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Abstract
Deep learning methods have shown great success in segmenting the anatomical and pathologi-

cal structures in medical images. This success is closely bounded with the quality of the images in
the dataset that are being segmented. A commonly overlooked issue in the medical image analysis
community is the vast amount of clinical images that have severe image artefacts. In this paper, we
discuss the implications of image artefacts on cardiac MR segmentation and compare a variety of
approaches for motion artefact correction with our proposed method Automap-GAN. Our method
is based on the recently developed Automap reconstruction method, which directly reconstructs
high quality MR images from k-space using deep learning. We propose to use a loss function
that combines mean square error with structural similarity index to robustly segment poor-quality
images. We train the reconstruction network to automatically correct for motion-related artefacts
using synthetically corrupted CMR k-space data and uncorrected reconstructed images. In the ex-
periments, we apply the proposed method to correct for motion artefacts on a large dataset of 1,400
subjects to improve image quality. The improvement of image quality is quantitatively assessed
using segmentation accuracy as a metric. The segmentation is improved from 0.63 to 0.72 dice
overlap after artefact correction. We quantitatively compare our method with a variety of tech-
niques for recovering image quality to showcase the influence on segmentation. In addition, we
qualitatively evaluate the proposed technique using k-space data containing real motion artefacts.
Keywords: Cardiac MR Segmentation, Image Quality, Image Artefacts, Image Artefact Correc-
tion, Deep Learning, UK Biobank, Automap

1. Introduction

Image segmentation is an extensively investigated problem in medical imaging, for which deep
learning methods have demonstrated considerable success (Litjens et al., 2017). In general, neural
network architectures are trained using controlled databases, but their performance does not always
translate to clinical data in practice. Variability of image acquisition protocols, the presence of
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pathology (Shao et al., 2018) and image artefacts (Oksuz et al., 2018b) can all cause low segmen-
tation accuracy. In particular for cardiac magnetic resonance (CMR) images, which can contain a
variety of different imaging artefacts (Ferreira et al., 2013), it is often difficult to segment structures
and extract cardiac indices using trained neural networks on data ‘in the wild’, which hinders the
translation of deep learning models into clinical practice. In this work, we first highlight the low
segmentation accuracy when the original image is of low quality. We then propose a pipeline to
improve the image quality, which translates into improved accuracy in the subsequent segmentation
task. We compare a wide range of methods that can address the problem of image quality in CMR
imaging. For poor quality CMR images, ground truth segmentations are usually not available, and
traditionally, these low quality images are excluded from further analysis, leading to the need to
recall patients to reacquire images. In the context of cohort studies, excluding individual subjects
diminishes the research value of the evaluation.

(a) Original Image (b) Corrupted Image (c) WIN5 (d) Proposed

(e) Original Mask (f) Corrupted Mask (g) WIN5 Mask (h) Proposed Mask

Figure 1: Image quality is a prerequisite for high segmentation accuracy. The segmentation accu-
racy of the state-of-the-art network (Bai et al., 2018) drops with degradation of image
quality (e,f). Our proposed method is able to generate high quality images (d), which
improves the segmentation (h) compared to a state-of-the-art image denoising technique
(Liu and Fang, 2017) (c,g)

Common motion artefacts in CMR manifest as temporal and/or spatial blurring of the images,
which makes subsequent processing difficult (Ferreira et al., 2013). Examples of a good quality
image and a synthetically motion-corrupted image are shown in Fig.1a and 1b for a short-axis view
CINE CMR scan. Applying a state-of-the-art CMR segmentation algorithm (Bai et al., 2018) on
these images, one can see that the method is capable of segmenting the left ventricle, myocardium
and right ventricle with considerable success when the original image is of good quality (Fig.1e).
However, when the image quality is reduced using a synthetic corruption strategy proposed in (Ok-
suz et al., 2018b), the segmentation performance diminishes (Fig.1f). To improve the image quality
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we use an end-to-end image artefact correction algorithm that uses k-space input. Our algorithm
outputs high quality images (Fig.1d) and correspondingly improved segmentations (Fig.1h) com-
pared to state-of-the-art image denoising techniques (Liu and Fang, 2017) (Fig.1c and g).

Our approach is based on automatically correcting for artefacts during the reconstruction process
based on our previous work (Oksuz et al., 2018a). We use a deep neural network for correcting
artefacts and evaluate our method on a synthetic dataset of 1400 2D+time CMR images from the
UK Biobank (Petersen et al., 2015). We also evaluate the performance on real artefact cases to
demonstrate the performance of our method. There are three major contributions of this work.
First, we illustrate the implications of low image quality on CMR segmentation in an extensive
study. Second we propose to use motion artefact correction directly from k-space using a novel loss
function. Finally, we provide a thorough investigation on the influence of using different artefact
correction mechanisms on CMR segmentation.

2. Background

Deep learning techniques have been utilized for segmentation problems with high success (Litjens
et al., 2017). However the influence of variability in acquisition protocols, pathology and image
artefacts is an often overlooked problem. In a recent work Shao et al. (2018) showed the shortcom-
ings of deep learning in the presence of pathology for brain MRI segmentation with an emphasis on
the selection of training data.

Estimating high quality images from corrupted (or under-sampled) k-space has been a more
investigated subject in the literature (Han and Ye, 2018). The problem can be addressed either in
the k-space domain or the image domain. One choice is to correct the k-space before applying the
inverse Fourier transform (IFT) as proposed by Han and Ye (2018). A more common approach is
to use the IFT on k-space and learn a mapping between the corrupted reconstructed images and
good quality images. To this end a variety of image denoising techniques can be utilized such as
autoencoders (Xie et al., 2012), residual learning networks (Zhang et al., 2017) or wide networks
(Liu and Fang, 2017).

In the context of CMR artefact correction, early works focused on changes in acquisition schemes
(Saremi et al., 2008) and analytical methods for motion artefact reduction (Kim et al., 2008). For
automatic correction of the CMR, Lötjönen et al. (2005) used short-axis and long-axis images to
optimize the locations of the slices using mutual information as a similarity measure. More recently
deep learning methods have been utilized to accelerate MR image acquisition by using undersam-
pling in k-space. Schlemper et al. (2018a) proposed to use a deep cascaded network to generate
high quality images. In a more recent work the authors proposed to use deep latent representations
for myocardial segmentation from low quality images (Schlemper et al., 2018b). Hauptmann et al.
(2019) proposed to use a residual U-net to reduce aliasing artefacts due to undersampling with the
purpose of accelerating image acquisition. Our work differs from these works, which rely on a
relatively small number of accurate k-space profiles, since the k-space of motion corrupted images
does not necessarily have accurate profiles, or if it does we do not know a priori which ones they
are. To the best of our knowledge our work is the first work that has investigated the influence of
motion artefacts and correction strategies on CMR segmentation.

382



HIGH-QUALITY SEGMENTATION OF LOW QUALITY CARDIAC MR IMAGES

3. Methods

The proposed framework of using a deep neural network for motion artefact correction on k-space
data is based on a generative-adversarial network setup. Our aim is to train a successful generator
to reconstruct good quality images from motion artefact corrupted k-space data similar to (Oksuz
et al., 2018a) but with a novel loss function.

3.1. Network Architecture

The proposed Automap-GAN algorithm follows an adversarial setup and consists of a generator
and a discriminator. The generator network follows a similar architecture to (Zhu et al., 2018),
which was originally developed for image reconstruction using domain specific information. In our
case we additionally use a discriminator to increase the robustness and realism of the reconstructed
images. The input to the network is a complex n-by-n k-space matrix, which we concatenate into a
(2× n× n)-by-1 vector. We then use two fully connected layers: FC1 with 2× n× n neurons and
FC2 with n× n neurons. The output from FC2 is reshaped and two convolutional layers with 64
filters and 5×5 filter size are used. After that a deconvolutional layer with 64 filters of size 7×7 is
applied and finally a 1×1 layer is used to aggregate the results into an image.

The discriminator takes a generated image or a real image as input and uses two convolutional
layers and a final dense layer for classification. The final output of the discriminator is a decision
as to whether the generated image looks real or fake. By using outputs of the generator (artefact
corrected images) and the real images from the dataset the discriminator is trained to distinguish
between the artefact corrected images and high quality images. The loss function for the model
uses a combination of mean squared error and structural similarity index between the predicted and
real images as detailed in Section 3.2.

3.2. Loss function

We use a combination of two loss functions following the idea proposed in (Zhao et al., 2017). The
mean squared error (MSE) loss is defined as:

LMSE =
1

Np

Np

∑
p=0

(Ix(p)− Iy(p))2

where p denotes each pixel and Np denotes the total number of pixels in images Ix and Iy.
Alongside this measure, we also computed the structural similarity index (SSIM) (Wang et al.,

2004). SSIM has been shown to provide sensitivity to structural information and texture. The SSIM
between two images is defined as follows for any image regions x and y:

SSIM(p) =
(2µxµy + c1)(2σxy + c2)

(µ2
x +µ2

y + c1)(σ2
x +σ2

y + c2)

where µx and µy are the average intensities for regions x and y, σx and σy are variance values for
regions x and y, σxy is the covariance of regions x and y and c1 and c2 are constant values for
stabilizing the denominator. The SSIM loss for every pixel p defined as:

LSSIM =
1

Np

Np

∑
p=0

1−SSIM(p)
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and the combined loss is defined as:

Ltotal = αLMSE +(1−α)LSSIM

3.3. Implementation Details

The parameters of the convolutional and fully-connected layers were initialized randomly from
a zero-mean Gaussian distribution and trained until no substantial progress was observed in the
training loss. In this study, we use the RMSprop optimizer to minimize the loss. One important
aspect during training is the activity regularizer, which is used after the deconvolutional layer. In our
implementation, we first trained without this regularizer, finding that including it early in training
led to the loss being trapped in poor local minima. Once training converged without the regularizer,
it was then added, which led to the generation of sharper looking images.

The training was stopped early if no significant improvement was observed. An improvement
was considered significant if the relative increase in performance was at least 0.5% over 20 epochs.
To better generalize the model we applied data augmentation by rotating images in increments of
90 degrees. We also found that the success of our implementation was highly sensitive to the choice
of learning rate, which we set to be 2×10−5. The α parameter balancing the MSE and SSIM losses
was set at 0.6 for all experiments.

During training, a batch-size of 30 2D k-space datasets was used. We used the Keras Framework
with Tensorflow backend for implementation and training the network took around 3 days on a
NVIDIA Quadro 6000P GPU. Segmentation of a corrected single image sequence took around 2
seconds once the network was trained.

4. Experimental Results

We evaluated our algorithm on a subset of the UK Biobank dataset consisting of 148 good quality
CINE CMR acquisitions. 50 temporal frames from each subject at mid-ventricular level were used
to generate synthetic motion artefacts. We used 5400 2D images for training, 600 for validation and
1400 images for testing and these three sets were not over-lapping. The data were chosen to be free
of other types of image quality issues such as missing axial slices and were visually verified by an
expert cardiologist. The details of the acquisition protocol of the UK Biobank dataset can be found
in (Petersen et al., 2015). All images were preprocessed to extract a 128× 128 pixel region and
were segmented using the pre-trained CNN proposed in (Bai et al., 2018).

4.1. K-space corruption for synthetic data

We generated k-space corrupted data in order to simulate motion artefacts. We followed a Cartesian
sampling strategy for k-space corruption to generate synthetic but realistic motion artefacts (Oksuz
et al., 2018b). We first transformed each 2D short axis sequence to the Fourier domain and changed
1 in 3 Cartesian sampling lines to the corresponding lines from other cardiac phases to mimic motion
artefacts. We added a random frame offset when replacing the lines. In this way the original good
quality images from the training set were used to generate corresponding CMR artefact images.
This is a realistic approach as the motion artefacts that occur from mis-triggering often arise from
similar misplacement of k-space lines.

384



HIGH-QUALITY SEGMENTATION OF LOW QUALITY CARDIAC MR IMAGES

4.2. Results on synthetic dataset

Methods of comparison: We compared our algorithm with a variety of artefact correction strategies
to produce robust segmentation results with the state-of-the-art segmentation network (Bai et al.,
2018). The methods of comparison cover all possible combinations of motion artefact correction in
k-space and the image domain. For image-to-image to artefact removal (i.e. post-reconstruction)
we used a convolutional autoencoder (Xie et al., 2012) (CAE), a deep network based on residual
learning (DNCNN) and a wide network with larger receptive fields and more channels in each layer
as proposed in (Liu and Fang, 2017) (WIN5). For k-space to k-space artefact correction, we adopted
the algorithm of Han and Ye (2018), which was originally proposed for accelerating MR acquisition.
All of the methods used for comparison were trained with the proposed MSE/SSIM loss function.
In addition to these methods we also used a variant of our algorithm, which only used MSE loss, to
evaluate the influence of the combined loss function.

Qualitative evaluation: We show example segmentations achieved by different correction
strategies together with the ground truth image in Figure 2. The improved image segmentation
quality can be visualized for our proposed method in comparison to image-to-image denoising tech-
niques.

(a) CAE (b) DNCNN (c) WIN5 (d) Proposed (e) Original

Figure 2: Synthetic dataset segmentation results after applying different artefact correction methods
for an example case. CAE (a), DNCNN (b), WIN5 (c), proposed method (d) and ground
truth segmentation (e). The proposed method is able to generate the best segmentation
masks.

Quantitative evaluation: To quantitatively evaluate performance we used three metrics of left
ventricular myocardium segmentation accuracy. We first computed the Dice overlap measure, which
is defined between two regions A and B as:

D(A,B) =
2‖A∩B‖
‖A‖∪‖B‖

.

We also computed the mean contour distance (MCD) and Hausdorff distance (HD) to evaluate
the mean and the maximum distances respectively between the segmentation contours CA and CB.
These are defined as,

MCD(A,B) =
1

2CA
∑

p∈CA

d(p,CB)+
1

2CB
∑

p∈CB

d(p,CA)

HD(CA,CB) = max{max
a∈CA

min
b∈CB

d(a,b), min
b∈CB

max
a∈CA

d(a,b)}
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Table 1: Mean Dice, MCD and HD results of segmentation after motion artefact correction with
various methods using the network output as ground truth.

Dice MCD HD
Corrupted 0.635 ± 0.027 2.583 ± 1.078 6.213 ± 2.712
K-space (Han and Ye, 2018) 0.645 ± 0.038 2.214 ± 1.205 5.971 ± 2.587
CAE (Xie et al., 2012) 0.653 ± 0.041 2.109 ± 1.011 5.602 ± 2.210
DNCNN (Zhang et al., 2017) 0.662 ± 0.034 2.071 ± 0.832 5.582 ± 2.001
WIN5 (Liu and Fang, 2017) 0.681 ± 0.018 1.966 ± 0.818 5.404 ± 1.818
Proposed-MSE (Oksuz et al., 2018a) 0.679 ± 0.015 1.932 ± 0.918 4.968 ± 1.718
Proposed-Combined Loss 0.722 ± 0.014 1.829 ± 0.914 4.811 ± 1.521

where d represents the distance between points a ∈CA and b ∈CB. Note that we report results for
the myocardial region only for brevity. Similar results were observed for the right and left ventricle
cavities.

Table 1 shows the Dice segmentation accuracies for the segmentation masks produced by the
segmentation network using the output of each image artefact correction algorithm. For these ex-
periments the ground truth was the myocardium segmentation that was generated using the network
on the original uncorrupted data. The proposed adversarial Automap technique is capable of cor-
recting motion artefacts and enabling high segmentation accuracy compared to the other techniques
in both mid-ventricular slices and over all slices. We can also see that the image-to-image denoising
techniques have enabled better segmentation performance compared to k-space based artefact cor-
rection. The combined MSE and SSIM loss improves segmentation performance compared to the
MSE loss alone.

In Table 2, we report the Dice, MCD and HD scores, but this time using as ground truth the
expert annotated masks at end-systole and end-diastole phases. Again, the adversarial Automap
technique was capable of correcting motion artefacts and enabling high accuracy of segmentation
compared to the other techniques. In general, segmentation performance was a bit lower compared
to Table 1. This is due to the fact that the ground truth segmentations have a mean Dice score
of 0.912 with the segmentations from the original images (i.e. produced by (Bai et al., 2018)) as
illustrated in Table 2.

4.3. Qualitative results on real motion artefact case

To illustrate the performance of our technique on artefact correction, we applied it to a dataset from
the UK Biobank containing real mis-triggering artefacts (i.e. not synthetically corrupted). This
dataset could not be segmented by the expert cardiologists due to severe motion artefacts. The
visual segmentation and image quality results are illustrated in Figure 3, which shows improved
image quality and CMR segmentation with the network especially in the left ventricular blood pool.

5. Discussion and Conclusion

In this paper, we have evaluated the influence of a variety of image artefact correction mechanisms
on CMR segmentation accuracy. We have proposed an architecture with a combined MSE and
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Table 2: Mean Dice, MCD and HD results of segmentation after motion artefact correction with
various methods using the expert annotated mask as ground truth.

Dice MCD HD
Original Images (Bai et al., 2018) 0.912 ± 0.027 0.876 ± 0.497 2.583 ± 0.625
Corrupted 0.590 ± 0.053 2.691 ± 1.184 6.587 ± 2.018
K-space (Han and Ye, 2018) 0.613 ± 0.032 2.304 ± 1.004 6.021 ± 1.907
CAE (Xie et al., 2012) 0.641 ± 0.040 2.184 ± 1.118 5.819 ± 1.820
DNCNN (Zhang et al., 2017) 0.657 ± 0.047 2.182 ± 0.972 5.712 ± 1.576
WIN5 (Liu and Fang, 2017) 0.676 ± 0.038 2.032 ± 0.808 5.481 ± 1.471
Proposed-MSE (Oksuz et al., 2018a) 0.671 ± 0.037 2.018 ± 0.701 5.261 ± 1.487
Proposed-Combined Loss 0.696 ± 0.027 1.958 ± 0.674 5.161 ± 1.107

(a) Artefact Image (b) Proposed (c) Artefact mask (d) Proposed mask

Figure 3: Example of a mis-triggering artefact and its segmentation from the UK Biobank dataset.
Artefact image (a), corrected image with proposed method (b), segmentation of artefact
image (c) and segmentation after proposed correction (d). The proposed method is able
to correct the motion artefacts and improve segmentation especially inside the left ven-
tricular blood pool. (The ground truth segmentation does not exist for this dataset.)

SSIM loss to achieve high segmentation accuracy. We have shown that low image quality has a
deteriorating influence on image segmentation pipelines, which should be taken into account. Our
method has great potential to address the problem of low segmentation accuracy on clinical data,
which is likely to contain more motion corruption compared to the UK Biobank data. One limitation
is the high memory requirements of our technique to correct motion artefacts.

Future work will involve end-to-end image artefact correction and segmentation mechanisms to
improve the image quality and segmentation accuracy simultaneously. Moreover, we will investi-
gate alternative implementations of our algorithm to reduce the memory requirements.

In conclusion, our work opens up the path for a reconsideration of common assumptions about
how well segmentation accuracy transfers to clinical data ‘in the wild’.
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