
Proceedings of Machine Learning Research 101:1188–1203, 2019 ACML 2019

From Implicit to Explicit Feedback: A deep neural network
for modeling the sequential behavior of online users

Anh Phan Tuan tuananhlfc@gmail.com
Hanoi University of Science and Technology, No. 1, Dai Co Viet road, Hanoi, Vietnam

Nhat Nguyen Trong trongnhat2312@gmail.com
Duong Bui Trong duongbuitrong@admicro.vn
VC Corporation

Linh Ngo Van∗ linhnv@soict.hust.edu.vn

Hanoi University of Science and Technology, No. 1, Dai Co Viet road, Hanoi, Vietnam

Khoat Than khoattq@soict.hust.edu.vn

Hanoi University of Science and Technology, No. 1, Dai Co Viet road, Hanoi, Vietnam

VinAI Research, Hanoi, Vietnam

Editors: Wee Sun Lee and Taiji Suzuki

Abstract

We demonstrate the advantages of taking into account multiple types of behavior in rec-
ommendation systems. Intuitively, each user has to do some implicit actions (e.g., click)
before making an explicit decision (e.g., purchase). Previous works showed that implicit
and explicit feedback has distinct properties to make a useful recommendation. However,
these works exploit implicit and explicit behavior separately and therefore ignore the se-
mantic of interaction between users and items. In this paper, we propose a novel model
namely Implicit to Explicit (ITE) which directly models the order of user actions. Fur-
thermore, we present an extended version of ITE, namely Implicit to Explicit with Side
information (ITE-Si), which incorporates side information to enrich the representations of
users and items. The experimental results show that both ITE and ITE-Si outperform ex-
isting recommendation systems and also demonstrate the effectiveness of side information
in two large scale datasets.

Keywords: Recommendation systems, Implicit Feedback, Explicit Feedback, Deep Learn-
ing, Collaborative Filtering

1. Introduction

Most of the recommendation systems utilize data of user behavior to analyze the preferences
of users and match them with suitable items. User behavior can be collected in various
forms: like, view, click, purchase, rate, etc. Traditional collaborative filtering (CF) methods
usually classify these behavior into two groups (implicit feedback (Hu et al., 2008; Koren
et al., 2009) and explicit feedback (Mnih and Salakhutdinov, 2008; Zigoris and Zhang, 2006))
and manipulate them to find out the relationship between users and items. Previously,
most existing works employ one type of behavior to suggest items and therefore ignore the
relationship between multiple types of behavior.
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Recently, several studies (Liu et al., 2010; Koren, 2011; Shi et al., 2017; Gao et al., 2019)
found out that combining both explicit and implicit behavior improves recommendation
effectiveness since these two types of data have different properties. Explicit behavior (e.g.,
rating, purchasing, liking) are credible (showing the level of interest) but scarce, while
implicit behavior (e.g., view, click) contain a vast of data but do not show clearly the
matching between users and items. However, the majority of recommendation systems
can not comprehend the sequential relation from implicit to explicit behavior. Multi-task
Matrix Factorization (MTMF) (Shi et al., 2017) explores the view, want, and rate behavior
separately before composing to predict the rating score for a pair of (user, item). Neural
Multi-Task Recommendation (NMTR) (Gao et al., 2019) models directly multiple types of
behavior as multi-task learning, where each task learns a specific type of interaction. NTMR
attempts to decompose the sequential relation by connecting all the predictive output of
interaction as a cascading pattern. However, aggregating multi-behavior data via connecting
predictive output (a scalar) is too simple, thus cannot capture the more complex semantic
association between implicit and explicit interactions. Furthermore, the sequence of actions
in real-world has a strong connection and follows the rule that user preferences influence
implicit behavior, and implicit behavior affects the explicit. Therefore, the sequential nature
from implicit and explicit behavior should be modeled in two consecutive phases in a single
task instead of multi-tasks.

Side information is a valuable source to support in learning the semantic of latent user
preferences and item features. Hoang et al. (2019); Zhang et al. (2010) made use of the
category (tag) information of items to enhance the representation of each user and therefore
improve predictive accuracy. Le et al. (2018); Wang and Blei (2011) proposed hybrid meth-
ods employing item description to handle the cold start problem. Lillegraven and Wolden
(2010); Nadimi-Shahraki and Bahadorpour (2014) showed some popular items to new users
and asked them to rate. An abundance of further researches showed that utilizing such side
information not only improves performance but also helps the model avoid the cold start
problem.

In this paper, we propose two novel models for modeling the sequential behavior of users,
namely Implicit to Explicit (ITE) and ITE with Side information (ITE-Si). The architec-
tures of ITE and ITE-Si are very similar, except that ITE-Si incorporates side information
encoded in the representations of users and items. In summary, the contributions of our
work are as follows:

• We propose ITE which models the sequential behavior of users. Briefly, ITE is a
neural network which can be decomposed as two feed-forward modules to learn implicit
interactions between users and items, and the last hidden layer of the implicit module
will be fed into the first layer of the explicit module. Therefore, this architecture helps
discover the complex relationship between implicit and explicit behavior.

• ITE-Si can employ various side information to enrich the representations of users and
items. Such extra information provides credible knowledge about users/items and
thus helps avoid the cold start problem.

We conduct extensive experiments on two large scale datasets. The experiments show
that our models outperform existing recommendation models even when ITE does not hold
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any additional data. Furthermore, the model attached with side information performs better
than original ITE, which indicates that external data is a useful resource.

The rest of the paper is organized as follows. Section 2 briefly reviews some related work
and background. Section 3 presents the details of ITE model and discusses several benefits.
In Section 4, we conduct extensive experiments and describe the evaluation results of the
proposed models. Finally, we provide the conclusion in Section 5.

2. Related work and background

2.1. Related work

ITE is a Deep Learning based model exploiting the sequence of user actions in online
recommender systems. In what follows, we investigate several existing works related to our
approach.

In recent years, most of the existing approaches for recommendation systems are utilizing
deep neural networks to extract the latent features representing for users’ interest and
item properties. He et al. (2017) proposed Neural Matrix Factorization (NeuMF) which
approximates each user-item interaction by combining the ideas of MultiLayer Perceptron
(MLP) and Matrix Factorization (MF) model. With the same intuition, Cheng et al. (2016)
presented Wide & Deep Learning model which combines the benefits of memorization and
generalization via wide and deep neural networks. These Deep Learning based models
gained lots of promising results over traditional collaborative filtering methods and provide
a novel approach for recommendation systems.

Combining multiple types of behavior, i.e., implicit and explicit data, has been paid
attention by several researches recently (Singh and Gordon, 2008; Krohn-Grimberghe et al.,
2012; Zhao et al., 2015). However, these methods exploit implicit and explicit feedback
as separate behavior and therefore ignore the ordinal relations between different types of
behavior. On the other hand, (Liu et al., 2010; Gao et al., 2019; Shi et al., 2017) attempted to
find the latent relationship between multiple behavior by modeling directly such interactions
in the neural network architecture. However, the way that these models associate implicit
and explicit behavior is too simple and therefore it has still open room for improving.

Finally, a large range of researches related to our work is to employ additional data
besides the user-item interaction to avoid cold start problem. (Hoang et al., 2019; Zhang
et al., 2010) utilized item category (tag) to help users find the new (or less popular) yet
interesting objects. Zheng et al. (2017) proposed the Deep Cooperative Neural Networks
(DeepCoNN) utilizing two separate neural networks to exploit reviews written by the user
and the reviews written for the item respectively.

2.2. Background

In this section, we introduce some preliminaries serving as the base knowledge of our model.

2.2.1. Matrix Factorization

Matrix Factorization Koren et al. (2009) is one of the most popular methods in recommen-
dation systems. This model aims to discover the latent factors representing for each user
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and each item. Let pu and qv denote the latent vector of user u and item v respectively,
MF model predicts the rating of user u for item v as the inner product of pu and qv:

ŷij = pTu qv =

K∑
k=1

pukqik (1)

The target of MF model is to estimate those latent vectors. Each latent vector can reveal
some intuition of user preferences or item features.

2.2.2. Neural Matrix Factorization

Neural Matrix Factorization (NeuMF) (He et al., 2017) is an extended version of Matrix
Factorization (Koren et al., 2009) by implementing deep neural network. Since the inner
product of user preferences (pu) and item features (qi) can be considered as a linear function,
MF may not find out complex relation between users and items. In contrast, NeuMF
approximates the relation between user u and item v as a non-linear function by employing
Deep Neural Networks.

Figure 1: The architecture of NeuMF model

Fig. 1 shows the architecture of NeuMF. As can be seen from the Figure, NeuMF
consists of two parts which are GMF (Generalized Matrix Factorization) and MLP (Multi-
Layer Perceptron). GMF is an extended version of Matrix Factorization by implementing
Neural Collaborative Filtering (NCF) framework (He et al., 2017). GMF achieved slightly
better results than MF in several experiments (He et al., 2017). Furthermore, MLP can
learn the relation of users and items as a non-linear function by concatenating and passing
the latent vectors into several hidden layers. By letting GMF and MLP learn embedding
layer separately and then concatenate the last hidden layers, NeuMF combines the strength
of both models and therefore gains promise results over traditional collaborative filtering
methods.
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3. Proposed models

In this section, we propose the two novel models, namely Implicit to Explicit (ITE) and
ITE with Side information (ITE-Si). We first present the details of ITE and ITE-Si and
then discuss several advantages of our methods.

We use the following notations in this paper:

• M, N: the number of users and items respectively

• X = (xui)M×N : data of implicit behavior, where xui indicates that user u has inter-
acted with item i

• Y = (yui)M×N : data of explicit behavior, where yui reveals that user u had an action
showing interest in item i

• u, i: the representations vector of user u and item i respectively

• K: the dimension of the vector representing side information

3.1. Implicit to Explicit (ITE) model

The data used in ITE model includes implicit and explicit behavior. Both explicit and
implicit behavior are in form of binary value. For general purpose, some non binary feedback
can be transformed into binary scale. For example, the rating rui ∈ {0, ..., n} is converted
to explicit data: yui = 1 if rui ≥ k and yui = 0 if rui < k.

Furthermore, we also have to differentiate explicit behavior and implicit behavior re-
garding to our model. In this paper, we define that explicit behavior is the action showing
that a user interests in an item such as purchase, order, add to cart. A user likes an
item before deciding to purchase it. In contrast, implicit behavior is the action showing
that a user wants to know more about an item such as view, click. Intuitively, a user
might glance at lots of items to find the most suitable one. In formulation, the variable
yui ∈ {0, 1} represents explicit interaction between user u and item i, while xui ∈ {0, 1}
expresses the implicit one.

We present the architecture of Implicit to Explicit (ITE) model in Fig. 2. The
input vector of user u and item i are denoted by u = (α1, ..., αS) and i = (β1, ..., βW )
respectively. These representations can be modified to utilize a wide range of user and item
representations depending on the available data, such as one-hot encoding (Koren et al.,
2009; Gao et al., 2019), neighbor-based encoding (Rendle, 2010). In this work, we use
one-hot encoding for representing the inputs.

The input vectors is then fed into a neural network which is represented for the implicit
module of the model. We utilize the NeuMF model (He et al., 2017) for this module due
to the good performance when dealing with implicit data. The last hidden layer of the
implicit module is called Implicit Layer. Let pGu , q

G
i , p

M
u , q

M
i denote the embedding

vectors of user u and item i (G and M denotes for GMF and MLP Layer), φGMF , φMLP

be the vectors of GMF Layer and MLP Layer X shown in Fig. 2. We will formulate the
implicit module in what follows.

The hidden layer of GMF part can be expressed as follows:

φGMF = pGu � qGi (2)

1192



Implicit to Explicit

Figure 2: The architecture of ITE model

where � denotes the pair-wise product. MLP user vector and MLP item vector are fed
into a Multi-Layer Perceptron network including X hidden layers. Particularly, each layer
performs the following computation:

φMLP
(l+1) = f(W(l)φ

MLP
(l) + b(l)) (3)

where l is the layer number, f is the activation function (usually ReLU function). The GMF
layer and MLP Layer X in Fig. 2 are then concatenated to get the Implicit Layer:

φI =

[
φGMF

φMLP
(X)

]
(4)

where φI is the vector denoting implicit layer. From the implicit layer, we can output the
likelihood that u will perform an implicit behavior with item i:

x̂ui = σ(hTI φ
I) (5)

The sequence of behavior will be modeled by passing the Implicit Layer to a Multi-
Layer Perceptron (MLP) network called explicit module. After several hidden layers of
this MLP, we achieve the MLP Layer Y as shown in Fig. 2. Reminding that the vector of
implicit layer is φI . The MLP Layer 1 of explicit module is computed as follows:

φE1 = f(V(0)φ
I + b(0)) (6)

Then, each hidden layer of explicit layer performs the following computation:

φEl+1 = f(V(l)φ(l) + b(l)) (7)
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where V denotes the weight of hidden layer, h is the edge weight of output layer. The last
layer of explicit module is used to compute the likelihood that u will perform a explicit
behavior with item i:

ŷui = σ(hTEφ
E
(Y )) (8)

Note that the outputs of ITE are x̂ui and ŷui representing the predicted outcome of
implicit and explicit behavior respectively. In an interpretable way, ŷui denotes the proba-
bility of user u interacting explicitly with item i given that the implicit behavior happens.
After learning the model, the probability that user u will interact item i is expressed by an
additional variable r̂ui which strengthens the association between x̂ui and ŷui:

r̂ui = x̂uiŷui (9)

3.2. Implicit to Explicit model with Side information (ITE-Si)

Figure 3: The architecture of ITE-Si model

We present the architecture of ITE-Si in Fig. 3. ITE-Si is very similar to ITE except that
we use additionally side information. The data used in ITE-Si includes: implicit behavior,
explicit behavior and side information. Side information often exists as item features, movie
categories, music genres, etc. and can be encoded as a K-dimensional vector.

A worthy noting is that we directly encode this sort of information in the representa-
tions of users and items. In some situation, the one-hot encoding suffers from lacking of
information and it is expected that side information can enrich their representations. Also,
side information is expected to help the model avoid cold start as mentioned in a vast of
previous research (Le et al., 2018; Wang and Blei, 2011).
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Fig. 3 shows that ITE-Si differs from ITE in the bottom input layer. The input layer of
ITE-Si consists of two representations vectors u and i describing user u and item i respec-
tively, where u = concat(u(m), u(a)) and i = concat(i(m), i(a)) (concat means concatenating
multiple vectors).

Here, u(m), i(m) are the same as the u, i (user, item) vector in ITE model, while u(a), i(a)

are the vectors constructed from item category data and not required in ITE but can
improve performance if they are available. More specifically, let T be the dimension of
side information, i(a) = (θ1, θ2, ..., θT ) denotes the category information of item i. Then,
u(a) = (ϕ1, ϕ2, ..., ϕT ) = ( ε1ε ,

ε2
ε , ...,

εT
ε ), εj denotes the number of items interacted by user u

and belongs jth category, ε = ε1 + ε2 + ...+ εT and ϕj =
εj
ε .

The other components of ITE-Si are the same as ITE. In summary, we can formulate
the implicit module and explicit module as follows:

φGMF = pGu � qGi ,

φMLP = f(WT
X(f(...f(WT

2

[
pMu
qMi

]
+ b2)...)) + bX),

φI =

[
φGMF

φMLP

]
,

(10)

where φI is the vector denoting implicit layer. The explicit module is computed as follows:

x̂ui = σ(hTI φ
I),

φE = f(VT
Y (f(...f(VT

2 φ
E + d2)...)) + dY ),

ŷui = σ(hTEφ
E)

(11)

3.3. Learning the models

The objective function for both ITE and ITE-Si can be defined as follows:

L = ηLI(x̂, x) + LE(ŷ, y) + λR(u, i) (12)

where LI , LE represent the objective function of implicit module and explicit module re-
spectively, η is a hyperparameter to balance the effect of implicit behavior on explicit term.
R(u, i) is the regularization to avoid overfitting.

We assume that each observable behavior would take 0 or 1 as their values. For explicit
data such as the ratings in n-star scale, we convert to implicit data by marking entry as 1
or 0 indicating the user has rated the item. Define:

LI =
∑

(u,i)∈X+∪X−

xui log x̂ui + (1− xui) log(1− x̂ui)

LE =
∑

(u,i)∈Y+∪Y−

yui log ŷui + (1− yui) log(1− ŷui)
(13)

where X+, Y+ denotes the set of observed interactions in behavior matrices X, Y respec-
tively. Let X− denote negative instances sampled from the unobserved implicit behaviors
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in X, and Y− be negative instances from the implicit matrix Y . The regularization R(u, i)
is computed as:

R(u, i) =
∑
u

||pu||22 +
∑
i

||qi||22 (14)

Both ITE and ITE-Si use Equation 12 to train the model. For optimizing this objective
function, we adopt the Adam method (Kingma and Ba, 2014).

3.4. Benefits of ITE model

In this section, we introduce the advantages of ITE and ITE-Si models.
First, ITE utilizes the idea of combining multiple types of behavior as a sequence of

actions and even improves the effectiveness of NMTR (Gao et al., 2019), the sole method
attempting to model the order of user actions, by extracting a more complex relation be-
tween users and items. More specifically, NMTR aggregates explicit and implicit behavior
by connecting multiple predictive outputs (each output represents an interaction) through
a scalar which is too simple and thus can not exploit the complicated relation between
multiple behavior. In fact, an implicit behavior can affect to the explicit one in many ways.
For example, if a user views and then clicks on a banner, it is likely that the user interests
in that product. However, if a user had seen an ad several times but still have not yet
clicked then we can infer that the user does not like the product. From this point of view,
ITE integrates the implicit behavior with the explicit one via a Deep Neural Network which
can discover more complex relationship.

Second, ITE-Si improves the performance of ITE by employing side information. Partic-
ularly, additional data such as item description and item category employed in ITE model
might provide an initial knowledge about users who have little interaction with items. ITE-
Si includes historical activities, item category and item description and thus can have a
little knowledge to make a recommendation for new users. Besides performance, ITE-Si is
expected to avoid the cold start problem thanks to the enriched the representations of users
and items. The benefits of employing additional data to avoid the cold start are reported
in vast previous work (Zhang et al., 2010; Zheng et al., 2017; Vasile et al., 2016). We will
analyze the advantages of ITE-Si in Section 5.

Finally, since the deep learning architecture of ITE or ITE-Si is flexible, we can easily
extend our models to exploit more additional data such as contextual information. In some
recommendation problems, users may see a list of suggested items in a target website and the
information included in that web is called contextual information. This sort of information
reveal partial user preferences and therefore is useful for recommendation systems. For
example, a user might incline to visit the websites relevant to his/her hobbies such as sport,
fashion, entertainment, etc. The contextual information (if available) can be encoded in a
low-dimensional vector similar to side information and is passed directly into ITE or ITE-Si
model.

4. Experiments

In this section, we conduct experiments to investigate the practical benefits of ITE and
ITE-Si.
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Datasets: We perform extensive experiments on the two datasets: Retailrocket and Re-
cobell. Some statistics of Retailrocket and Recobell are shown in Table 1. The details of
datasets are as follows:

Retailrocket: An e-commerce dataset taken from Kaggle1. This dataset contains the
information about the behavioral history of users, the attributes of items and the item
category collected in 4.5 months. Multiple types of behavior include click, add to cart
and transaction. We determine that click is an implicit behavior, while add to cart and
transaction are explicit. The users have less than 5 interactions are removed from the
dataset.

Recobell: A dataset collected from an e-commerce website2. This data includes behavioral
data and item label information collected over a period of 2 months from August to October
of 2016. Behavioral data contains the view (implicit behavior) and order (explicit behavior).
Similar to Retailrocket, the users have less than 5 interactions would be removed.

Dataset RetailRocket Recobell

Implicit # 396 923 2 285 261
Explicit # 18 450 52 786
users # 36 751 206 203
items # 83 274 118 293
labels # 1 699 1 939
Sparsity 99.987% 99.999%

Table 1: Statistics of the Retailrocket and Recobell datasets

Models in use: We evaluate the three models: ITE, ITE-Si and a variant of ITE-Si.

• ITE (Implicit to Explicit): the model described in Section 3.1 which represents
users and items by one-hot encoding.

• ITE-Si (ITE with Side information): the model described in Section 3.2 which
incorporates side information in both user and item representations.

• ITE-OSSi (ITE with one-sided Side information): A variant of ITE-Si which
just incorporates side information in item representation. Particularly, u(m), i(m) are
the one-hot encoding vectors, u(a) is none and i(a) is the same as ITE-Si which de-
scribed in Section 3.2, i.e., the item category. ITE-OSSi is a simple version of ITE-Si
when directly using the raw data of item category instead of combining side infor-
mation with historical activities. We take ITE-OSSi into consideration to investigate
further impact of side information.

Baselines: We take two state-of-the-art models into comparison:

• NMTR (Gao et al., 2019): A model which captures the cascading relation between
implicit and explicit behavior as multi-task learning.

1. https://www.kaggle.com/retailrocket/ecommerce-dataset
2. http://www.recobell.co.kr/rb/main.php?menu=pakdd2017
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• MTMF (Shi et al., 2017): A model which exploit several actions such as view, want
and click separately.

Parameter Settings: The parameters are created randomly by the Gaussian Distribu-
tion. Several hyper-parameters having major impacts to the model are: lr (learning rate),
batch size, η (to balance the influence of implicit module to explicit module), K (the
number of factors in the last hidden layer of implicit module). We use the testing set as
validation data and tune the hyper-parameters with batch size in {512, 1024, 2048, 4096},
lr ∈ {0.0001, 0.0005, 0.001}, η ∈ {0.1, 0.5, 1.0, 2.0}. The tuning process give us lr = 0.001,
batch size = 2048 for all the models; η = 1.0 for NMTR and η = 0.5 for all the other
models. In the experiments, we analyze the impact of K which is called the num factors
with K ∈ {8, 16, 32, 64}. Note that higher K might improve the performance, but if K is
too large the model may suffer from over-fitting.

For all the models, we sample four negative instances per positive instance. All the ITE
models follow the tower pattern, i.e., the number of hidden nodes in the next layer is equal
to half of current layer. Additionally, for ITE, ITE-OSSi and ITE-Si, the representation of
user u is a M-dimensional vector (the number of users), while item i is represented by a
N-dimensional vector (the number of items).

Evaluated method: We use the leave-one-out (Rendle et al., 2009; He et al., 2016) method
to evaluate the performance. For each user, we extract the most recent item that the user
has interacted to the test set. The remain items would be used to train. In the evaluation
phase, we rank all the items that each user have not interacted with. To decrease the
computational time, we rank randomly 999 items instead of all the items.

The measure score we use are Hit Ratio (HR) (Deshpande and Karypis, 2004) and
Normalized Discounted Cumulative Gain (NDCG) (He et al., 2015) to rank all the items in
the test set. The goal is to compute HR@K and NDCG@K at K = 10.

Hit Ratio (HR): For each user, HR@K corresponds to whether the test item belongs to
the top K items of that user. HR@K can be formulated as follows:

HR@K =

{
1, if test item is in top K.

0, otherwise.
(15)

Normalized Discounted Cumulative Gain (NDCG): Instead of checking whether
the test item is in top K as Hit Ratio, NDCG@K consider the ranking of the test item in top
K items. The NDCG@K score is higher, the ranking is better. For each user, NDCG@K
can be formulated as follows:

NDCG@K =

{
log(2)
log(i+1) , if test item is ranked at position i.

0, otherwise.
(16)

The HR@K and NDCG@K for the entire system can be summarized using the average
HR@K and NDCG@K from all users.

Performance comparison: Fig. 4 and Fig. 5 show the HR@10 and NDCG@10 with
respect to the num factors K, K ∈ {8, 16, 32, 64}. In Fig 4, ITE achieves higher results of
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Figure 4: Comparison of the various models in Retail Rocket with K varied
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Figure 5: Comparison of the various models in Recobell with K varied

both HR@10 and NDCG@10 than MTMF and NMTR which explains the benefit of ITE
over NMTR as discussed in Section 3.1. For the result of Recobell in Fig. 5, the figures for
ITE, MTMF and NMTR are fluctuated. The best NDCG@10 of ITE is 0.59 (K=32), while
the highest of MTMF and NMTR are 0.59 (K = 64) and 0.58 (K = 32) respectively. The
efficiency of side information is shown in the performance of ITE-OSSi and ITE-Si, where
these two models are the highest figures in most of the cases.

Fig. 6 and Fig. 7 reveal the performance of ITE, ITE-OSSi and ITE-Si on Retail Rocket
and Recobell when the number of epochs increases gradually. An epoch is one learning
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Figure 6: Comparison of the various models in Retail Rocket when increasing the number
of epochs gradually. From left to right: K = 8, 16, 32, 64

cycle where the model learns through the whole training data. As we can see, ITE-OSSi
and ITE-Si still achieve better results than the other models in most of the cases. When
comparing ITE with MTMF and NMTR, ITE performs better than the others for Retail
Rocket, while Recobell experiences the fluctuated results of the three models. Furthermore,
the three models ITE, ITE-OSSi and ITE-Si gain high performance in several first epochs,
which indicates that we can save training time for these models.

5. Conclusion

We have introduced ITE, a neural network for modeling the sequence of user behavior
in real-world. ITE successfully learns the complex relation between implicit and explicit
behavior thus makes the prediction more precisely. Additionally, we introduce an extended
version of ITE, namely ITE with Side information (ITE-Si) to utilize the advantages of side
information. Particularly, ITE-Si exploits a third-party resource besides the interaction
between users and the items, i.e., information of items such as item features, music genres,
movie categories and therefore facilitate significantly the predictive accuracy of the model
versus ITE. Apart from improving the model performance, both ITE-Si is expected to avoid
the cold start thanks to additional information attached in the input layer. We left further
study on this benefit for future work. Extensive experiments show that ITE outperforms
the state-of-the-art methods. Furthermore, ITE-Si gains higher experimental results than
ITE in the two e-commerce dataset, which indicates the effectiveness of side information.
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Figure 7: Comparison of the various models in Recobell when increasing the number of
epochs gradually. From left to right: K = 8, 16, 32, 64
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