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Abstract
In medical image analysis most state-of-the-art methods rely on deep neural networks with learned
convolutional filters. For pixel-level tasks, e.g. multi-class segmentation, approaches build upon
UNet-like encoder-decoder architectures show impressive results. However, at the same time, grid-
based models often process images unnecessarily dense introducing large time and memory re-
quirements. Therefore it is still a challenging problem to deploy recent methods in the clinical
setting. Evaluating images on only a limited number of locations has the potential to overcome
those limitations and may also enable the acquisition of medical images using adaptive sparse sam-
pling, which could substantially reduce scan times and radiation doses.

In this work we investigate the problem of semantic edge detection in CT and X-ray images
from sparse sampling locations. We propose a deep learning architecture that comprises of two
parts: 1) a lightweight fully convolutional CNN to extract informative sampling points and 2) our
novel sparse structured prediction network (SSPNet). The SSPNet processes image patches on a
graph generated from the sampled locations and outputs semantic edge activations for each patch
which are accumulated in an array via a weighted voting scheme to recover a dense prediction. We
conduct several ablation experiments for our network on a dataset consisting of 10 abdominal CT
slices from VISCERAL and evaluate its performance against strong baseline UNets on the JSRT
database of chest X-rays.
Keywords: sparsity, structured prediction, edge detection, deep learning.

1. Introduction

The vast majority of medical image acquisition and analysis has so far focused on reconstructing
and processing dense data. This is mainly motivated by the simplicity of representing data points
and their spatial relationships on regular grids and storing or visualizing them using arrays. In par-
ticular convolutional operators for feature extraction and pooling have seen increased importance
for denoising, segmentation, registration and detection due to the rise of deep learning techniques.
Learning spatial filter coefficients through backpropagation is well understood and computationally
efficient due to highly optimized matrix multiplication routines for both CPUs and GPUs. How-
ever, for many computer vision tasks in medical image analysis such as landmark or edge detection
it seems unnecessary and expensive (in terms of time and memory limitations) to process images
end-to-end with dense methods, e.g. fully-convolutional networks or encoder-decoder architec-
tures. Therefore, in this work, we aim to show new possibilities in the area of deep learning to
process image data on sparse and irregular instead of dense grids. The feasibility of our suggested
approach is demonstrated on the problem of semantic edge detection in CT and X-ray images.
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Related Work: Of all hierarchical feature learning models, CNNs have shown to be one of the
most successful approaches for a wide variety of tasks such as classification, bounding box regres-
sion and segmentation (Ronneberger et al., 2015; He et al., 2017). Lately, another class of works
(graph convolutional neural networks (GCNNs)) attempts to transfer these well-known concepts
from the two dimensional image domain to non-Euclidean and irregular domains. Spectral CNNs,
defined on graphs, were first introduced in (Bruna et al., 2013). The main drawback of the proposed
method is that it relies on prior knowledge of the graph structure to define a local neighborhood for
weight sharing. (Henaff et al., 2015) extended the ideas to graphs where no prior information on
the structure is available. While (Bruna et al., 2013; Henaff et al., 2015) relied on splines for the
formulation of their graph convolutional operators, (Kipf and Welling, 2017) uses truncated Cheby-
shev polynomials that allow for clear description of the support size of the learned spectral filters.
(Bronstein et al., 2017) provides a comprehensive review of current research on this topic. In the
medical domain GCNNs were successfully applied in a number of applications such as population-
based disease prediction (Parisot et al., 2017), metric learning for brain connectivity graphs (Ktena
et al., 2017) and survival analysis on pathological images (Li et al., 2018).

Edge detection is a key task in computer vision applications and is studied for decades (Canny,
1986). (Dollár and Zitnick, 2013) chose a data-driven approach using random decision forests to
predict structured labels from input image patches. This technique was successfully applied in
the medical domain for multi-modal registration of ultrasound and CT/MRI images (Oktay et al.,
2015). (Xie and Tu, 2015) is the first deep learning method to explicitly learn edges. Features are
extracted with a modified VGGNet and all layers are trained with deep supervision. In the end side
outputs from different VGG Layers are fused to output a final edge map. State-of-the-art detectors
for semantic edge detection mainly resemble encoder-decoder architectures that are trained with
specialized loss terms (Yu et al., 2017; Liu et al., 2018).

Contributions: In this work we make a first step towards dense prediction from a few sparse
sampling points using deep learning methods. We bring together the robustness of grid based CNNs
and the flexibility of GCNNs in a single framework for pixel-level structured prediction. In this, our
work differs from (Li et al., 2018), which used GCNNs for global context aggregation for image
labeling. Our main contributions is the sparse structured prediction network (SSPNet). Further-
more, we successfully provide a first proof-of-concept for our new approach by evaluating it on the
challenging task of semantic edge detection in medical images.

2. Methods

In this section, we present our proposed approach for sparse structured prediction for semantic
edge detection. Figure 1 illustrates the general idea of our method. Input to our pipeline is an
image x. A light-weight CNN φ , called sample CNN, extracts potentially informative locations
from the image and outputs a single channel sample map φ(x). A fixed number N of sample co-
ordinates ((x1,y1), . . . ,(xN ,yN)) are drawn following a multinomial distribution with probabilities
proportional to the sample map’s values. Depending on the application many alternatives of ex-
tracting sampling locations are conceivable, e.g. for landmark detection one could initialize the
sample map with the mean locations of the landmarks in the training set. At the given positions,
patches (p1, . . . , pN) are extracted from the input image x. Furthermore, a simple distance graph Gσ
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Figure 1: Our general idea for sparse semantic edge detection. We train a lightweight fully-
convolutional CNN with a class-agnostic loss to output an informative heatmap from
which samples are drawn with probabilities proportional to its values. Image patches are
extracted around the chosen locations and our proposed SSPNet processes the generated
patch graph to output a semantic edge activation for each sampling point. To recover
a dense prediction all edges are accumulated in an array and the class-specific loss is
applied to update the SSPNet’s parameters.

is generated. The adjacency matrix A of the graph Gσ is given by entries

ai j = exp

(
−d2

i j

2 ·σ2

)
,

where σ is a scalar diffusion coefficient and di j denotes the euclidean distance between two sam-
pling locations (xi,yi) and (x j,y j). Again, depending on the application and given priors the graph
may be initialized accordingly. Next, the extracted image patches (p1, . . . , pN) as well as the graph
Gσ serve as input to our proposed SSPNet (explained in detail below), which predicts edges for each
input image patch and accumulates all predictions on a dense grid weighted by their class-specific
confidence. This semantic edge map is our final output. While the focus of this work is clearly on
the SSPNet, in the following we also shortly describe the training of the sample CNN.

2.1. Sample CNN

The sample CNN φ is based on a lightweight version of the holistically-nested architecture in (Xie
and Tu, 2015). We significantly cut the networks capacity by removing deeper layers and use
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Figure 2: The proposed sparse structured prediction net (SSPNet) expects a graph of patches sam-
pled at informative image locations. For each patch a CNN encoder extracts a set of fea-
ture maps, which are further processed by 1) the structure head that predicts local edge
activations and 2) the semantic head where global context is aggregated by a GCNN.
We perform a weighted Hough voting to accumulate all predictions and recover a dense
semantic edge map.

reduced numbers of filters. In total the network consists of only three layers (each with two 3× 3
convolutions + relu activation). Layer 2 and 3 start with convolutions with stride 2 resulting in
the network’s receptive field size of 23. After each layer a side output ŷi is generated by a further
1× 1 convolution and sigmoid activation. Side outputs are concatenated and fused to form a final
prediction ŷ0 by a 1×1 convolution and sigmoid activation. The sample CNN is trained with deep
supervision on all outputs using the loss function from (Deng et al., 2018) which combines the
binary cross-entropy (BCE) and Dice loss (DICE) to

Lca =
3

∑
i=0

αBCE(ŷ0,yca)+βDICE(ŷ0,yca).

In the loss term yca depicts the class-agnostic version of the ground truth edge map and α and β

control the weighting of the two losses. Trading robustness for precise localization the final sample
map is obtained from prediction y0 after multiple average pooling steps with stride 1.

2.2. SSPNet

As stated above input for our SSPNet Φ are the extracted image patches (p1, . . . , pN) as well as the
graph Gσ . The network itself consists of a CNN encoder part, a structure and semantic head and a
final Hough voting step to recover a dense prediction from the single patches. An overview of our
proposed SSPNet is given in Figure 2. The CNN encoder applies four convolutions (kernel sizes: 5,
3, 3, 3) with relu activations on each image patch. The resulting feature maps are further processed
by two network heads. The structure head consists of three transposed convolutions (kernel sizes
3, 3, 3) and relu activations. The final structured prediction is obtained by a 1×1 convolution with
sigmoid activation. The semantic head aggregates global context information and is modeled with a
GCNN. Input features on our graph are the average pooled feature maps from the CNN encoder. We
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also experiment with explicitly adding the sampling coordinates as additional informative features.
For this part of our work we decided to strive for simplicity and use a simple random walk diffusion
with a single σ kernel to pool features across our input graph Gσ (Atwood and Towsley, 2016;
Hansen et al., 2018). The diffusion process can be described by the diffusion matrix

L = I−D−1A,

where I denotes the identity matrix and the degree matrix D is solely defined by its diagonal ele-
ments dii =∑ j ai j. By matrix multiplication with the input feature vector a weighted average pooling
across edges of the graph is employed. The diffusion pooling is followed by two 1×1 convolutions
with relu activations. In total we employ two of the described graph convolutions. Final semantic
confidence scores for each node (sampling locations) on the graph are obtained by a 1×1 convolu-
tion with sigmoid activation. As Hough voting has been proven to be effective for locating shapes
in images (Ballard, 1981; Lindner et al., 2015) we accumulate the structured predictions from all
image patches on a dense grid (with C channels, where C corresponds to the number of semantic
classes) and weight each prediction with the corresponding semantic confidence score. Further-
more, each grid point is normalized by the number of predictions made for this point. Note that
by construction the final semantic edge map holds values between 0 and 1 and we can apply our
class-specific similar to our class-agnostic loss as

Lcs =
C−1

∑
i=0

wi(αBCE(ŷ(i),y(i)cs )+βDICE(ŷ(i),y(i)cs )),

where ycs depicts the one-hot encoded semantic ground truth edges, such that pixels can belong to
multiple labels. Classes may be weighted by the parameters wi.

3. Experiments and Results

We validate the feasibility of our approach on two different datasets for the task of semantic edge de-
tection. The first dataset consists of 10 2D coronal slices of abdominal CT scans from VISCERAL
(Jimenez-del Toro et al., 2016) and the second dataset is the JSRT dabase of 247 chest X-ray im-
ages (Shiraishi et al., 2000). As validation metric we use the F-score on the fixed contour threshold
(ODS), where the threshold is determined from all images in the test dataset. Before evaluation the
thresholded predictions are thinned and spurious detections (< 10 pixels) are removed. ODS met-
rics are computed for each semantic class individually and we report the mean value. We compare
our approach against three different 5-Layer UNet implementations (UNet-S, UNet-M, UNet-L).
The UNet-S has a comparable capacity in terms of learnable parameters as our SSPNet, whereas
the UNet-L has almost 2.5 as many parameters.

Implementation Details: All models were trained for 300 and 100 epochs for VISCERAL
and JSRT, respectively. ADAM optimization was used with an initial learning rate of .02. We
employ batch normalization with a mini batch size of 4 and an exponential learning rate schedule
with a multiplicative factor of 0.99 to stabilize training. The images are augmented with a random
affine transformation. The graph for the SSPNet is computed with a σ value of 0.1 and normalized
coordinates. We set the α and β parameters of the loss terms to .001 and 1, respectively. Class
weights were applied corresponding to the organ label occurrences for all experiments with the
UNet variants. During training and at test time we sample patches at 500 and 2000 locations,
respectively. All hyperparameters were determined by grid search for our simplest baseline method
and kept fixed for all further experiments.
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Method Parameters Samples ODS

SSPNet – 1×1 conv. ˜ 500k 2000 .690
SSPNet – GCNN ˜ 500k 2000 .786
SSPNet – 1×1 conv. + coords. ˜ 500k 2000 .801
SSPNet – GCNN + coords. ˜ 500k 2000 .827

UNet-S ˜ 500k dense .769
UNet-M ˜ 900k dense .791
UNet-L ˜ 1300k dense .834

Figure 3: Qualitative and quantitative results on VISCERAL. The images (from left to right: origi-
nal CT slice, ground truth, UNet-L, SSPNet) show edge overlays from seven anatomical
structures: liver , spleen , bladder , left kidney , right kidney , left psoas
major muscle (pmm) and right pmm . Our approach outlines edges of the psoas
muscles much clearer and also detects the urinary bladder.

3.1. VISCERAL

We perform initial experiments on the 10 2D coronal slices of abdominal CT scans from VISCERAL
in a leave-one-out fashion. The images are resampled to an isotropic pixelsize of 1.5mm2 and
cropped to dimensions of 320× 312 without any guidance. We consider ground truth labels for
seven anatomical structures: liver , spleen , bladder , left kidney , right kidney ,
left psoas major muscle (pmm) and right pmm . Besides our described architecture we test
three other baselines of the approach: A SSPNet employing only 1×1 convolutions instead of the
GCNN, the GCNN without sampling coordinates as additional input features and the network of
1×1 convolutions with sampling coordinates as additional features.

Results: Qualitative and quantitative results are depicted in Figure 3. The GCNN outperforms
the network with only 1× 1 convolutions in both cases with and without sampling coordinates as
additional features, although the result is much clearer in the second case (ODS of .690 against
.786). The best SSPNet with an ODS of .827 yields a higher score than the UNet-S and Unet-
M and performs only slightly worse than the UNet-L (ODS of .769, .791 and .834 respectively).
Without class-weighting the UNet variants perform worse with ODS values of .763, .773 and .817,
respectively. In contrast, the SSPNet showed similar results with and without class weighting. The
visual comparison shows a clearer outline of the psosas muscels and a better detection of the unary
bladder in favor of the SSPNet.
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Method Parameters Samples ODS

SSPNet – GCNN + coords. ˜ 500k 2000 .900

UNet-S ˜ 500k dense .874
UNet-M ˜ 900k dense .878
UNet-L ˜ 1300k dense .884

Figure 4: Qualitative and quantitative results on the JSRT chest X-ray database. The images (from
left to right: original X-ray, ground truth, Unet-L, SSPNet) show edge overlays from five
anatomical structures: left lung , right lung , left clavicle , right clavicle
and heart . The UNet misses parts of the edges of the heart whereas our approach
successfully follows informative gradients along its outline.

3.2. JSRT

The JSRT database consists of 247 chest X-ray images that were downsampled to dimensions of
256× 256. A four-fold cross validation was employed to compute the results. We test the SSP-
Net with additional sampling coordinates as input features against the three UNet implementations
UNet-S, UNet-M and UNet-L. Ground truth labels are generated from the provided landmarks for
five anatomical structures: left lung , right lung , left clavicle , right clavicle and heart
.

Results: Qualitative and quantitative results are depicted in Figure 4. The SSPNet yields a
slightly higher OSD score of .900 than the UNet-L with .884, though visual results are mostly
comparable. However, in some cases the UNet misses parts of the edges of the heart whereas the
SSPNet can follow informative gradients along its outline.

4. Discussion and Conclusion

In this work we proposed a new approach for structured prediction for semantic edge detection
from a few sparse sampling locations on an image. To the best of our knowledge the SSPNet is
the first deep learning network that combines structured prediction with CNNs and global context
aggregation with graph convolutions to recover a dense output. In our experiments on VISCERAL
and JSRT we showed that the SSPNet performed better or on par with several UNet variants while
also having the lowest number of trainable parameters.
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For future work, incorporating the SSPNet in an end-to-end learning framework instead of work-
ing with an explicitly trained sample CNN is clearly of high interest. This may be achieved by using
a more complex GCNN model with attention mechanisms, e.g. (Monti et al., 2018), which could
lead the selection of sampling locations. With an extension to 3D volumes, our approach can be
evaluated on medical datasets with stronger memory and computational limitations. While in this
work the focus was on edge detection, other tasks for structured prediction, such as landmark de-
tection in medical images, may also be suited well for our approach.

In conclusion, we showed that our SSPNet is feasible for semantic edge detection in medical
images and we believe that it can be used as a potential alternative to dense encoder-decoder archi-
tectures for general pixel-level image tasks in deep learning.
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