rather than minimum or maximum. These are how the survivabilities with
a particular action are defined in hakozaki. On the other hand, each leaf in the search
tree of a dypm agent corresponds to each action of that agent, and there is no need for
marginalization. A caveat is that the action by the dypm agent might be blocked by other
agent, resulting in no move. The survivability with such an action is thus averaged with
the survivability of no move.

In this section, we have discussed how our agents choose actions in most critical situ-
ations of Pommerman, where the agents interact with other agents. In those situations,
the goal of an agent is to reduce the survivabilities of the opponents, while keeping the
survivabilities of the agent itself or its teammate sufficiently high. In other situations, the
agent can ignore the behavior of other agents and seek to attain intermediate objectives.
Examples of such objectives include (i) breaking wooden walls to make passages or to find
power-up items, (ii) collecting power-up items, and (iii) moving towards the areas that
cannot been observed to obtain new information. Although there is a question of what
objective to pursue at each step, it is relatively easy to choose actions once an objective is
given, because we do not need to take into account the actions of the other agents. Our
agent heuristically sets an objective and chooses actions by the use of a standard search
technique until the agent meets and starts interacting with other agents.

4. Experiments

We conduct two sets of experiments to investigate the overall performance of the proposed
approach and the effectiveness of our key idea (i.e., the use of pessimistic scenarios in tree
search). Although the agents that implement our proposed approach have won the first
and third places in the NeurIPS 2018 Pommerman competition, the number of matches
in the competition is too limited to draw conclusions. In the first set of experiments, we
intensively evaluate the performance among the top five teams, from the competition, that
implement state-of-the-art approaches, including ours. In the second set of experiments, we
study the effectiveness of pessimism by changing one of the key hyperparameters of dypm
that controls the level of pessimism in the proposed approach.

4.1. Performance against state-of-the-art agents

The competition was run according to a double elimination style with two brackets, where
the team that won two games before the other moves on to the next round. A tie was
replayed for the first time, but another tie was resolved by matches on another version of
Pommerman, where walls can collapse. Namely, tie was not the same as “no game” in the
competition, and the results in this section needs to be interpreted accordingly. See Resnick
et al. (2019) for more details about the settings of the competition.

The top five teams were hakozaki, eisenach, dypm, navocado, and skynet. The top
three teams are based on tree search, as we have discussed in Section 3. The other two are
based on reinforcement learning. More specifically, navocado is based on advantage-actor-
critic (Peng et al., 2018), and skynet is based on proximal policy optimization.

Table 1 shows the results of the direct matches among the top five teams in the compe-
tition. For example, eisenach defeated dypm four times, dypm defeated eisenach once, and
there were no ties between these two teams. Although the winners of the competition were
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determined according to the rule of the competition, the number of matches was clearly
limited to statistically determine which teams are stronger than others. In particular, there
were pairs of teams that had no direct matches in the competition.

hakozaki? eisenach dypm? navocado skynet

hakozaki? - 4/2/1 - 2/0/2 2/0/0

eisenach 2/4/1 - 4/1/0 - -

dypm? - 1/4/0 - 2/1/0 -

navocado 0/2/2 - 1/2/0 - 2/1/5

skynet 0/2/0 - - 1/2/5 -

Table 1: A summary of the matches among the top five teams in the competition. Each
entry shows the number of “wins / losses / ties” for a row agent against a column
agent. The ? marks indicate the teams that implement our approach.

The purpose of the following experiments is to complement the competition by running
a greater number of matches between the top five teams. We use the Docker images4 of the
agents that have been used in the competition. We run our experiments on a Ubuntu 18.04
machine having eight Intel Core i7-6700K CPUs running at 4.00 GHz and 64 GB random
access memory. Note that these computational resources are different from what has been
used at the competition (exact computational resources used at the competition are not
known). Therefore, the results of our experiments should not be considered as a refinement
but rather as complementary to the results from the competition.

Table 2 summarizes the results of the 1,000 matches that we have run between each
pair of the teams. Because there are two essentially different configurations for the initial
positions of the two teams, half of the matches are initialized with one configuration, and
the other with the other configuration. Each team is also matched against itself for 500
matches, and the results for both sides are counted in the table (if a match is tied, two ties
are counted). In total, we run 22,500 matches, which take approximately two weeks in our
environment.

In our experiments, the top three teams (hakozaki, eisenach, dypm) have completely
dominated the other two (navocado, skynet), recording 5,227 wins (87.1 %), 162 losses
(2.7 %), and 611 ties (10.2 %). In particular, hakozaki and dypm, who implement our
proposed approach, have lost against navocado or skynet only in 22 matches (0.4 %).
While the top three teams are based on tree search, the other two are based on model-free
reinforcement learning. This indicates the advantages of tree search in Pommerman, where
precise planning in the following several steps is critically important to survive from the
explosion of bombs. The results in our experiments are not necessarily consistent with
those in the competition (Table 1), however. In particular, dypm has lost once against
navocado in the competition. This may be because the dypm agents have occasionally
experienced timeouts (i.e., the agent does not respond in 100 milliseconds, which is treated

4. The Docker images are available as multiagentlearning/{hakozakijunctions, eisenach, dypm.1, dypm.2,
navocado, skynet955}. Note that the dypm team uses two agents, dypm.1 and dypm.2, that differ only
in the values of their hyperparameters. In the other teams, the two agents are identical.
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hakozaki? eisenach dypm? navocado skynet TOTAL

hakozaki? 112/112/776 490/139/371 279/221/500 694/ 3/303 845/ 7/148 2420/482/2098

eisenach 139/490/371 338/338/324 403/492/105 866/ 85/ 49 918/ 55/ 27 2664/1460/876

dypm? 221/279/500 492/403/105 107/107/786 935/ 12/ 53 969/ 0/ 31 2724/801/1475

navocado 3/694/303 85/866/ 49 12/935/ 53 95/ 95/810 198/ 50/752 393/2640/1967

skynet955 7/845/148 55/918/ 27 0/969/ 31 50/198/752 57/ 57/886 169/2987/1844

Table 2: A summary of the 1,000 matches between each pair among the top five teams.
Each entry shows the number of “wins / losses / ties” for a row agent against a
column agent. The rightmost column shows the total number of “wins / losses /
ties” for row agents. The ? mark indicates the team that implements the proposed
approach.

as a “stop” action) in the competition, because dypm does not implement any mechanisms
for measuring the elapsed time. Also, the computational resources in our experiments might
be less favorable to the learning agents (navocado and skynet) than what has been used
in the competition.

Among the top three teams, hakozaki has consistently dominated the others, although
the relative advantages between hakozaki and dypm are relatively small. Also, dypm has
slightly outperformed eisenach. Overall, hakozaki and dypm, who implement the proposed
approach, have recorded 982 wins (49.1 %), 542 losses (27.1 %), and 476 ties (23.8 %) against
eisenach. Note that these top three teams implement their agents and forward models in
different programming languages: hakozaki in JavaTM, eisenach in C++, and dypm in
Python. Also, the dypm agent runs on a single thread, while hakozaki and eisenach use
multiple threads. Overall, our experimental results suggest the superiority of the proposed
approach in real-time tree search for sequential decision making with limited computational
resources.

4.2. Effectiveness of pessimism

We next study the effectiveness of the pessimism in the deterministic scenario used in our
proposed approach. Recall that a dypm agent generates a deterministic scenario by assuming
that the other agents take multiple actions simultaneously in a nondeterministic manner
but only for a limited number of steps. Here, we refer to this limited number of steps
as the pessimism level and study how the performance of dypm depends on the pessimism
level. Specifically, for each pessimism level, we run 1,000 matches against a baseline and
record the number of wins, losses, and times. The baseline is either a team of default agents
(SimpleAgent) or a team of the dypm agents whose pessimism level is set 0.

Figure 3 shows the number of wins, losses, and ties of dypm against each baseline, where
the pessimism level in dypm is varied as indicated along the horizontal axis. For example,
dypm with the pessimism level 3 has had 997 wins, 1 loss, and 2 ties against SimpleAgent

(Figure 3 (a)), and this pessimism level is the one that has actually been set in dypm in
the competition. The winning rate of dypm against SimpleAgent increases from 92.6 % to
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Figure 3: The performance of dypm with varying pessimism levels. The rate of wins, losses,
and ties of dypm against a baseline is shown for each pessimism level (from 0 to
10) as indicated along the horizontal axis. The baseline is SimpleAgent in (a)
and the dypm with no pessimism (level 0) in (b).

99.7 % by increasing the pessimism level from 0 to 3. Further increasing the pessimism
level can reduce the number of losses but increases the number of ties, but these changes
are insignificant with the very high winning rate.

To clarify these changes, Figure 3 (b) shows the results against a stronger baseline,
which is dypm with pessimism level 0. Now, the winning rate of dypm against the baseline
increases from 36.9 % to 77.8 % by increasing the pessimism level from 0 to 3. Further
increasing the pessimism level from 3 to 4 can reduce the rate of losses from 5.1 % to 4.2 %
but increases the rate of ties from 17.1 % to 22.7 %.

Overall, we find that pessimism in deterministic scenarios can significantly improve
the overall performance of Pommerman agents. Also, the performance is sensitive to the
particular level of pessimism, and an appropriate level of pessimism may be determined
via self-play. Note, however, that Pommerman is an extensive-form game with imperfect
information, and the optimal strategy in general is to probabilistically mix multiple levels
of pessimism. Also, dypm has other hyperparameters, and the optimal level of pessimism
depends on the values of the other hyperparameters.

5. Conclusion

We have proposed an approach of real-time tree search, where tree search is performed only
with a limited depth, and the leaves are evaluated under a deterministic and pessimistic
scenario. Because there is no branching with a deterministic scenario, our evaluation can
take into account the events that can occur far ahead in the future. Also, evaluation
with pessimistic scenarios can lead to selecting good actions, which are often the ones
that perform well under the pessimistic scenarios particularly in cases where safety is a
primary concern. We have assumed that the state can be represented by the positions
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of objects and generated pessimistic scenarios by allowing the objects to be located at
multiple positions even if that may be unrealistic or illegal. One could, however, apply the
general idea of our real-time tree search with pessimistic scenarios to a broader range of
domains by designing pessimistic scenarios suitable for particular domains. For example, for
applications to autonomous robots, drones, or other agents in continuous space, a pessimistic
scenario may be generated by assuming objects (e.g., other robots and drones) that increases
the size over time.

Our experiments with Pommerman suggest that the performance of the proposed ap-
proach is sensitive to the particular level of pessimism, but it can be optimized via self-play.
With the optimized level of pessimism, the proposed approach is shown to outperform other
state-of-the-art approaches to real-time sequential decision making. An interesting direction
of future work is to combine the proposed approach with model-free reinforcement learning,
where the proposed approach is used to choose specific actions in each step to attain the
intermediate objective that is selected by model-free reinforcement learning. Such integra-
tion of tree search and reinforcement learning is an active field of research (Silver et al.,
2017; Anthony et al., 2017; Vodopivec and nd B. Šter, 2017; Jiang et al., 2018; Efroni et al.,
2019; Anthony et al., 2019; Shah et al., 2019).
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