Proceedings of Machine Learning Research 101:268-283, 2019 ACML 2019

Optimal PAC-Bayesian Posteriors for Stochastic Classifiers
and their use for Choice of SVM Regularization Parameter

Puja Sahu pUJA.SAHUQITB.AC.IN and Nandyala Hemachandra NHQIITB.AC.IN
Indian Institute of Technology Bombay, Mumbai, India

Editors: Wee Sun Lee and Taiji Suzuki

Abstract

PAC-Bayesian set up involves a stochastic classifier characterized by a posterior distribution
on a classifier set, offers a high probability bound on its averaged true risk and is robust
to the training sample used. For a given posterior, this bound captures the trade off
between averaged empirical risk and KL-divergence based model complexity term. Our
goal is to identify an optimal posterior with the least PAC-Bayesian bound. We consider
a finite classifier set and 5 distance functions: KL-divergence, its Pinsker’s and a sixth
degree polynomial approximations; linear and squared distances. Linear distance based
model results in a convex optimization problem and we obtain a closed form expression
for its optimal posterior. For uniform prior, this posterior has full support with weights
negative-exponentially proportional to number of misclassifications. Squared distance and
Pinsker’s approximation bounds are possibly quasi-convex and are observed to have single
local minimum. We derive fixed point equations (FPEs) using partial KKT system with
strict positivity constraints. This obviates the combinatorial search for subset support of
the optimal posterior. For uniform prior, exponential search on a full-dimensional simplex
can be limited to an ordered subset of classifiers with increasing empirical risk values.
These FPEs converge rapidly to a stationary point, even for a large classifier set when
a solver fails. We apply these approaches to SVMs generated using a finite set of SVM
regularization parameter values on 9 UCI datasets. The resulting optimal posteriors (on
the set of regularization parameters) yield stochastic SVM classifiers with tight bounds.
KL-divergence based bound is the tightest, but is computationally expensive due to its
non-convex nature and multiple calls to a root finding algorithm. Optimal posteriors for
all 5 distance functions have lowest 10% test error values on most datasets, with that of
linear distance being the easiest to obtain.

Keywords: KL divergence, generalized Pinsker’s inequality, convex optimization, con-
strained non-convex optimization, Fixed Point Equations, averaged true risk, Bayesian
posterior, high probability bounds on true risk

1. Introduction and Motivation

Often we are faced with the issue of choosing a parameter of the learning algorithm, since this
parameter has a significant role in determining the performance of the resulting classifier.
For example, consider the Support Vector Machine (SVM) algorithm for classification with
the regularization parameter, A > 0. This parameter is a user input which trades off between
model complexity and training error. The optimal classifier that we get, depends heavily
on the sample S that is used for training and the value of the parameter, A\. We can control
only this parameter value for obtaining a classifier with low (training) error, but not the
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given data. For a given training sample, we can choose the best value of the parameter
from a prefixed set of values, which yields a classifier with the lowest error. However, this is
a long drawn process. Additionally, there is no guarantee that the chosen value will yield a
classifier having low(est) error on another sample from the same distribution. This implies
that the best parameter value is sample dependent and that there is no unique value which
is best for almost all the samples. However, if we determine the set of A values with lowest
p% error rates on each sample, we observe a recurring subset of A values across the training
samples. (See Appendixz A in the Suppl. file for an illustration.) Thus, we have an ensemble
of values to pick from. The PAC-Bayesian approach does such a stochastic selection.

PAC-Bayesian Bounds and Optimal Posteriors PAC-Bayesian approach assumes
an arbitrary but fixed prior distribution on the space of classifiers and outputs a posterior
distribution on this space, corresponding to a stochastic classifier. This approach provides
a probabilistic bound on the difference between the posterior averaged true and empiri-
cal risk of a stochastic classifier as measured by a convex distance function. For a given
posterior, these bounds offer a trade-off between averaged empirical risk and a term which
encompasses model complexity of the stochastic classifier. The bound is computed based
on a single sample but with a high probability guarantee over different samples (from the
same distribution). We are interested in the ‘optimal PAC-Bayesian posterior’. For a
chosen distance function, the optimal posterior is defined as the one which minimizes the
corresponding PAC-Bayesian bound. By design, these bounds and the resulting optimal
posterior are robust to the choice of training sample, addressing the above sample bias.

Relevant Work PAC-Bayesian bounds were proposed by McAllester (2003); Seeger (2002)
and refined further by Maurer (2004); Langford (2005); McAllester (2013) using Bayesian
priors and posteriors on the classifier space to provide better performance guarantees. Sev-
eral authors improvised the bounds for the choice of distance function they considered.
While Maurer (2004) provided a bound for the KL-divergence as the distance function, ¢,
by tightening up the threshold with a factor of \/m instead of m, Germain et al. (2009) gen-
eralized the framework of PAC-Bayesian bounds for a broader class of convex ¢ functions
and relaxed the constraints on tail bounds of empirical risks of the classifiers. Catoni (2007)
made an important contribution by considering bounds which are independent of distance
function ¢, and instead require a parameter C' > 0. Choice of C can influence the bound
on the performance of stochastic classifier just as the choice of ¢. Ambroladze et al. (2006)
specialized PAC-Bayesian bounds using spherical Gaussian distributions on the space of
linear classifiers. Bégin et al. (2016) introduced bounds based on Rényi divergence between
posterior and prior distributions. We limit ourselves to KL-divergence based bounds.

All of the above consider a continuous (SVM) classifier space (n-dimensional Euclidean
space) and continuous prior as well as posterior distributions on it (spherical Gaussian
distributions) whereas we consider a finite set of classifiers such as those generated by a
finite set of regularization parameter values for the SVM. Our PAC-Bayesian bounds are
derived for the set up with a discrete prior distribution, and five different distance functions
between posterior averaged empirical risk and posterior averaged true risk.

Contributions We consider optimal PAC-Bayesian posterior which minimizes the PAC-
Bayesian bound for a given distance function. We consider a finite classifier set and five
distance functions: KL-divergence and its two approximations based on Pinsker’s inequality
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and its improvised version (a sixth degree polynomial), linear distance and squared distance.
The linear distance based optimal posterior is obtained via a convex program; is shown to
have full support, with weights proportional to negative-exponential number of misclassifi-
cations when prior is uniform. Bounds based on KL-divergence as distance function and its
sixth degree approximation are non-convex. Squared distance and Pinsker’s approximation
are possibly quasi-convex because they are observed to have single local minimum. We sim-
plify the search for optimal posteriors via Fixed Point equations deduced from the partial
KKT system with strict positivity constraints. We use these approaches on the set of SVMs
generated by a finite set of regularization parameter values. This leads us to the notion of a
stochastic SVM characterized by an optimal posterior on the regularization parameter set.
KL-distance yields the tightest bound, but is non-convex and has computational overhead
of determining the root. All five distance functions have good generalization performance
(lowest 10% test error values) on most datasets considered, except for Bupa dataset and two
almost linearly separable datasets, Banknote and Mushroom. Table 1 describes theoretical
and computational aspects of these optimal posteriors.

Outline In Section 2, we consider PAC-Bayesian optimal posterior as the one minimizing
the bound, and propose a Fixed Point (FP) scheme based on the partial KKT system. We
analyze optimal posteriors for five distance functions: KL-distance (Section 4), its approxi-
mations (Section 5), linear and squared distances (Sections 6 and 7). These approaches are
applied to a set of SVMs (Section 8) with summary in Section 9.

2. PAC-Bayesian Bound Minimization, Optimal Posteriors and the Fixed
Point Approach

We recall the general version of the PAC-Bayesian theorem Germain et al. (2009); Bégin
et al. (2016) for a given distance function and describe the notion of a PAC-Bayesian optimal
posterior which minimizes the bound derived from the PAC-Bayesian theorem.

Theorem 1 (PAC-Bayesian Theorem Germain et al. (2009); Bégin et al. (2016))
For any data distribution D over input space X X Y, the following bound holds for any prior
P over the set of classifiers H and any 6 € (0,1), where the probability is over random i.i.d.
samples Sy, = {(xs,yi)li = 1,...,m} of size m drawn from D, for any convex function
¢:10,1] x [0,1] —» R:

) KL[Q||P] +In (ESNDmEh(SNpem¢(f,l)>
Pg,, S VQ onH: ¢ (EQ[Z],EQ[Z]> < S1-s (O

m

Here, QQ is an arbitrary posterior distribution on H, which may depend on the sample Sy,
and on the prior P. Egll] := Epug S0, L{I(h,x;,y:)] denotes the averaged empirical risk
and EqQ[l] := Epw@Exy)~pll] denotes averaged true risk of a classifier h € H computed
using a loss function, l(h,X,y) : H x X x Y — [a,b) (here, 0 < a <b).

For a choice of distance function, ¢, the upper bound on Egpm[Ep.. pem‘b(i(h)’l(h)) deter-

mines the tightness of PAC-Bayesian bound. Bégin et al. (2016) give
Idlf(m) = sup [ZZL:O (k- l)m*kem‘?(%’l)] as an upper bound on Eg,, ~pmEj, pe™?R):L),
1€[0,1]
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Thus, with the above upper bound on the right hand side threshold, (1) becomes:

KL[Q||P] + In <I«If§’”)>
Ps {VQonH: ¢ (EQ[Z},EQ[Z]) < >1-4. 2)

m

For illustrating the role of this upper bound, Q:% k1, 18 computed with two values: Islg (m)

defined by Bégin et al. (2016) and 2/m by Maurer (2004). Bounds with Z£ (m) are tighter
than those with 2y/m, and test error rates increase only marginally (Please see Table 2).

2.1. Optimal posteriors via PAC-Bayesian bound minimization

The PAC-Bayesian theorem (2) gives the following high probability upper bound on aver-

A ~

aged true risk, Eqg[l], assuming distance function ¢(Eq|l],-) is invertible for given Eq[l]:

A A KL[Q||P] + In (If;m>>
By x1(Q) = Bsx(Eqlll, Sm, 6, P) = fo | Bolll, 65 , (3

m

where d)lglm(K) = b implies ¢(Eqll],b) = K for some b € (0,1) and a given K > 0. Gen-
Q

erally fy(-,-) is the sum of its arguments except when ¢ is KL-distance function. That is,

bound function By k1,(Q) is the sum of averaged empirical risk, Eg[l], and a model complex-

ity term which depends on system parameters, S,,,d, P. We are interested in determining

an optimal posterior distribution Q7 y;, which minimizes By x1.(Q) for a given ¢.

2.2. The fixed point approach to determine PAC-Bayesian optimal posterior

To characterize the minimum of By k1,(Q), we make use of the first order KKT conditions
which are necessary for a stationary point of a non-convex problem. These KKT conditions
require the objective function and the active constraints to be differentiable at the local
minimum. We derive fixed point (FP) equations for the optimal posterior for various dis-
tance functions in (8), (12), (17) and (25) (with derivations in supplemenatry file). These
FP equations use KKT system with strict positivity constraints due to which complemen-
tary slackness conditions are automatically satisfied; hence called ‘partial’ KKT system. We
consider strict positivity constraints on posterior weights to avoid the combinatorial prob-
lem of choosing the subset of classifiers which form the support set of the optimal posterior.
Computations illustrate that these FP equations always converge to a stationary point at
a very fast rate, even for a large classifier set when a non-convex solver fails to identify a
local solution. (Please see Table 3 for an illustration of such cases.)

We work with a finite set of classifiers: H = {h;}L, of size H. The prior, P = {p;}/1,
and posterior, Q = {qz}fi are discrete distributions on H, where p;,q; > 0Ve =1,... . H
with Zfi 1pi =1and Y .7, ¢ = 1. For differentiability required by KKT conditions, our
objective function should have open domain, that is, the interior of the H-dimensional
probability simplex: int(A") = {(q1,...,qu)|¢; > 0 Vi = 1,..., H; Zgl gi = 1}. In
computations, we consider ¢; > e Vi =1,..., H for € > 0 to ensure existence of a minimizer
in int(Af). Our FP equations are derived using partial KKT system on int(Af).
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3. Optimal posterior, @} ky,, for uniform prior

We consider the special case of uniform prior on entire H. We want to identify the optimal
posterior Q;KL with the H-dimensional probability simplex as the feasible region. We show
below that it is enough to restrict the search space to certain subsets of this simplex. This
reduces the computational complexity of the search from exponential scale to linear scale.

Theorem 2 Consider a uniform prior distribution on the set H of classifiers, and a given
set of posterior weights Q = {qj}j 1- We have three choices of distance function ¢ =
{Piins bsq: kl}.  Then among all subsets H' C H of size H', the smallest bound value
By k1(Q,H') corresponding to the given posterior weights Q is achieved when H' is the sub-
set formed by the first H' elements of the ordered set of classifiers ranked by non-decreasing
empirical risk values, Zl < Zg <...< fH

Proof (Please see Appendiz C in suppl. file for other distance functions) We consider
linear distance based bound, Biin, k1.(Q, ') under the given set up, defined as follows:

> Qiln(ZiﬁLlnHJrln(#)

zE'H’
Bhn KL Q H Z lz qi
1EH!

m

For a given set of posterior weights {g; }] 1, the term >, 4/ ¢; In g; of the bound By, k1.(Q, H')
is invariant of the support set H' as long as its cardinality is H'. Thus Bii, k.(Q, H') is
the smallest when the sum ), l}q,- is minimized. This will happen when H' consists of
classifiers with smallest H' values in the set {l}}f{ Furthermore, if the elements of H’ are
ordered by non-decreasing empirical risk values, ll <lh<..<I ', the weights {q]}
should be ordered non-increasingly. So, the theorem holds for hnear distance function. I

Corollary 1 As a consequence of the above Theorem 2, for determining the (globally) op-
timal posterior QZ s 1t is sufficient to compare the bound values corresponding to the best

posteriors on ordered subsets of H, ranked by non-decreasing l; values. These ordered subsets
can be uniquely identified by their size.

4. Optimal PAC-Bayesian Posterior using KL-distance

The most commonly referenced version of the PAC-Bayesian theorem was given by Seeger
(2002) and improved by Maurer (2004), as given below:

Theorem 3 (PAC-Bayesian Theorem for KL-distance Maurer (2004)) For any data
distribution D over input space X x Y, the following bound holds for any prior P over the
set of classifiers H and any § € (0,1), where the probability is over random i.i.d. samples
Sm = {(zi,yi)|i =1,...,m} of size m drawn from D:

KL[Q|IP] +1n (247)

m

Py {VQ onH: ki (EQm,EQU]) < >1-4. (5)
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Here, Q) is an arbitrary posterior distribution on H, which may depend on the sample Sy,
and on the prior P, and where kl(p,q) = pln (%) +(1—p)ln (%Z) for any p,q € (0,1).

The upper bound on the averaged true risk Eqgl[l] corresponding to the above PAC-
Bayesian theorem is obtained as:

KL[Q||P] +In (@)

m

(6)

By, k1.(Q) = sup (7 :kl (]EQ[Z], 7") <
re(0,1)

An inverse kl(-,-) function does not exist since it is not a monotone function, and so
the bound By k1,(Q) does not have an explicit form. However, we can employ a numerical
root finding algorithm such as that described in Sahu and Hemachandra (2018) (Algo.
(KLRrROOTS)) to obtain By kr,(Q) for a given instance of system parameters.

4.1. The KL-distance bound minimization problem

For a finite classifier space H = {hi}fil, this optimization problem can be described as:

min r (7a)
Qe qH T
H . H .
H > ligi H L= > lig > qilndt +1n Lém
-t ligi | In | = 1- ligi |1 =1 = =1 b
s (i) | S|+ (1St ™

H
r> Z ligi (7c)

i=1
. KL[Q||P]+1n( 2™ .
Here, r is the right root of kl (EQ[Z],T> _ KHelr ( 2 ) for a given Eqgli]. The above

is known to be a non-convex problem with a difference of convex (DC) equality constraint
(7b). The constraint (7c) is a strict inequality which is relaxed for modelling purpose to
have a feasible region with a closed domain.

m

4.2. The posterior based on fixed point scheme, QEI};’KL

We derive FP equation for KL-distance based bound optimization problem below:

Theorem 4 The bound minimization problem (7) for the bound By, kr(Q) has a stationary
point QflPKL which can be obtained as the solution to the following fixed point equation:

H H H 3
i = Piex iln&_m Zii—fi In (1—7")22-:1}1'%‘)]} Vi=1,...,H (8
e {Sandton (ia -t | (R Y

i=1 liqi

where 1 is the solution to (7b) and (7c) for a given Q = (q1,...,qH).
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Proof The Lagrangian function for (7) can be written as follows:

H
L, k1, =71 — Bo [(Z lez) In ( lez) (1 B Z lzq1> In ( 12_ : llql>

S H giln % 4 In 2™ H H H
—( ' TI;Z ° ) -5 <7"_ZliQi>_N0 (Zqz‘—1>—Zqu‘ 9)
i1 i=1

=1

Due to the strict inequality constraint (7c), complementary slackness conditions for a sta-
tionary point imply that the Lagrange multiplier 5; should vanish at optimality (81 = 0).

We assume that ¢; > 0Vi = 1,..., H, since otherwise In ¢; = In(0) is undefined. Even if
we use fact that lim,_,o+ Inz = —o0 to define 81151#1@ for some j € [H], the KKT condition
will mean that y; is infeasible. Therefore, for a stationary point, we have ¢; > 0. And the
complementary slackness conditions imply that y; =0 foralli=1,... H.

At an optimal solution, derivatives of Ly k1, with respect to primal variables r and g;s,
should be set to zero. By solving for these derivatives, we get the FP equation (8) which
identifies a stationary point of (7). (Please see Appendiz D.1 in suppl. file for details.) M

Note: The requirement that ¢; > 0V i = 1,..., H holds true for the KKT system of
a generic PAC-Bayesian bound minimization because of KL-divergence measure between
posterior and prior distributions; so, we assume this condition for the other four ¢s also.

KL-distance based bound minimization is non-convex with multiple stationary points
which makes it difficult to identify the global minimum even by FP scheme. The iterative
root finding algorithm adds to the computational complexity of the bound minimization
algorithm. Therefore, in the next section, we look for simpler and easily invertible approx-
imations to KL-distance function in the PAC-Bayesian bound minimization.

5. Optimal Posterior for PAC-Bayesian Bound Minimization based on
approximations to KL-distance function

We explore two approximations to the KL-distance function: a known Pinsker’s approxi-
mation and another tighter approximation based on improvised Pinsker’s inequality.

5.1. Optimal PAC-Bayesian Posterior based on Pinsker’s approximation

Based on Pinsker’s inequality Fedotov et al. (2003), we get the following second order
polynomial approximation to kl(l,I'): ¢p(l,I') =2(1—1")? VI, I' € [0,1] x [0, 1] which serves
as a distance function in the PAC-Bayesian theorem:

: KL[Q||P] +In (%)

Ps,, {¥Q on H : 2 (EQ M - EQ[Z]) >1-6  (10)

m
The associated PAC-Bayesian bound function is:
Ho IS g g i (27)
Bp’ KL(Q) = Zl liqi + o . (11)
1=
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Algorithm 1: FP kLKL: Fixed point solution for PAC-Bayesian bound with KL-
distance

Input: § € (0, 1),m,H,{Zi}£1, {pi} , tol >0
Output: Fixed point solution: {qflg KL}{L

/* Intialize QY = {q? fil with a random distribution from A simplex */
¢ ~exp(l),Vi=1,....H

0
@ =p—Vi=1,....H

Zszl q?
0
H 0 q; 2v/m
RHS ¢ 2=y tn 75"

m

r +KLrooTs(> 2 1;¢?, RHS),
Lo p; H o 0qp % H [0 _] -3, liq) -
q; %pzeXp{Zizl q; In D m(Zizllzqi lz) |:ln<1”(1ZZH_11qu?)>:|} VZ—l,...,H
do
fori=1 to H do

| @ —q
end

0
H 0 qa; 2v/m
2li—1¢ In p71i+ln 5

RHS « i
r +KLrooTs(S 2 1;¢), RHS),

0 A A H 7.0
g}  piexp {Zinl @ —m (S8 la? 1) |:hl (ih”f}ij%f§§3 >] } Vi=
1,....H
while ||¢! — ¢°|| > tol
return {q}}1,

We wish to determine the optimal posterior Qf ;, which minimizes Bp, k1,(Q) subject to the
constraints given in (7d). The convexity of this bound function could not be established, but
computationally this bound minimization problem is observed to have single local minimum.
We propose that (11) is possibly quasi-convex. Based on the proof for Theorem 4 for KL-
distance function, we identify the following FP equation for stationary point of (11):

FP
~ q;
<—2\/2mli \/Zf{:l qu KL 1n %Z_KL-HH 2‘§E>
pie

FP _
4; P, KL —

Vi=1,...,H (12

FP

H <—2\/2mfi\/ZfI_1 gFE o In 7%,1KL +1n(2‘ﬁ)>
pie

i=1

5.2. Optimal PAC-Bayesian Posterior based on improvised Pinsker’s
approximation, ¢cy

A lower bound for KL-divergence kl(l,l") given by an improvised version of Pinsker’s in-
equality Fedotov et al. (2003) is the following tighter sixth degree polynomial approximation:

/ / 2 !/ 16 / !
don(l,l) = (1 =1+ 5= 1)+ 5= =1)° VLU € [0,1] x [0,1] (13)
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¢cu is a valid distance function since it satisfies the Seeger’s assumptions Seeger (2002).

Theorem 5 (Sahu and Hemachandra (2018)) PAC-Bayesian theorem with ¢cm is:

KL[Q||P] + In (%)
2m —1

Ps AVQ onH: dcn (EQ M ,EQU]) < >1-4, (14)

where Ky, = 4m x [1 - e_‘bCH(%)] ~ 0.9334m. (15)
Due to its structure, ¢cng (Z , -) has a single positive real root and has a PAC-Bayesian bound:

Ben, kL(Q) == Eq[/] ren(R(Q)) (16a)

5 1225 135 5 6615 208980

4/ /1225 135 5 \/ 6615 208980
i - o 2 2 -
+\/< 512 | 39 R(@) 32 T2RAQ) + 8 R(Q)+ 256

(16b)

KLQIIP)+1n (e} ML giln & +1n (Foem) .
Q) = om — 1 - om — 1 ' (16¢)

The optimal posterior distribution Q¢y y, is the one which minimizes Bep, kL(Q) in (16).

Lemma 1 The bound function Ben, k1.(Q) defined in (16) is a non-convexr function and
hence the associated bound minimization problem is non-convex program.

We identify the following FP equation for a stationary point for minimizing (16), based on
the partial KKT system:

~2 R(QEE
P €Xp {—(2m —1)l; TCH(@fﬂm ) }
R A
QE(]JDH KL = ; T Vi=1,..., H. (17)
2 TCH
Zz‘li1 p; exp {_(Qm —1)l; mCH, KL }
R

6. Optimal PAC-Bayesian Posterior using Linear Distance Function

One of the simplest distance functions is the linear distance function, (j)lin(f,l) =1 —1 for
[,1 €[0,1]. The PAC-Bayesian bound in this case takes the following simplified form:

I (m)
KLQIIP) 4 (Ha)
Ps, {V¥Q on H : Egll] — Eqli] < — >1-4§ (18)
where Z[K (m) := sup [ZZLO (k- l)m*kem(lfﬂ)} is a function of the sample size, m.

1€[0,1)
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Thus, the corresponding PAC-Bayesian bound is:

~

KLQIIP] +In (™)
Blin, KL(Q) = ]EQ [l] + .

m

(19)
We want to find the optimal distribution @, k; which minimizes the bound Biin, k1.(Q)-

Remark 1 For m > 1028, computing Il[fn(m) 18 difficult due to storage limitations in the
range of floating point numbers — gives Il[l;(m) as NaN. As it is just an additive term in
the bound, it does not influence the optimal solution. Hence we can determine Q}“m K1 €ven

for large m as shown in Table 2, but is needed for computing Bun, kr.(Q kL)

6.1. The linear distance bound minimization problem

For a finite classifier space H = {h;}/L,, this optimization problem can be described as:

H H 1 @

. > ZZ:]. ql ln ;:

min E liQi + —
ol m

" (20)
st g=1,¢>0 Vi=1,... H
i=1
6.2. Convexity of the bound function, By, k1.(Q)

The bound function By, k1,(Q) is convex in @ since it is a positive affine transformation
of KL[Q||P], which in turn is convex in (. Also, the feasible region is the H-dimensional
probability simplex which is a closed convex set. Hence (20) is a convex optimization
problem. Thus, KKT conditions are both necessary and sufficient for (20).

6.3. The optimal posterior, inn’ KL

Theorem 6 The distribution Q% w1 = (@1 jin. k1~ -+ Qir 1in. k1) Where
* e Vi=1,...,H (21)
q'7l‘,KL: ¥ = 1=1,...
7,lin Zizlpiefmlz

is the optimal PAC-Bayesian posterior which minimizes the bound By, k1(Q) in (19).

Proof Since this is a differentiable convex OP, we identify the global minimizer (21) using
the associated KKT system. (Please refer to details in Appendiz E.2 in suppl. file) |

Remark 2 Q, x; in (21) is a Boltzmann distribution for a given P. In case of uni-
form prior, the optimal posterior weight (qum, K1) on a classifier is negative-exponentially

proportional to the number of misclassifications (ml;) it makes on the (validation) sample.
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Theorem 7 When the prior is a uniform distribution on the set H of classifiers, the optimal
posterior Q7. . for the bound minimization problem (20) has full support. That is, all the
classifiers in H will have strictly positive posterior weight at optimality.

Proof Using the result of Theorem 2, it is sufficient to compare the bound values corre-
sponding to the best posteriors for all ordered subsets of H, ranked by non-decreasing i
values, to determine the optimal posterior for (20). Using Theorem 6, the optimal posterior
Qfin, k1. (H ") on an ordered subset of classifiers of size H' € [H] is given as:
. R S N
¢ i, kL(H') = i e
0 Vi=H +1,... H,

and the optimal objective value is:

H
D1 q;:lm,KL ln(quin,KLH)

H
Biin, KL(Qfin, k1, (H')) = Z Ligi tin s 1, +
i=1

m
InH —1In (Zfil e_m[i)
- m
The bound, Biin, k(@ k1, (H')) is a decreasing function of H' = 1,..., H. Therefore the

least bound value is achieved when all classifiers are assigned strictly positive weights, that
is, the optimal posterior has full support. (Details are in Appendiz E.2 in suppl. file) W

Remark 3 We believe that this full support for the optimal posterior, Q}km’ K1 18 due to
the KL-divergence measure on the right hand side threshold of the PAC-Bayesian bound,
(18). As an implication, Qy,, f considers even the worst performing classifier but with
infinitesimally positive ( negati;)e—exponential ) posterior weight.

7. Optimal PAC-Bayesian Posterior using Squared Distance Function

We now consider a widely used squared distance function McAllester (2003); Seeger (2002)
between the averaged empirical risk and the averaged true risk : ¢gq (Z, l) = ([ — l)2 for
I,le [0,1]. With ¢gq, the PAC-Bayesian theorem takes the following form:

,  KLQ|IP]+n (@)

Py {VQ onH : (EQ[i],EQ[Z]) < - >1-4, (22)

2
where ZX (m) := l?[épl] [ZZ‘:O (M)ik (1 - l)m_kem(%_l) } is a function of the sample size, m.
The above PAC—iBayesian statement gives the following high probability upper bound:

~

KI[QIIP] +1n (Z5™)
Bsq, KL(Q) = EQ [l] + .

m

(23)
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We identify the constant term Islé(m) in (23) based on Bégin et al. (2016)’s result.

2
Lemma 2 For a given sample size, m, Ig(m) =3 (?)O.Bmezm(%_o’f’) .

Remark 4 On a machine equipped with 4 Intel Xeon 2.18 GHz cores and 64 GB RAM, we
couldn’t compute Ifg(m) form > 1028 due to storage limitations for floating point numbers.
Therefore, we upper bound it by 2,/m for m > 8 Bégin et al. (2016).

7.1. The squared distance bound minimization problem

We want to determine the optimal posterior QF, k; which minimizes By, kL(Q). For a
finite classifier space H = {h;}L,, this optimization problem can be described as:

K
‘ H Zfil ¢ In ;% +1n (L%m))
min g lig; +
q1,--4H < m
i=1 (24)
H

st g=1,¢>0 Vi=1,... H
i=1
The convexity of this bound function could not be established, but computationally

this bound minimization problem is observed to have a single local minimum, hinting at
quasi-convexity of By, k1.(Q). (Please see Appendices F.1 and F.2 in Suppl. file for proof.)

7.2. The posterior based on fixed point scheme, quI,DKL

We can identify a FP solution for (24) based on the partial KKT system by setting the
derivatives of the Lagrange function for (24) to zero, and using the complementary slackness
conditions, we get the FP equation (25). (Proof details are in Appendiz F.3 in Suppl.file.)

Theorem 8 The bound minimization problem (24) has a stationary point which can be
obtained as the solution to the following fized point equation:

FP K
~ 9 sq. Tse(m)
(—2\/mli\/Zf_1 afl Wzim_i_lnwg)
FP bie

4i,sq, KL — = —
H (—2\/%[1‘ \/ZzHl 9, ki In qmg; = +ln(Isq6(M) ))
Zpie
=1

, Vi=1,...,H (25

8. Choice of Regularization Parameter for SVMs

For computations, we included nine datasets from UCI repository Dheeru and Karra Taniski-
dou (2017) with small to moderate number of examples (306 examples to 5463 examples)
and small to moderate number of features (3 features to 57 features). These datasets span
a variety ranging from almost linearly separable (Banknote, Mushroom and Wave datasets)
to moderately inseparable (Wdbc, Mammographic and Ionosphere datasets) to inseparable
data (Spambase, Bupa and Haberman datasets). SVMs on these datasets have varying
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ranges and degrees of variation in their empirical risk values. We consider a finite set of
SVM regularization parameter values A = {\;}/1,, say, between 0 and an upper bound
Ao > 0, since small values of A;’s are preferable. We took A = {0.1,0.11,...,20} at a
granularity of 0.01. SVM QP (with RBF kernels) was implemented using ksvm function in
kernlab package Karatzoglou et al. (2004) in R (version 3.1.8 (2015-03-09)). The Gaus-
sian width parameter is estimated by kernlab using sigest function which estimates 0.1
and 0.9 quantiles of squared distance between the data points.

Each of these datasets was partitioned such that 80% of the examples formed a compo-
sition of training set and validation set (in equal proportion) used for constructing the set
H = {h(\i)|\i € A}, of SVM classifiers and remaining 20% used for computing their test
error rates. The training set size (m), validation set size (v) and test set size (¢) are in the
ratiom :v:t =0.4:0.4:0.2. The role of the validation set is to compute the empirical
risk I; of the SVM h();) € H which will be used for deriving the PAC-Bayesian bound. We
follow the scheme provided in Bégin et al. (2016); Thiemann et al. (2017) to generate the
set H. Each classifier h(\;) € H is trained on m training examples subsampled from this
composite set and validated on the remaining v examples. Overlaps between training sets
of different classifiers are allowed. Same is true for their validation sets.

The PAC-Bayesian bound minimization problem for finding the optimal posterior was
implemented in AMPL Interface and solved using Ipopt software package (version 3.12
(2016-05-01)) Wachter and Biegler (2006), a library for large-scale nonlinear optimiza-
tion (http://projects.coin-or.org/Ipopt). All computations were done on a machine
equipped with 12 Intel Xeon 2.20 GHz cores and 64 GB RAM. We summarize comparisons
among optimal posteriors for different distance functions in Table 2.

Fixed point solutions can be more reliable than solver output In case of KL-
distance based bound, we observe that the FP scheme is able to converge to a stationary
point even when solver fails to identify a local solution, as seen in Table 3. More such cases
are illustrated in Table 5 in supplementary file with 7 other datasets.

9. Conclusion and Future Directions

We considered the PAC-Bayesian bound minimization problem for a finite classifier set with
5 distance functions. The optimal posterior weights are negative-exponentially decreasing
with empirical risk values. For linear distance and uniform prior, weights are negative-
exponentially proportional to number of misclassifications. Since some of these minimization
problems are non-convex, we proposed fixed point (FP) iterates to identify posteriors with
good test error rates. We apply these ideas for choosing SVM regularization parameter via
an optimal posterior on the regularization parameter set, yielding a stochastic SVM.

As a part of the future work, we wish to investigate the convergence of FP iterates, and
the reason for uniqueness of local minimum for some non-convex cases. For a comparative
study, we can consider the PAC-Bayesian counterpart based on Rényi divergence between
posterior and prior (proposed by Bégin et al. (2016)) for the distance functions considered.
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Dataset PAC-Bayesian Bound, B; |, Average Test Error, Ty ki
By, k1 Biq k1. Bp, k1 Bén, k1. B, kL Tiin, k.  Tsq, k. TP, k. Tcu, k1 Tk, kL
Spambase NaN 0.20046 0.17361 0.17958 0.15332x||0.15684 0.15392 0.15423 0.15434 0.15487
0.38167 0.145801
Bupa 0.27005 0.34547 0.29265 0.30537 0.23851%|/0.13207 0.14873 0.13631 0.13382 0.11998x%
. 0.34187 0.21120
Mammographic| 0.29518 0.31290 0.28790 0.29659 0.26063+||0.20462 0.21986 0.20716 0.20628 0.20519+
0.26000 0.06901
Wdbc 0.20706 0.92199 0.20236 0.21646 0.14759x||0.06489 0.07052 0.06650 0.06584 0.06541 %
0.13225 0.00561
Banknote 0.13647 0.10343 0.09538 0.10672 0.02051 || 0.00161 0.00592 0.00500 0.00469 0.00037
Mushroom NaN 0.06584 0.04702 0.05399 0.00489 ((8.92e-05 0.00066 0.00057 0.00053 1.39e-05
0.30151 0.04781
Tonosphere | 0.20816 0.2588/ 0.22508 0.24011 0.14707x|| 0.04494 0.04899 0.04393 0.04553 0.04359~
Waveform NaN 0.12875 0.10335 0.11103 0.06338 || 0.05847 0.05175 0.05276 0.05345 0.05792
0.48385 0.29069
Haberman [0.37277 0.43977 0.39769 0.41178 0.37998%|0.29157 0.29007 0.29163 0.29162 0.28997«
Table 2: PAC-Bayesian bounds and averaged test error rates for Q3 k1, We compare bound

values B;’KL and average test error rates Ty k1, of optimal posteriors due to five distance
functions, ¢: KL-divergence kl, its Pinsker’s approximation ¢p and a sixth degree poly-
nomial approximation ¢cp; linear ¢, and squared distances ¢sq for H = 1990 SVM
classifiers. For large sample size (m > 1028), Z[X (m) cannot be computed due to storage
limitations for floating point numbers and in that case, B}, ki, is denoted by NaN. QF, ki,
was determined using: 2y/m (in regular font) and ZX (m) (in italicized font). Z% (m) can-
not be computed for m > 1028 due to storage limitations. For such cases, we report
the values computed using 2/m alone.  refers to values obtained using fixed point(FP)
equation because Ipopt solver does not converge. Lowest 10% bound values and test
error rates for each dataset are denoted in bold face. kl has the tightest bound and lowest
10% error rate for most datasets, but is computationally expensive and has multiple local
minima. Between ¢p and ¢cp, the latter has lower test error values but a slightly com-
plicated bound evaluation. ¢y, and ¢p are related by a scaling (¢p = 2¢sq). ¢p provides
a lower bound value than that of ¢sq, but both have comparable test set performances
with differences of at most 3%. ¢y, has second lowest bound value for all datasets (except
where m > 1028, namely, Spambase, Mushroom and Waveform, where Bjj, -, cannot be
computed) and also has the lowest 10% test error rates for most datasets. All 5 ¢s have
lowest 10% test error values on most datasets considered, except for Bupa dataset and
two almost separable datasets, Banknote and Mushroom, where ¢y, and ¢y do better.

H
Datasot 50 200 500 1000 1990
Validation sotver sotver sotver sotver sotver
(set size, v) Blfl.,PKL Bkl,lKL Blﬁ,PKL Bkl,ZKL BIS,PKL Bkl,lKL Blfl,PKL Bkl,lKL Blfl,PKL Bkl,lKL
Spambase
(v = 1840) 0.14726|0.14726]0.14942(0.14942|0.15157]0.27004(E)|0.15202|0.29484(E) |0.15332|0.31452(E)
(UB_uIigs) 0.20833|0.20833/0.22006(0.220060.22750(0.43732(E)|0.23300|0.50867(E) |0.23851|0.57682(E)
Table 3: Comparing bound values due to fixed point solution, Bﬁfggi, and bound values due to

solver output, Bﬁﬁl%eﬁ, for bound minimization problem (7) involving KL-distance function

with KL-divergence measure. We observe that the fixed point equation always converges
to a solution, even when the Ipopt solver is not able to identify a solution (denoted by
‘E’ (Unknown Error)). Other examples of solver failure are in Table 5 in Suppl. file (eg.
‘R’ (Restoration Phase Failed) or ‘M’ (Maximum Number of Iterations Exceeded)).
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