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Abstract

Semi-supervised learning usually assumes the distribution of the unlabelled data to be the
same as that of the labelled data. This assumption does not always hold in practice. We em-
pirically show that unlabelled data containing novel examples and classes from outside the
distribution of the labelled data can lead to a performance degradation for semi-supervised
learning algorithms. We propose a 1-nearest-neighbour based method to assign a weight
to each unlabelled example in order to reduce the negative effect of novel classes in un-
labelled data. Experimental results on MNIST, Fashion-MNIST and CIFAR-10 datasets
suggest that the negative effect of novel classes becomes statistically insignificant when the
proposed method is applied. Using our proposed technique, models trained on unlabelled
data with novel classes can achieve similar performance as ones trained on clean unlabelled
data.

Keywords: semi-supervised learning, neural network, novel classes, generalization

1. Introduction

Neural networks have been successfully applied to challenging tasks such as image or speech
recognition. However, in order to achieve good performance, it is necessary to have a
large amount of labelled training data. This requires humans to painstakingly label many
examples. The labelling process can be very costly and time consuming. To address this
issue, many different semi-supervised learning (SSL) algorithms have been proposed in
recent years [Kingma et al. (2014); Laine and Aila (2017); Lee (2013); Rasmus et al. (2015);
Tarvainen and Valpola (2017)]. The reported results on some of the benchmark datasets
for semi-supervised learning using only very few labelled examples are approaching the
performance of supervised learning with all the examples labelled. For instance, Tarvainen
and Valpola (2017) managed to achieve an error rate of 9.11% on ImageNet 2012 with only
10% of the instances being labelled [Tarvainen and Valpola (2017)].

Most research on semi-supervised learning assumes that the distribution of unlabelled
data is the same as the distribution of labelled data. However, this assumption does not
always hold in practice. We use semi-supervised learning when we do not have the resources
to label all of the available data. This means that we cannot check all the data points to
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make sure they are only from the classes we are interested in. Therefore novel classes might
be present in the unlabelled data when we apply semi-supervised learning in practice. We
define novel classes as classes that are only present in the unlabelled training data, but
not in the labelled data (including test data). We assume future unseen data will always
be from the same distribution as the labelled training data. Hence, our test datasets only
contain classes that are present in the labelled training data. Note that our learning scenario
is different to that of novelty detection [Bishop (1994)] and domain shift or transfer [Ruder
and Plank (2018)], where the future unseen data can be distributed differently from the
training data.

We attempt to answer two research questions. The first research question is: Do
novel classes in unlabelled data negatively affect the performance of semi-supervised learning
algorithms? The second research question is: Can we reduce this negative effect of novel
classes by assigning individual weights to unlabelled data? Our experiments show that the
presence of novel classes does degrade the performance of semi-supervised algorithms. In
order to answer the second question, we propose a 1-nearest-neighbour based method to
assign individual weights to unlabelled data. The experimental results suggest that when
the proposed method is applied to semi-supervised algorithms, the negative effect of novel
classes becomes statistically insignificant.

The rest of the paper is organized as follows. In Section 2, we review related research.
In Section 3, we introduce two semi-supervised learning algorithms that are used in our
experiments. We propose a method to reduce the effect of novel classes in Section 4. In
Section 5, we describe the experiments designed to address the two research questions.
We analyze the experimental results in Section 6. We give further discussions about our
experiments as well as drawbacks of our proposed method in Section 7. Finally, we conclude
our work and propose future research in Section 8.

2. Related Work

There has been a lot of development in semi-supervised learning for neural networks.
Pseudo-Label is a simple method that assigns “pseudo-labels” to unlabelled data using
the model predictions at each epoch, and then a model is trained on both labelled data
and the “pseudo-labelled” data [Lee (2013)]. Kingma et al. (2014) proposed using deep
generative models for semi-supervised learning [Kingma et al. (2014)]. They used varia-
tional autoencoders [Kingma and Welling (2014)] as their generative models. Inspired by
Denoising Autoencoders [Vincent et al. (2010)], Ladder Network [Rasmus et al. (2015)] adds
noise to the input of each layer and proposed a denoising function to reconstruct the input.
Then the denoising loss is added to the supervised loss. Instead of adding random noise to
the input, Virtual Adversarial Training attempts to compute tiny perturbations that are
expected to affect the predictions the most by using the idea of adversarial training [Miyato
et al. (2016, 2017)]. Temporal Ensemble [Laine and Aila (2017)] is a self-training based
method that is similar to Pseudo-Label. However, instead of training the current model to
match the predictions of the previous model, it encourages the current model to match the
outputs of the previous model directly. Temporal Ensemble also uses an exponential moving
average of the model outputs as the “target”. This is more stable than simply using the
outputs of the model in the last epoch. The problem with Temporal Ensemble is that the
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storage or memory required to store the exponential moving average values grows linearly
with the size of the training data. Mean Teacher [Tarvainen and Valpola (2017)] solves this
problem by keeping an exponential moving average of the models instead of model outputs.
Now the memory requirements do not change with the size of the data. We limit the scope
of this paper to self-training based methods such as Pseudo-Label and Mean Teacher. We
leave the experimentation with other types of semi-supervised learning to future research.

Oliver et al. (2018) evaluated a few algorithms mentioned above in fair and realistic
settings [Oliver et al. (2018)]. The implementations of all the algorithms evaluated used
the same architectures, data augmentations, and optimization methods. They showed that
the supervised baselines used in some of the previous works were too weak. In their imple-
mentation, the gap between semi-supervised training and the supervised baseline was much
smaller. They also studied the effect of distribution mismatch between the labelled data and
unlabelled data. They found that adding unlabelled data from the novel classes can hurt
the performance. This is in agreement with our experimental results. While Oliver et al.
(2018) only tested the effect of novel classes on CIFAR-10, we also conducted experiments
on MNIST and Fashion-MNIST. In addition to demonstrating the negative effect of novel
classes, we also propose the first novel solution for reducing this effect.

3. Background

We use Pseudo-Label and Mean Teacher as two example algorithms in our experiments to
investigate the effect of novel classes in semi-supervised learning for neural networks. In
this section, we describe how both Pseudo-Label and Mean Teacher work.

3.1. Pseudo-Label

Pseudo-Label is a self-training based semi-supervised learning method [Lee (2013)]. Pseudo-
labels are defined as predictions made by the current model for unlabeled data. The Pseudo-
Label method treats these pseudo-labels as true labels for the unlabelled data during train-
ing. Pseudo-labels are updated after each epoch. So the training process is similar to that
of supervised training, except that pseudo-labels are used for the unlabelled data instead
of true labels. Cross-entropy loss is usually used for classification problems in supervised
learning. Let us define cross-entropy loss as

H(y, f) = −
C∑
c=1

yc log fc (1)

where y is the class label encoded in one-hot encoding, f is the model output and C is the
number of classes. Then the loss function for Pseudo-Label is defined as

L =
1

m

m∑
i=1

H(yi, fi) + a(t)
1

m′

m′∑
j=1

H(y′j , fj) (2)

where m is the number of labelled examples and m′ is the number of unlabelled examples.
The class label for the ith labelled example is denoted by yi while y′j denotes the pseudo-label
for the jth unlabelled example. Model outputs for the labelled and unlabelled examples
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are denoted by fi and fj respectively. The first term in Equation 2 corresponds to the
cross-entropy loss for the labelled data, and the second term is the cross-entropy loss for
the unlabelled data. The importance of the loss related to unlabelled data is controlled by
a hyperparameter a(t). Intuitively speaking, the second term of the loss function tries to
reduce the difference between the predictions of the current model and that of the model in
the previous epoch on unlabelled data. The scheduling of the hyperparameter a(t) is very
important when applying Pseudo-Label. If a(t) is set too high in the beginning, the model
will fail to learn because the model is likely to be very bad at prediction initially. We use
a scheduling function to schedule a(t) as defined in Lee (2013).

a(t) =


0 if t < T1
t−T1
T2−T1

a if T1 ≤ t < T2

a if T2 ≤ t

where a, T1 and T2 are set by users, and t is the current training epoch. So a(t) is initially
set to be 0, and gradually increased after each epoch before being set to be the user selected
a for the remaining epochs. Lee (2013) showed that Pseudo-Label has an effect of entropy
regularization on MNIST dataset, which provides an explanation for the success of Pseudo-
Label.

3.2. Mean Teacher

Mean Teacher is also a self-training based semi-supervised method. However, instead of
trying to reduce the difference in predictions between the current model and the previous
model, Mean Teacher attempts to reduce the difference in model outputs. Furthermore,
Mean Teacher keeps an exponential moving average (EMA) of the model that is considered
as the teacher model. Mean Teacher then tries to reduce the difference between the student
model (current model) and the teacher model. The rationale for using a EMA model as
the teacher model is that the EMA model provides more stable “target” outputs. The loss
function of Mean Teacher is defined as

L =
1

m

m∑
i=1

H(yi, fi) + a(t)
1

2(m+m′)

m+m′∑
j=1

(fj − f ′j)2 (3)

where f is the output of the student model, and f ′ is the output of the teacher model
(the exponential moving average of the student model). The first term in the loss function
is the cross-entropy loss of the labelled data. The second term is the mean squared error
(MSE) that measures the distance between the outputs of the student model and the teacher
model. Again, a hyperparameter a(t) is used to balance the two losses. Mean Teacher uses
a Gaussian ramp-up function to schedule hyperparameter a(t) as defined in Tarvainen and
Valpola (2017) and Laine and Aila (2017). It is defined as follows.

a(t) =

{
a ∗ exp[−5(1− t

T )2] if t ≤ T
a if t > T
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where t is the current epoch, T is the ramp-up period chosen by user, and a is the base
parameter also set by user. We applied the same ramp-up function in our implementation
of Mean Teacher. Apart from a, Mean Teacher introduced another hyperparameter, the
EMA decay rate η, that controls the coefficient λ in EMA.

λ(s) = min(1− 1

s+ 1
, η)

where s is the training step (number of weight updates) and η is chosen by user. λ(s)
controls the importance of the EMA model relative to the current model when updating
the teacher model. Note that in Mean Teacher, the teacher model is updated for each
training step instead of each epoch. The above function indicates that we use the true
average of the models learned so far as the teacher model in the beginning, before we start
using the EMA model.

4. Distance Based Weighting Framework

As described in Section 3, Pseudo-Label and Mean Teacher attempt to train the current
model (student model) to match the predictions (outputs) of the model in the last epoch
(teacher model) for unlabelled data. The existence of novel classes in the unlabelled data
can potentially push the decision boundary away from the one learned from using clean
unlabelled data. The experimental results in Section 5.1 suggest that the presence of novel
classes can hurt the performance of the algorithms. In this section, we propose a distance
based weighting framework and our implementation of it to reduce the negative effect of
novel classes.

We attempt to reduce the negative effect of novel classes by assigning individual weights
to unlabelled data. The intuition is very simple, if we can lower the weights of the novel
examples in the training loss, these novel examples will have less impact on the training.
Our proposed framework works as follows.

1. Compute the distance dj for each unlabelled data point to the known classes.

2. Apply a function g(dj) to transform distance dj into weight wj .

3. Assign weight wj to each unlabelled data point in the loss function.

The specific implementation of this framework depends on the definitions of distance dj
and transformation function g(dj). The distance to the known classes should be higher for
an example from the novel classes. The transformation function should transform high-
distance values into low-weight values, and ideally be bounded to a certain range. Next, we
describe our implementation of this framework.

4.1. 1-Nearest-Neighbour Based Weighting

We define the distance dj as the Euclidean distance between an unlabelled example and
its closest neighbour in the labelled training data. Hence, we essentially run a 1-Nearest-
Neighbour (1NN) algorithm with the labelled data being the training set, and compute the
1NN distance dj for each unlabelled example. Note that we basically have n clusters, where
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Table 1: Architecture A. The architecture used for MNIST and Fashion-MNIST.

Layer Parameters

Input 28 × 28 grayscale images
Convolutional 20 filters, 5 × 5, valid padding, relu
Pooling Maxpool 2 × 2
Convolutional 50 filters, 5 × 5, valid padding, relu
Pooling Maxpool 2 × 2
Dense 800 → 500, relu
Softmax 500 → 5

n is the number of labelled examples in the training set. The centroid for each cluster is
one of the labelled examples. We then need to define a function g(dj) to transform all the
distances into weights.

A naive way to transform distance into a weight can be defined as follows.

g(dj) = 1− scale(dj)

where scale normalizes dj to the range [0, 1] within its cluster. This transformation is
unlikely to work well. Because it always assigns 0 to the unlabelled example that is furthest
away from its centroid, regardless of the value of the distance. However, it is possible that
every unlabelled example is very close to the centroid (labelled example) and belongs to the
same class, hence all of the unlabelled examples should be assigned large weights. We use
the following transformation instead:

g(dj) =
1

exp(βdj)
(4)

where β is a hyperparameter that controls how quickly the weight approaches zero as the
distance increases. Using this transformation we can avoid the problem described above.

Lastly, we apply the computed weights to the loss function. For instance, the loss
function for Pseudo-Label now becomes

L =
1

m

m∑
i=1

H(yi, fi) + a(t)
1

m′

m′∑
j=1

wjH(y′j , fj) (5)

where wj is weight for the jth unlabelled example. And the loss function for Mean-Teacher
is now

L =
1

m

m∑
i=1

H(yi, fi) + a(t)
1

2(m+m′)

m+m′∑
j=1

wj(fj − f ′j)2 (6)

where wj is the weight for the jth example. The experiments designed to evaluate the
proposed method are explained in Section 5.2, and the experimental results are analysed in
Section 6.2.
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5. Experiments

In this section, we describe the experiments that investigate the effect of novel classes
on Pseudo-Label and Mean Teacher, and test the effectiveness of the proposed method
in reducing the effect of novel classes. All the experiments were implemented in Pytorch
[Paszke et al. (2017)]1. The experimental results are discussed in Section 6.

Table 2: Architecture B. The architecture used for CIFAR-10.

Layer Parameters

Input 32 × 32 RGB images
Convolutional 32 filters, 3 × 3, same padding, relu
Convolutional 32 filters, 3 × 3, valid padding, relu
Pooling Maxpool 2 × 2
Convolutional 64 filters, 3 × 3, same padding, relu
Convolutional 64 filters, 3 × 3, valid padding, relu
Pooling Maxpool 2 × 2
Dense 2304 → 512, relu
Softmax 512 → 5

5.1. Experiments to Demonstrate the Effect of Novel Classes

We conducted experiments on three popular image-recognition datasets: MNIST [LeCun
et al. (1998)], Fashion-MNIST [Xiao et al. (2017)] and CIFAR-10 [Krizhevsky and Hinton
(2009)]. The characteristics of these datasets and the preprocessing are explained below.

• MNIST is a 28 × 28 grayscale image dataset of handwritten digits. The dataset
contains 60,000 training images and 10,000 test images. There are 10 classes in total
(0 to 9). The classes are distributed evenly. In our experiments, a validation set
containing 5,000 images is created from the training images using stratified sampling.
This leaves 55,000 images for training. We treat classes {5, 6, 7, 8, 9} as novel classes.
This means the labelled training set, validation set and test set only contain classes
{0, 1, 2, 3, 4}, while the unlabelled data includes all classes. The validation set and
test set are around half of their original sizes after taking out the novel classes. The
number of labelled examples in the labelled training set is set to 50.

• Fashion-MNIST follows the same format and structure as MNIST, but it contains
fashion items instead of handwritten digits. The ten classes are t-shirt/top, trousers,
pullover, dress, coat, sandal, shirt, sneaker, bag and ankle boot. Again, we created
a validation set containing 5,000 examples (including novel classes) from the 60,000
training images. Classes {sandal, shirt, sneaker, bag, ankle boot} are considered as
novel classes. The number of labelled examples in the labelled training set is set to
100.

1. The source code can be found on GitHub: https://github.com/superRookie007/novel-classes-ssl. Sup-
plementary materials and additional experimental results are also published there.
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• CIFAR-10 is a 32 × 32 RBG image dataset. There are 50,000 training images and
10,000 test images. There are 10 balanced classes: airplane, automobile, bird, cat,
deer, dog, frog, horse, ship and truck. We split the training images into a validation
set of 5,000 examples (including novel classes) and a training set of 45,000 examples.
Classes {dog, frog, horse, ship, truck} are treated as novel classes. The labelled
training set has 3000 examples.

An unlabelled dataset is pure if it does not contain any example from the novel classes. A
dirty unlabelled dataset includes all the examples from the novel classes. For each dataset,
we experimented with three training scenarios as follows.

• Exclude: supervised training without unlabelled data.

• Include pure: semi-supervised training with pure unlabelled data.

• Include dirty : semi-supervised training with dirty unlabelled data.

Each experiment was run 50 times for MNIST and Fashion-MNIST, and 20 times for CIFAR-
10. The seed for splitting the training data into labelled and unlabelled data was different
in each run. The seeds were kept the same for each of the three training scenarios.

Both Pseudo-Label and Mean Teacher are model or architecture agnostic. This means
that we can use whatever architecture we want with these algorithms without changing
the rest of the code. We used Architecture A defined in Table 1 for MNIST and Fashion-
MNIST. Architecture B defined in Table 2 is used for CIFAR-10. We use the standard
mini-batch stochastic gradient descent (SGD) to train our models. We use a batch size of
100 for all our experiments. The following learning rate scheduler is used:

lr(t) = lr × γt

where lr is the base learning rate set by the user, t is the current epoch and γ is the
multiplicative factor of the learning rate decay process. All hyperparameters were set using
validation sets. The specific hyperparameters used in each experiment can be found in the
supplementary materials. Experimental results are discussed in Section 6.1. All results were
obtained from the test sets.

Note that the architectures used in this paper are different from the ones used in the
original papers. We used simple architectures to limit the computing power and running
time for our experiments. It is possible that different architectures can potentially change
how novel classes affect these algorithms. However, this is a different research question
and we will leave it to future research. Lee (2013) applied unsupervised pretraining in ad-
dition to the Pseudo-Label algorithm in order to improve the performance further. Data
augmentation was applied in the original implementation of Mean Teacher [Tarvainen and
Valpola (2017)]. We do not apply any data augmentation or unsupervised pretraining in
our implementation, because our goal is not to achieve state-of-the-art results on bench-
mark datasets. The additional complexity only makes it more difficult to interpret the
experimental results. We only intend to test if novel classes have any negative effect on the
performance of semi-supervised algorithms, while holding other factors constant.
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5.2. Evaluation of the Proposed Method

We evaluated the proposed method on both Pseudo-Label and Mean Teacher on MNIST
[LeCun et al. (1998)], Fashion-MNIST [Xiao et al. (2017)] and CIFAR-10 [Krizhevsky and
Hinton (2009)]. The data processing is exactly the same as described in Section 5.1. The
only difference is that we have to compute the weight for each unlabelled data point using
the proposed method. And we now have an additional hyperparameter β to tune.

Note that when we apply the 1-Nearest-Neighbour algorithm, we can use raw images or
low-dimensional vector representations of the images. Since distance based methods suffer
from the curse of dimensionality, we postulate that we can get better performance if dimen-
sionality reduction is applied beforehand. We tested using Variational Autoencoder (VAE)
[Kingma and Welling (2014)] to learn low-dimensional representations from the images, and
then applied the 1-Nearest-Neighbour to these representations. For MNIST and Fashion-
MNIST, we used a simple multilayer perceptron (MLP) based encoder and decoder as
introduced in Kingma and Welling (2014). The dimensionality of the hidden representation
was set to 10. For CIFAR-10, we used convolutional encoder and transposed convolution for
up-sampling in the decoder. The dimensionality of the vector representation for CIFAR-10
was set to 20.

To test the effectiveness of the proposed method, we apply the computed weights
in Pseudo-Label and Mean Teacher, and check if this improves the performance on in-
clude dirty where novel classes are present in unlabelled data. We add two additional
training scenarios to our experiments as follows.

• With weights raw : weights are computed using raw images, and model is trained with
dirty unlabelled data.

• With weights vae: weights are computed using low-dimensional representations
learned using VAE, and model is trained with dirty unlabelled data.

Both with weights raw and with weights vae were trained using the same dirty unlabelled
data on which include dirty was trained. Similar to the experiments in Section 5.1, we ran
each experiment 50 times for MNIST and Fashion-MNIST, and 20 times for CIFAR-10. The
data seed was different for each run. We used the same set of seeds across all experiments.
Again, all hyperparameters were set using validation sets, the hyperparameters used in each
experiment can be found in the supplementary materials. Experimental results are reported
in Section 6.2. All results reported were obtained from the test sets.

6. Experimental Results

In this section, we discuss the experimental results obtained from the experiments described
in the last section. Test accuracy results for Pseudo-Label and Mean Teacher are reported
in Tables 3 and 4 respectively. Since the differences in test accuracies across different
settings are small, we provide more detailed analysis of the results using the Friedman test
and Nemenyi post-hoc test in the next two subsections. Demšar (2006) provides a great
discussion on Friedman and Nemenyi tests along with other statistical tests for comparing
classifiers.
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Table 3: All the experimental results in the paper for Pseudo-Label. It shows the mean
and standard deviation of test accuracy for each dataset and experiment setting.

MNIST Fashion-MNIST CIFAR-10

exclude 93.63% ±1.51% 77.15% ±1.56% 63.85% ±1.20%

include pure 94.52% ±1.71% 77.02% ±1.99% 65.37% ±1.19%

include dirty 92.15% ±2.27% 76.14% ±2.02% 64.45% ±1.11%

with weights raw 92.74% ±2.11% 77.01% ±1.55% 65.14% ±1.01%

with weights vae 93.79% ±1.39% 76.86% ±1.76% 65.88% ±1.22%

Table 4: All the experimental results in the paper for Mean Teacher. It shows the mean
and standard deviation of test accuracy for each dataset and experiment setting.

MNIST Fashion-MNIST CIFAR-10

exclude 93.63% ±1.51% 77.15% ±1.56% 63.85% ±1.20%

include pure 94.06% ±1.68% 78.58% ±1.93% 66.56% ±0.96%

include dirty 92.97% ±2.03% 76.95% ±2.04% 64.94% ±1.32%

with weights raw 93.11% ±1.99% 77.19% ±1.83% 66.04% ±1.11%

with weights vae 93.42% ±1.46% 77.14% ±1.85% 66.24% ±0.84%

6.1. Effect of Novel Classes

To find out if novel classes really affect the performance, we used the Friedman test
(p = 0.05) to test if the test accuracies under the three different settings (include pure,
include dirty and exclude) are statistically different for each dataset. The details of differ-
ent settings can be found in Section 5. The test suggested that the distributions of test
accuracies are indeed different. Then we performed the Nemenyi post-hoc test for pairwise
comparisons. We used 0.05 as the confidence level. The results for the Nemenyi tests are
shown as CD graphs in Figure 1 for Pseudo-Label and Figure 2 for Mean Teacher. The CD
graph shows the average ranking of each setting. The lower the ranking the better. The
difference in average ranking is statistically significant if there is no bold line connecting the
two settings. The mean and standard deviation of test accuracy are shown in parenthesis.

Figure 1 shows that include dirty is statistically significantly worse than exclude and
include pure on both MNIST and Fashion-MNIST for Pseduo-Label. For CIFAR-10, there
is no significant difference between include dirty and exclude, but include dirty is still sig-
nificantly worse than include pure. The results for Mean Teacher are shown in Figure 2.
For all three datasets, include dirty is not significantly different from exclude, but it is
significantly worse than include pure.

Overall, we can clearly see that novel classes in unlabelled data have a negative effect
on the performance of Pseudo-Label and Mean Teacher. When novel classes are present
in the unlabelled data, the performance of these algorithms is significantly lower than that
trained using clean unlabelled data without novel classes.
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1 2 3

include_pure(94.52%, 1.71%)
exclude(93.63%, 1.51%)

include_dirty(92.15%, 2.27%)

CD(0.47)

(a) Pseudo-Label on MNIST

1 2 3

include_pure(77.02%, 1.99%)
exclude(77.15%, 1.56%)

include_dirty(76.14%, 2.02%)

CD(0.47)

(b) Pseudo-Label on Fashion-MNIST

1 2 3

include_pure(65.37%, 1.19%)
exclude(63.85%, 1.20%)

include_dirty(64.45%, 1.11%)

CD(0.74)

(c) Pseudo-Label on CIFAR-10

Figure 1: Comparison of supervised training without unlabelled data, Pseudo-Label with
clean unlabelled data and Pseudo-Label with dirty unlabelled data on MNIST
(a), Fashion-MNIST(b) and CIFAR-10 (c).

6.2. Effectiveness of 1NN Based Weighting

We have shown that the presence of novel classes lower the performance of Pseudo-Label
and Mean Teacher, we now test if our proposed weighting method can reduce this negative
effect. Figure 3 shows the Nemenyi test results for Pseudo-Label. For all three datasets,
with weights vae consistently outperformed include dirty. This means that when the low-
dimensional representations are used for weight computation, our proposed method im-
proved the performance of Pseudo-Label when novel classes are present. When raw images
were used to compute the weights, our proposed method did improve the average ranking,
but the improvement is not statistically significant for all datasets. There is no significant
difference between with weights vae and include pure for all three datasets. This suggests
that with our proposed weighting method, the performance of Pseudo-Label does not suffer
significantly when novel classes are present in unlabelled data.

The experimental results for Mean Teacher are shown in Figure 4. For MNIST,
with weights vae is not significantly better than include dirty, but is statistically the
same as include pure. Include pure is significantly better than all the other three set-
tings on Fashion-MNIST. Include dirty performed significantly worse than the other set-
tings on CIFAR-10 and include pure is statistically the same as with weights vae and
with weights raw.
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1 2 3

include_pure(94.06%, 1.68%)
exclude(93.63%, 1.51%)

include_dirty(92.97%, 2.03%)

CD(0.47)

(a) Mean Teacher on MNIST

1 2 3

include_pure(78.58%, 1.93%)
exclude(77.15%, 1.56%)

include_dirty(76.95%, 2.04%)

CD(0.47)

(b) Mean Teacher on Fashion-MNIST

1 2 3

include_pure(66.56%, 0.96%)
include_dirty(64.94%, 1.32%)

exclude(63.85%, 1.20%)

CD(0.74)

(c) Mean Teacher on CIFAR-10

Figure 2: Comparison of supervised training without unlabelled data, Mean Teacher with
clean unlabelled data and Mean Teacher with dirty unlabelled data on MNIST
(a), Fashion-MNIST(b) and CIFAR-10 (c).

Overall, when our proposed method is applied to Pseudo-Label and Mean Teacher, the
performance does not suffer as much when novel classes are present. There is actually
no significant difference in performance regardless of the presence of novel classes except
for one out of the 6 cases, when our proposed method is used. The advantage of using
low-dimensional representations over raw images to compute the weights is not statistically
significant, according to our experimental results.

7. Discussion

The experimental results in Section 6.1 suggest that novel classes in unlabelled data can
hurt the performance of semi-supervised learning algorithms. This is in agreement with the
findings by Oliver et al. (2018). They did not re-tune the hyperparameters for experiments
that include novel classes, however, we did tune the a hyperparameter while holding other
parameters unchanged. The hyperparameter a controls the importance of the regulating
term in the loss function. It is essentially a universal weight applied to all the unlabelled
data. If we lower a, apart from reducing the negative effect of novel classes, it will also
lower the positive effect of the rest of the unlabelled data. Figure 5 shows the comparison
of Mean Teacher models with different a values (holding other hyperparameters constant)
trained on CIFAR-10 with novel classes. The a value of 50 was used in our experiments
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1 2 3 4

include_pure(94.52%, 1.71%)
with_weights_vae(93.79%, 1.39%) with_weights_raw(92.74%, 2.11%)

include_dirty(92.15%, 2.27%)

CD(0.66)

(a) Pseudo-Label on MNIST

1 2 3 4

include_pure(77.02%, 1.99%)
with_weights_vae(76.86%, 1.76%) with_weights_raw(77.01%, 1.55%)

include_dirty(76.14%, 2.02%)

CD(0.66)

(b) Pseudo-Label on Fashion-MNIST

1 2 3 4

with_weights_vae(65.88%, 1.22%)
with_weights_raw(65.14%, 1.01%) include_pure(65.37%, 1.19%)

include_dirty(64.45%, 1.11%)

CD(1.05)

(c) Pseudo-Label on CIFAR-10

Figure 3: Comparison of Pseudo-Label models trained in the following conditions: dirty un-
labelled data without weights, dirty unlabelled data with weights computed from
raw images, dirty unlabelled data with weights computed from low-dimensional
representations and clean unlabelled data without weights.

in Section 6.1. Lowering the hyperparameter a did not improve the performance of Mean
Teacher. Hence, we need to assign individual weights to each unlabelled example to keep
the benefit of the clean unlabelled data and at the same time weaken the impact of the
novel classes.

According to the experimental results in Section 6.2, the advantage provided by learning
low-dimensional representations of images when computing weights over using raw images is
not significant. It could be due to the hyperparameter tuning or the choice of architectures.
The advantage can potentially be bigger when more advanced architectures are used in
training the VAE. It would be interesting to explore other unsupervised learning algorithms
to learn the latent representations. A major downside of using raw images to compute
weights and distances is the running time due to the big dimensionality of raw images. This
is an obstacle if we have to compute the weights frequently. Learning latent representation
by training an autoencoder takes time. However, this training time can be amortized since
we can reuse the encoder every time we compute weights. We only tested the proposed
method on Pseudo-Label and Mean Teacher, however, it can also be applied to other semi-
supervised learning algorithms.
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1 2 3 4

include_pure(94.06%, 1.68%)
with_weights_vae(93.42%, 1.46%) with_weights_raw(93.11%, 1.99%)

include_dirty(92.97%, 2.03%)

CD(0.66)

(a) Mean Teacher on MNIST

1 2 3 4

include_pure(78.58%, 1.93%)
with_weights_vae(77.14%, 1.85%) with_weights_raw(77.19%, 1.83%)

include_dirty(76.95%, 2.04%)

CD(0.66)

(b) Mean Teacher on Fashion-MNIST

1 2 3 4

include_pure(66.56%, 0.96%)
with_weights_vae(66.24%, 0.84%) with_weights_raw(66.04%, 1.11%)

include_dirty(64.94%, 1.32%)

CD(1.05)

(c) Mean Teacher on CIFAR-10

Figure 4: Comparison of Mean Teacher models trained in the following conditions: dirty un-
labelled data without weights, dirty unlabelled data with weights computed from
raw images, dirty unlabelled data with weights computed from low-dimensional
representations and clean unlabelled data without weights.

1 2 3 4

a=50 (64.94%, 1.32%)
a=0.5 (65.04%, 1.12%) a=10 (64.82%, 1.35%)

a=1 (64.83%, 1.14%)

CD(1.05)

Figure 5: Mean Teacher models with different a values were trained on CIFAR-10 with
dirty unlabelled data. We used a value of 50 in our experiments in Section 5.1.

Lastly, we introduced a hyperparameter β in our proposed method. A validation set is
needed to tune β along with other hyperparameters in semi-supervised algorithms. In order
to be confident that the tuned hyperparameters will work well on future unseen data, the
validation set has to be sufficiently large. We only use semi-supervised algorithms when
labelled data is scarce. It is possible that we will have larger gain in performance by using
most of the labelled data as training data instead of validation set. However, in most of
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the literature on semi-supervised learning the validation set used is usually larger than the
labelled training set. This problem has been mentioned in Oliver et al. (2018).

8. Conclusion

Even though it is a common practice to assume unlabelled data has the same distribution
as the labelled data in semi-supervised learning literature, this assumption is not always
true. In this work, we empirically showed that novel classes in unlabelled data can hurt
the performance of semi-supervised learning algorithms. We then proposed a 1-nearest-
neighbour based method to assign weights to unlabelled data, in order to reduce the negative
effect of novel classes. The experimental results show that when our proposed method is
applied to Pseudo-Label and Mean Teacher, the decrease in performance due to the presence
of novel classes becomes statistically insignificant. This suggests that assigning individual
weights to unlabelled data is a promising approach to dealing with novel classes in semi-
supervised learning.

An important work in the future is to investigate when novel classes can have a larger
impact on the performance of semi-supervised learning algorithms. Synthetic data can be
very useful for this type of work, because we can control the properties of the data. Another
interesting research question is if the representation capacity of a model can affect the
magnitude of the effect of novel classes. Finally, we will explore applying outlier detection
and novelty detection techniques to deal with novel classes in unlabelled data.
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