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Abstract
We propose a novel variational autoencoder (VAE) framework for learning representations of cell
images for the domain of image-based profiling, important for new therapeutic discovery. Previ-
ously, generative adversarial network-based (GAN) approaches were proposed to enable biologists
to visualize structural variations in cells that drive differences in populations. However, while the
images were realistic, they did not provide direct reconstructions from representations, and their
performance in downstream analysis was poor.

We address these limitations in our approach by adding an adversarial-driven similarity con-
straint applied to the standard VAE framework, and a progressive training procedure that allows
higher quality reconstructions than standard VAE’s. The proposed models improve classification
accuracy by 22% (to 90%) compared to the best reported GAN model, making it competitive with
other models that have higher quality representations, but lack the ability to synthesize images.
This provides researchers a new tool to match cellular phenotypes effectively, and also to gain
better insight into cellular structure variations that are driving differences between populations of
cells.
Keywords: Image-based Profiling, Variational Auto-Encoder, Adversarial Training, Biological In-
terpretability, Fluorescence Microscopy

1. Introduction

Microscopy images provide rich information about cell state. Image-based profiling—an approach
where images of cells are used as a data source—is a powerful tool with several applications in drug
discovery and biomedicine (Caicedo et al., 2016).

Cell samples are treated using chemical or genetic perturbations, then stained using fluorescent
markers, and imaged under a microscope. Image-based profiles of these genes or compounds are
created by summarizing the single-cell level information extracted from these images. When exe-
cuted using high-throughput technologies, this framework can be used to generate profiles of tens
to hundreds of thousands of perturbations.
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Creating profiles that accurately capture variations in cellular structure is an open problem
(Caicedo et al., 2016). Central to this problem is the task of generating representations of single
cells, which can then be appropriately summarized into a profile representing the population (e.g.
as the mean of the individual cell representations). In recent years, several methods have been
proposed for generating single cell representations, spanning both feature engineering approaches
(Ljosa et al., 2013), as well as feature learning using deep neural networks (Ando et al., 2017;
Caicedo et al., 2018; Pawlowski et al., 2016; Godinez et al., 2017, 2018). While the resulting pro-
files perform well in downstream analysis, none are able to provide much biological insight into
what cellular structure variations are important for discerning phenotypes (i.e. visible appearance).
This lack of insight hinders a better understanding of what drives similarities or differences between
perturbations.

Recently, generative adversarial networks (GANs) were shown to learn feature representations
(Goldsborough et al., 2017), while also to synthesize cell images to help biologists visualize salient
phenotypic variations. However, while the images generated were highly realistic, the accuracy of
resulting profiles was relatively poor, and a direct reconstruction from the learned representations
was not possible.

Here, we propose using an adversarial-driven similarity constraint applied to the standard varia-
tional autoencoder (VAE) framework (Kingma and Welling, 2014) that addresses these limitations:
(1) VAEs enable direct reconstruction given a feature representation, (2) our proposed model is
demonstrably better in learning representations for profiling applications, and (3) our proposed
training procedure allows higher quality reconstructions than standard VAEs, making the visual-
izations comparable with previous GAN models.

By proposing a novel training procedure for learning representations of single cells, we provide
researchers a new tool to match cellular phenotypes effectively, and also to gain greater insight into
cellular structure variations that are driving differences between populations, offering insights into
gene and drug function.

2. Related Work

Image-based profiling measures multiple phenotypic features of single cells to characterize the ef-
fect of drugs or the function of genes. The phenotypic features can be obtained by engineering
representations that capture known relevant properties of cell state, such as cell size. Previous stud-
ies using feature engineering approaches demonstrate that profiles generated using standard feature
sets in bioimaging software (e.g. CellProfiler (McQuin et al., 2018)) are successful in grouping
compounds based on mechanism-of-action (Ljosa et al., 2013; Perlman et al., 2004; Young et al.,
2008; Reisen et al., 2015; Ochoa et al., 2015), grouping genes into pathways (Ohya et al., 2005;
Fuchs et al., 2010; Rohban et al., 2017), predicting genetic interactions (Horn et al., 2011; Laufer
et al., 2013, 2014; Rauscher et al., 2018), and several other applications (Caicedo et al., 2016).

Deep convolutional neural networks (CNN) have been evaluated for computing cellular features
using models pretrained on natural images. A deep metric network trained on a large collection
of consumer images was evaluated (Ando et al., 2017) for predicting mechanism-of-action in the
BBBC021 benchmark dataset (used in this paper), as were CNNs trained on the ImageNet dataset
(Pawlowski et al., 2016). Both gave competitive results without requiring cell segmentation or
image preprocessing.
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Representations can be learned directly from biological images. Multiple instance learning
and supervised learning using mechanism-of-action labels directly have been used to train neural
networks that process full images without segmentation (Godinez et al., 2017; Kraus et al., 2016).
Given that ground truth labels are rarely available for training in high-throughput projects, other
strategies that require less supervision have also been explored. Weakly supervised learning using
treatment replicates has been proposed to learn single-cell feature embeddings for profiling (Caicedo
et al., 2018), and a similar technique has been developed for full fields of view (Godinez et al., 2018).

However, these approaches encode cellular features without an explicit mechanism for interpret-
ing phenotypic variations, a major limitation for many applications in biology. Goldsborough et al.
(2017) proposed to tackle this problem using the CytoGAN model to generate explanatory visualiza-
tions of cell variations between two treatments, but the models do not allow direct reconstructions,
and have relatively poor classification accuracy on at least one benchmark dataset (BBBC021).

Unlike GAN models, autoencoder (AE) models are optimized to learn embeddings that can
directly produce good reconstructions, and were successfully applied on cell images (Ruan and
Murphy, 2018; Johnson et al., 2017). In particular, the variational autoencoder (VAE) framework
(Kingma and Welling, 2014) implies a constraint on the embedding that produces some desired
properties: smooth embedding interpolation (Johnson et al., 2017) and disentanglement of genera-
tive factors (Higgins et al., 2016). To improve the limited reconstruction quality of standard VAE
models, some methods involving adversarial training were proposed (Larsen et al., 2016; Donahue
et al., 2017; Dumoulin et al., 2016; Rosca et al., 2017). Here we propose to follow the concept
proposed by Larsen et al. (2016) to address the requirements of the cell profiling pipeline (Caicedo
et al., 2017), while allowing high-quality reconstructions from the embeddings.

3. Material and Methods

3.1. Datasets

We use the BBBC021 dataset, a popular benchmark for image-based profiling that has been adopted
in several studies, mostly for evaluating assignment of chemicals to mechanisms-of-action using
the leave-one-compound-out evaluation protocol (Ljosa et al., 2013). The dataset is from a high-
throughput experiment performed in multi-well plates; each plate has 96 wells, and in each well, a
sample of cells has been treated with a compound at a specific concentration.

The subset used in all profiling experiments, including ours, has 103 unique treatment conditions
(i.e. compounds at a specific concentration) representing 12 mechanisms-of-action (Ljosa et al.,
2012). After treatment with a given compound, the cells were stained using fluorescent markers for
DNA, F-Actin and β -Tubulin and imaged under a microscope, capturing four 3-channel images for
each well, and approximately one million cells across the entire dataset. These channels are stacked
and treated as RGB images by mapping DNA 7→ R,β -Tubulin 7→ G,F-Actin 7→ B.

3.2. The VAE framework

In this study, we are interested in methods that can directly generate low-dimensional embeddings
z and reconstructions x̃ of given input images x. Therefore we chose the VAE framework as a
baseline (Kingma and Welling, 2014). VAE models consist of an encoder convolutional neural
network (CNN) that models an approximation of the posterior qφ (z|x) on the latent z, parameterized
by φ , and a decoder CNN that models the likelihood of the data pθ (x|z), parameterized by θ .
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Figure 1: Flowchart of CNN models. The auto-encoder (blue-framed components) describes the
original VAE formulation. The adversarial-driven reconstruction losses are illustrated by
the representation learned by the discriminator (red-framed images).

The model is then optimized by maximizing a lower bound on the marginal log likelihood of the
data L VAE(x,z;θ ,φ) =Ez∼qφ (z|x) [log pθ (x|z)]−β ·DKL

(
qφ (z|x) || p(z)

)
, with p(z) a defined prior

distribution to constrain the embeddings, DKL the Kullback-Leibler divergence, and β an hyper-
parameter controlling the strength of this constraint (Kingma and Welling, 2014; Higgins et al.,
2016).

3.3. Transition from Pixel-Wise to Adversarial-Driven Reconstructions

The limited reconstruction quality of standard VAE models can be explained by the pixel-wise
reconstruction objective related to the Gaussian observation process modeled by pθ (x|z) (Larsen
et al., 2016; Mathieu et al., 2016).

Learned similarity As proposed by Larsen et al. (2016), we define a discriminator CNN D with
parameters χ that is trained to classify real images x from independent reconstructions x̃. The
discriminator outputs the probability for the input to originate from the distribution of real images
and is optimized via minimization of the binary cross-entropy.

The activations resulting from the hidden layers of the discriminator Di (x) and Di (x̃) are used as
additional, synthetic Gaussian observations, with i the layer indices. These observations are drawn
from pχ (Di(x)|z), modeled as normal distributions with means Di(x̃) and identity covariances. We
thus define additional reconstruction losses L D

i (x,z;θ ,φ ,χ) = Ez∼qφ (z|x)
[
log pχ(Di(x)|z)

]
for ev-

ery hidden layer i of the discriminator. Figure 1 illustrates how the different losses of the framework
arise in the full model pipeline.

Progressive Training We conjecture that the reconstruction term in L VAE should not be dis-
carded and that the additional losses L D

i can be all used to compensate the limited reconstruction
ability induced by L VAE, as opposed to the formulation of Larsen et al. (2016). Therefore, we
propose to use L VAE+L D as the full objective for the encoder and decoder with L D = ∑i γi ·L D

i ,
and (γi) a set of parameters to control the contribution of each reconstruction loss.
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For stability purposes when dealing with adversarial training Karras et al. (2018), we chose to
define the γi(t) as a function of the iteration step t. By defining γi(t) = min(1,max(0, t/T − i)),
we induce a progressive training procedure, such that the abstraction levels of the discriminator
contribute sequentially to L D. T is thus the hyper-parameter defining the period between two
losses L D

i and L D
i+1 to contribute to the final objective.

3.4. Model Architectures

The encoder takes image patches of size 68× 68 as input, and estimates the mean and standard
deviation of the Gaussian posterior, that allow sampling an embedding of size 256 using the repa-
rameterization trick Kingma and Welling (2014).

The encoder, decoder and discriminator have four convolution layers with filters of size 5× 5,
with an additional 1×1 layer for the last layer of the decoder and an additional fully connected layer
for the discriminator. Leaky Rectified Linear Units (coefficient 0.01) and max-pooling/up-sampling
layers were used throughout the CNNs, except for the last layer of the discriminator, which is
activated by a sigmoid.

The decoder is a mirrored version of the encoder, by using transposed convolutions followed
by 2× 2 up-sampling layers. Batch normalization (BN) layers were used throughout the CNNs,
and the BN moments for the discriminator were computed only using batches balanced with in-
put reconstructions and independent real images. The implementation of the model is available at
https://github.com/tueimage/cytoVAE.

4. Experiments and Results

4.1. Experiments

We investigated three variations of the proposed model for comparison purposes. We trained stan-
dard AE and VAE models by setting the parameter β to 0.0 and 1.0 respectively while excluding
L D from the full objective. The proposed model (VAE+) was trained using the full objective (see
Sect. 3.3), β was set to 2.0 to compensate the additional reconstruction losses, and T was set to
2500 iterations.

Mini-batches were built by sampling a random image patch from each treatment of the dataset.
Every channel of the image patches was normalized by its maximum intensity. Two independent
mini-batches B1 and B2 were used at every iteration: B1 was used to compute L VAE through the
encoder-decoder, B2 was paired with the reconstructions of B1 to train the discriminator. Finally, B1

and its reconstructions were used to compute L D.
We used the Adam optimizer to train the encoder and decoder (learning rate 0.001; momentum

0.9), and Stochastic Gradient Descent with momentum (learning rate 0.01; momentum 0.9) to train
the discriminator. All the convolutional weights were regularized with weight decay (coefficient
0.0001). Training was stopped after 40,000 iterations.

4.2. Creating Profiles and Classifying Compounds

Given images of cells treated with a compound (the input), the challenge in the BBBC021 dataset is
to predict the mechanism-of-action (the label) of the compound. Centers of each cell were precom-
puted using CellProfiler (McQuin et al., 2018) and were used to extract patches. Representations
of these patches were generated using the trained models. Given a representation per cell, a profile
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Table 1: Classification Accuracy of the compared models. Mean result± standard deviation across
3 repeated experiments with random initialization and random input sampling. The num-
bers in bold indicate the method-summarization combination that was best performing for
each hold-out procedure (NSC and NSCB).

Method Mean
Mean

+Whitened
Mean+S.D.

Mean+S.D.
+Whitened

NSC

VAE+ 90.6±1.5 90.3±1.0 92.2±1.7 92.9±2.4
VAE 83.5±1.0 80.6±4.4 90.9±1.1 87.1±0.6
AE 87.6±2.0 92.2±1.0 90.3±0.0 92.5±0.6
Ando et al. N.A 96.0 N.A N.A
Singh et al. 90.0 N.A N.A N.A

NSCB

VAE+ 71.0±1.2 76.1±1.1 72.5±2.3 82.2±2.6
VAE 68.8±0.6 69.9±5.1 74.6±0.6 71.0±0.6
AE 75.0±2.0 79.0±0.6 76.8±0.7 80.8±1.7
Ando et al. N.A 95.0 N.A N.A
Singh et al. 85.0 N.A N.A N.A

for each well was computed as the average of all the cells in that well. Next, the profile for each
unique treatment (a compound at a specific concentration) was computed by computing the median
of all wells with that treatment. Treatments were classified using 1-nearest-neighbors, using one
of two hold-out procedures as proposed by Ando et al. (2017): (1) Not-Same-Compound (NSC),
where all profiles of the same compound (regardless of concentration) were held out, and (2) Not-
Same-Compound-and-Batch (NSCB), where in addition to NSC constraints, profiles from the same
experimental batch where held out.

NSCB indicates how sensitive the profiling method is to variations across experimental batches;
better NSCB performance indicates better resilience to batch variations. Ando et al. (2017) trans-
formed the profiles on a given plate using a whitening transform learned from the control wells on
that plate, which improved NSCB performance; we tested this procedure (indicated by “Whitened”
in Table 1). Further, Rohban et al. (2017) created profiles by summarizing using standard deviations
as well as means; we tested this approach (indicated by “Mean+S.D.” in Table 1).

4.3. Results

4.3.1. CLASSIFICATION PERFORMANCES

The proposed VAE model (VAE+ in Table 1) significantly outperforms the best GAN-based models
(68% NSC; NSCB unavailable), which is the only model to our knowledge that can provide recon-
structions. Further, whitening consistently improves accuracy across all configurations where mean
is the summary statistic, and for some where both mean and S.D. are used as summary statistics.
The VAE+ model, with mean + S.D. summaries followed by whitening (last column) performs sim-
ilarly to the best performing classical approach (90% NSC; 85% NSCB Singh et al. (2014)). While
none of these models, including VAE+, achieve classification performance as high as the best per-
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Original VAE AE VAE+

Figure 2: Comparison between original images of four randomly sampled single cells, and their
reconstructions produced via different auto-encoders.

forming deep-learning-based model (96% NSC; 95% NSCB Ando et al. (2017)), they nonetheless
provide valuable insight (discussed below) into the variations in cellular morphologies that underlie
the similarities and differences between the treatment conditions. Finally, we observe that the AE
model implemented performed very similarly to VAE+. The VAE+ reconstructions are however
superior to AE, making the former overall better suited for profiling applications.

4.3.2. VISUALIZING STRUCTURAL VARIATIONS IN CELL PHENOTYPES

The proposed VAE+ model produces the most realistic images (Figure 2); both AE and VAE images
are consistently blurrier than VAE+ images. Similar to Goldsborough et al. (2017), we assessed the
quality of reconstructed images by presenting three expert biologists with 50 real cell images and 50
cells reconstructed using VAE+. The cells were balanced across the available treatments, including
controls and the biologists were blinded with respect to this treatment information. Images were
randomly shuffled and presented to experts to assess whether each cell was real or synthetic. On
average, 40.7% of the time the synthetic cells were realistic enough to deceive the experts into
labeling them as real, compared to 30% previously reported with GANs (Goldsborough et al., 2017).

The ability to interpolate between real cells from different treatment conditions and produce
realistic images is powerful tool to visualize how a compound affects cellular structure (Figure 3).
Compounds from different mechanisms induce visually distinct phenotypes. Interpolating between
a control cell and a treated cell presents a hypothetical path in phenotypic space that the cell may
have taken to arrive at the observed (target) state. Verifying these hypotheses would require further
followup experiments. Regardless, these visualizations give valuable insight into how each com-
pound is affecting cellular structure. For instance, an actin disrupting chemical (cytochalasin D)
appears to make the cells smaller, with both actin and tubulin condensing more tightly and symmet-
rically around the nucleus. A cholesterol lowering chemical (simvastatin) has a similar effect but
makes the tubulin more asymmetric. Both results match expectations and inspection of real images.

However, we noticed one interesting anomaly when exploring a case where VAE+ correctly
classified a drug and AE did not (recall their overall classification accuracies across all classes are
similar (Table 1)). For the drug Nocodazole, a known microtubule destabilizer, AE yields a blurry
reconstruction of tubulin while VAE+ yields a more accurate texture (Figure 4). Upon inspection
of randomly sampled cell images, however, it becomes clear that neither representation is able to
capture the distinctive fragmented nucleus phenotype caused in some cells by Nocodazole. We sus-
pect that the selection of the target cell is thus a crucial choice in the proposed strategy, particularly
when a population of cells shows two very distinct types of appearances.
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Actin Disruptor (cytochalasin D 0.3μM)

Cholesterol Lowering (simvastatin 20.0μM)

0.22 0.34 0.44 0.54 0.63 0.70 0.76 0.80 0.92 0.90

0.30 0.43 0.57 0.66 0.73 0.77 0.80 0.84 0.87 0.89

Figure 3: Translation in VAE+ latent space of a control cell (left) to target cells (right) correspond-
ing to compounds with different mechanisms-of-action. The target cell is the one closest
to the mean of the compound. Each interpolation step is a shift of features with highest
absolute difference w.r.t. the target features. Cosine similarity between the embedding of
an image and its target is shown below each.

  

Real Cell VAE+ AE

Control Nocodazole (3μM)

Real cells randomly sampled from Nocodazole (3μM)

Figure 4: VAE+ captures β -tubulin structure better (less blurry) and correctly identifies Nocodazole
as a microtubule destabilizer. AE incorrectly classifies it as an actin disruptor. However,
neither captures the fragmented nucleus phenotype seen in a fraction of cells’ real images
(right).

5. Conclusions and Discussion

We proposed an auto-encoding approach competitive with other unsupervised learning approaches
while overcoming the challenge of high quality reconstructions.

We introduced adversarial-driven representation learning for the problem of image-based profil-
ing using a straightforward extension of the VAE framework, by proposing a generic method inline
with the work of Larsen et al. (2016). Some methods are other plausible solutions for this task, such
as Adversarially Learned Inference Dumoulin et al. (2016) and are worth investigating for future
work.

The unsupervised training context explains the limited classification performances reported
here, but could be improved when combined with more effective approaches (weakly/fully super-
vised training).

This model offers researchers a powerful tool to probe the structural changes in a cell induced
by genetic and chemical perturbations, or even disease states. This is a step towards filling the gap
of interpretability in image-based profiling approaches: to reveal not just which perturbations are
similar or different, but also to provide clues about the underlying biology that makes them so. We
identified room for improvement in capturing phenotypes for very heterogeneous cell populations.
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The proposed strategy may be applied to other domains in biomedical imaging that require capturing
phenotypic variations, particularly detecting, understanding, and reversing disease.
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