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Abstract
The incorporation of partial prior information in statis-
tical inference problems still lacks a definitive answer.
The two most popular statistical schools of thought
deal with partial priors in different ways: they either
get completely ignored (frequentist approach) or they
are transformed into a “complete” prior information,
i.e., a probability distribution (Bayesian approach). Ac-
knowledging the importance of (i) taking into account
all sources of relevant information in a given prob-
lem and (ii) controlling error probabilities, the present
paper provides insights on how to incorporate partial
priors “as they are”. This incorporation is guided by
desired properties, such as that correct partial priors
should result in more efficient inferences and, most
importantly, that the inferences are always calibrated,
independent of the truthfulness of the partial prior.
Keywords: Dempster’s rule; elastic; plausibility con-
tour; prior distribution; random set.

1. Introduction

The two dominant schools of thought in statistics—
frequentist and Bayesian—differ in a number of important
ways. One distinguishing feature is how the two handle
prior information, expert opinion, etc. Roughly, the former
has no formal mechanism for incorporating such informa-
tion and no need for one since its focus is on error rate
control, while the latter explicitly requires such informa-
tion to be provided in order to carry out the analysis. The
reality is that relevant prior information is often available,
but it may not be at a sufficient resolution to determine a
complete prior distribution and, moreover, it may not be
100% reliable. Then the two classical approaches just de-
scribed correspond to two extreme ways of dealing with
this situation: the frequentists would likely ignore this par-
tial or incomplete prior information, while the Bayesian
must fill in the gaps with extraneous details to determine a
complete prior probability distribution. Currently, there is
no middle-ground, no approach that can (a) incorporate the
available prior information as is, without embellishment,
and (b) dynamically limit the degree of commitment as-
signed to the prior information so that desirable calibration
properties, i.e., error rate control, can be maintained.

Filling this gap is an ambitious goal indeed, so the
present paper has a more modest aim, namely, to provide
some important insights as to how this ideal can be ac-
complished. Let Y ∈ Y denote the observable data and
M = {PY |θ : θ ∈ Θ} the posited statistical model, which
is just a family of probability distributions on Y indexed
by a parameter θ ∈Θ. Then the objective in this statistical
inference context is to quantify uncertainty about θ based
on an observation Y = y relative to model M . Towards this,
we consider an inferential model, which is just a map

(y,M , . . .) 7→ by : 2Θ→ [0,1],

that takes data, model, and perhaps other inputs (e.g., prior
information) to a function by such that, for any hypothe-
sis A ⊆ Θ pertaining to the unknown parameter θ , by(A)
represents the data analyst’s degree of belief about the truth-
fulness of A relative to the observed data y, model M , and
other inputs. Familiar things, such as Bayesian posterior
distributions, are inferential models, as are some less famil-
iar things like fiducial (e.g., Fisher, 1973; Zabell, 1992),
generalized fiducial (e.g., Hannig et al., 2016), and confi-
dence distributions (e.g., Xie and Singh, 2013; Schweder
and Hjort, 2016). The aforementioned examples correspond
to additive degrees of belief, i.e., probabilities, but inferen-
tial models can accommodate non-additive beliefs as well,
including belief functions (e.g., Shafer, 1976; Dempster,
2008; Kohlas and Monney, 1995) and possibility measures
(e.g., Dubois and Prade, 1988). Special non-additive beliefs
that feature frequentist-style calibration properties have
attracted some attention in Balch (2012), Martin and Liu
(2013, 2016), and Denœux and Li (2018). Recently, Balch
et al. (2017) showed that only non-additive beliefs can
avoid what they call false confidence, i.e., a tendency to
assign high degree of belief to certain false hypotheses; see,
also, Martin (2019). Our view is that calibration properties
are essential to the logic of statistical inference, in order to
avoid “systematically misleading conclusions” (Reid and
Cox, 2015), so we focus on non-additive inferential models
with the desirable validity property described in Section 2.

Given that we have already committed to working in the
domain of non-additive beliefs, it is very natural that we
use this same framework to describe the prior information
or, rather, expert opinion. Here we adopt the latter termi-
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nology to distinguish our perspective from the Bayesians’
where prior information equals a prior distribution, and
to emphasize that it really is a belief in both the scien-
tific/epistemological and mathematical senses; unlike in
the Bayesian setting where a prior is necessary, here there
would be no reason to introduce such a thing if not that an
expert assigns a certain degree of belief to it. Finally, as
we describe in Section 3, we have two belief functions—
one represents expert opinion and the other our inferential
model output based on data y, etc.—and the goal is to
combine them. For combining belief functions, there are
a host of existing strategies, perhaps the most notable be-
ing Dempster’s rule of combination (e.g., Shafer, 1976,
Chap. 3). However, the task here is not so straightforward.
Remember, the goal is to incorporate expert opinion while
preserving the inferential model’s desirable validity prop-
erty. But Dempster’s rule has no such considerations built
in, so, not surprisingly, it fails to preserve validity. There-
fore, new ideas are needed.

The challenge is that expert opinion and the validity prop-
erty generally are at odds with one another. To make this
clear, consider an analogy in the familiar Bayesian context.
It is straightforward to construct a confidence interval for
a normal mean with exact coverage probability properties
but, if a meaningful, proper prior distribution is available
and combined with the likelihood via Bayes’s theorem,
then the corresponding posterior yields a credible interval
that is different and generally lacks the desired coverage
probability properties. That is, the prior generally has a
biasing effect that interferes with the frequentist coverage
probability property. This interference is most severe when
the prior is “wrong,” assigns mass away from the true pa-
rameter value. However, if the prior is “right” in the sense
that it assigns mass near the true parameter value, then
the biasing effect is beneficial and leads to an efficiency
gain, i.e., narrower credible intervals that still achieve the
desired coverage probability. Of course, we are unable to
determine if the prior is “right” or “wrong” and Bayes’s
theorem does not offer a way to use the data to dynamically
weight how much of the prior is used. So here we propose a
different type of combination rule that allows for this kind
of dynamic weighting.

The specific proposal in this paper is to extend the ap-
proach in Ermini Leaf and Liu (2012) that relies on an
appropriate stretching of an underlying random set to ac-
commodate a constraint in the parameter space. Here, the
expert opinion is more vague than a parameter constraint
so more care is needed to determine an appropriate amount
of stretching. Moreover, while the validity property is auto-
matically preserved when the random set is stretched, there
is a corresponding loss of efficiency. This suggests that
there is an opportunity to improve efficiency by performing
a second adjustment to the random set, one that contracts in
the opposite direction of the stretching. If tuned correctly,

this dually elastic random set can lead to inference that in-
corporates both certain and less-than-certain expert opinion,
while maintaining validity and efficiency.

After a review of inferential models and the validity prop-
erty in Section 2 and a discussion of how the expert opinion
can be encoded in terms of a random set in Section 3, we
present our specific strategy for stretching and contracting
the random set, focused on a specific and simple normal
mean problem. Numerical results in Section 5 confirm our
claims that validity and efficiency can be achieved for all
parameters and for any kind of expert opinion, good or bad.
Some concluding remarks are given in Section 6.

2. Valid Inferential Models
As mentioned in Section 1, an inferential model is simply a
rule by which the observed data, posited statistical model,
etc., can be converted into degrees of belief about the un-
known parameter of interest. What makes this construction
challenging is that we require our inferential model to have
certain calibration properties. Following Martin and Liu
(2013), we say that an inferential model is valid if its by
output satisfies

sup
θ 6∈A

PY |θ{bY (A)≥ 1−α} ≤ α,

{
∀ α ∈ (0,1),
∀ A⊆Θ.

(1)

That is, false hypotheses tend to be assigned relatively low
belief with respect to the posited statistical model. This
prevents systematically misleading conclusions.

Define the dual function py(A) = 1− by(Ac). We will
refer to by and py as belief and plausibility functions, re-
spectively. Since (1) covers all hypotheses, an equivalent
condition can be expressed in terms of plausibility:

sup
θ∈A

PY |θ{pY (A)≤ α} ≤ α,

{
∀ α ∈ (0,1),
∀ A⊆Θ.

(2)

Similarly, this property says that hypotheses which are not
false will tend to be assigned relatively high plausibility.
An interesting and practically useful consequence is that
procedures derived from the plausibility function have fre-
quentist error rate control guarantees. For example, in the
simulations presented in Section 5, we will be considering
interval estimation and we will make use of the fact the set
{ϑ : py({ϑ})> α} has frequentist coverage probability at
least 1−α when the validity property holds.

It is not obvious that an inferential model satisfying
(1) exists. However, a construction is possible and, to our
knowledge, what follows is the only one available. The key
idea is to first introduce, in the association step, a set of
unobservable auxiliary variables, denoted by U , connected
to the observable data Y and unknown parameter θ . Next,
a random set on the auxiliary variable space is used in
the prediction step to “guess” the unobserved value of U .
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Finally, in the combination step, the observed data, the
statistical model, and the random set are fused together to
create a new random set on Θ, whose distribution is used to
determine the data analyst’s degrees of belief. These three
steps are detailed below.

A-step Define an association consistent with the posited
statistical model, i.e., a function a such that data Y from
distribution PY |θ can be simulated by the algorithm

Y = a(θ ,U), U ∼ PU ,

where U ∈ U is an auxiliary variable and its distribution,
PU , does not depend on any parameters. Given a, define
the set-valued maps

Θy(u) = {ϑ : y = a(ϑ ,u)}, u ∈ U.

P-step Introduce a suitable random set S, with distri-
bution PS, taking values in 2U, designed to predict the
unobserved value of the auxiliary variable U.

C-step Finally, combine Θy and S to get a new random
set

Θy(S) =
⋃
u∈S

Θy(u). (3)

Then the distribution of Θy(S), as a function of S ∼ PS,
for fixed y, determines the inferential model output:

by(A) = PS{Θy(S)⊆ A}. (4)

It turns out that the validity property (1) holds for this
belief function output under relatively weak conditions on
the random set S. In fact, according to Martin and Liu
(2013), a sufficient condition for validity is that γ(U) ∼
Unif(0,1), when U ∼ PU , where γ(u) = PS(S 3 u) is the
plausibility contour of the random set S. This condition
links the distribution of S to the distribution of U , which of
course is natural if S is supposed to be good at predicting
realizations from PU .

As our running example, let Y denote a scalar observable
with distribution N(θ ,n−1), i.e., a normal distribution with
mean θ and variance n−1; such a situation might arise when
an independent and identically distributed sample of size
n from N(θ ,1) is available and summarized by the sample
mean. For the A-step, a natural choice is

Y = θ +U, U ∼ PU = N(0,n−1).

This association defines a set Θy(u) of candidate parameter
values corresponding to the observed y and a generic u,
namely,

Θy(u) = {ϑ : y = a(ϑ ,u)}= {y−u},

a singleton set in this case. For the P-step, we introduce a
random set S of the form

S= {u : |u| ≤ |Ũ |}, Ũ ∼ PU = N(0,n−1). (5)

This random set satisfies that sufficient condition mentioned
above and, in fact, it happens to be “optimal” as in Martin
and Liu (2013). Finally, for the C-step, we combine Θy(·)
and the random set S to get

Θy(S) =
⋃
u∈S

Θy(u) = (y−|Ũ |,y+ |Ũ |), Ũ ∼ N(0,n−1).

Write Fn for the N(0,n−1) distribution function, so that the
plausibility contour can be written as

py({ϑ}) = PS{Θy(S) 3 ϑ}= 1−|2Fn(y−ϑ)−1|.

3. Expert Opinions
Validity of the inferential model output is achieved without
the assistance of any prior information about the parameter
of interest θ . However, as it was discussed in Section 1, the
scenario where subject-matter experts have opinions/beliefs
about θ is not uncommon. Intuitively, all relevant informa-
tion should be used as input in an inferential model, and,
certainly, an opinion given by an expert is a relevant infor-
mation. Moreover, if this incorporation is done in a way
that the validity property is maintained, i.e., systematic
misleading conclusions are avoided even when the expert
opinion is inconsistent with the data, then it would be hard
to imagine objections to the inclusion of this opinion.

Here we are considering expert opinion to be any type of
prior information about θ that is not (or cannot be unam-
biguously translated to) a probability distribution. There is
a long list of different ways expert opinions can be formu-
lated, but of particular interest here is the case where they
are represented by a (subjective) probability β attached to
a fixed, proper subset B of Θ, i.e.,

expert assigns belief probability β ∈ (0,1] to B. (6)

What we have in mind are (realistic) situations in which the
expert says “I’m 95% sure that θ is between a and b.” The
key point is that the expert provides no information about
how the probability β is allocated within the set B, so no
finer-resolution statements about probabilities assigned to
subsets of B can be made. The Bayesian, however, must
choose a full prior distribution for θ that accommodates the
expert opinion, but this requires something extra beyond the
information provided by the expert, hence some potential
for bias that can negatively affect inference.

The ultimate goal of the present study is to incorporate to
the already valid inferential model the expert opinion in (6)
as is, without embellishment. But the following question
arises: how to represent the expert’s low-resolution opinion
mathematically? It turns out that the theory of random sets
(e.g., Molchanov, 2005; Nguyen, 2006) naturally accom-
modates expert opinions in the form of (6). Consider the
random set E , where

PE (E = B) = β and PE (E = Θ) = 1−β . (7)
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The distribution of E described in (7) encodes the expert
opinion about θ , without additional assumptions about the
distribution of values inside or outside B.

Now, besides the data-dependent random set Θy(S), the
opinion encoder random set E also carries information
about θ . We assume here that Θy(S) and E are indepen-
dent, and the goal is combining these two sources of in-
formation to strengthen the conclusions that can be drawn
about θ . However, it would not make sense if this addi-
tional information would ruin whatever validity properties
the original inferential model has. Therefore, incorporation
of the information in E to Θy(S) has to be done in a care-
ful way, such that if data and expert opinions agree, then
efficiency is gained and, regardless, the validity property of
the inferential model is preserved.

A natural way combine two independent sources of in-
formation is through Dempster’s rule of combination (e.g.,
Shafer, 1976; Kohlas and Monney, 1995), resulting in infer-
ences that would be based on the conditional distribution

Θy(S)∩E |Θy(S)∩E 6=∅

derived from the (product) joint distribution PS × PE ,
where y is fixed at the observed data point. That is, Demp-
ster’s rule of combination considers a new random set
which is the intersection of the two that carry information
about θ , conditioning on the event {Θy(S)∩E 6=∅} of no
conflict. It is through this conditioning step that “learning”
takes place, sharpening inference. Ultimately, the plausi-
bility function obtained from this combined random set is
given by

pD
y (A) = 1−PS,E {Θy(S)∩E ⊆ Ac |Θy(S)∩E 6=∅},

and the question is whether the inferential model corre-
sponding to this combined plausibility function preserves
the validity of the original. Specifically, is the distribution
of pD

Y ({θ}) stochastically no smaller than Unif(0,1) when
Y ∼ PY |θ ?

Consider the normal example, Y ∼ PY |θ = N(θ ,1),
where B = [2,6], β = 0.95, and the true parameter takes
values in {−1,1,4}. Figure 1 plots the distribution function,
α 7→ PY |θ{pD

Y ({θ})≤ α}, for each of the three values of
θ , based on 104 Monte Carlo samples. Note that the distri-
bution functions for θ =−1 and θ = 1, which correspond
to cases where the prior is “misleading,” are situated to the
left of uniform, therefore, violating the validity property.
The lack of validity is more extreme in the θ = 1 case
where the prior is “close to being right,” which we expect
to be the most common situation arising in practical appli-
cations. This makes sense, as Θy(S)∩B will likely have a
significant intersection, and conditioning in this intersec-
tion being non-empty will tend to exclude θ more often
than desired. On the other hand, if the prior is far from the
truth, Dempster’s rule of combination tends to down-weight
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Figure 1: Distribution functions for plausibility contours

based on Dempster’s rule when θ = 1 (red/solid),
θ =−1 (green/dashed), and θ = 4 (blue/dotted),
when B = [2,6] and β = 0.95.

the expert opinion, so that the plausibility function is ef-
fectively that based on Θy(S) alone, hence approximately
valid. When the expert opinion is right, pD

Y ({θ}) is both
valid and efficient.

It should come as no surprise that Dempster’s rule fails
to preserve the validity property, given that the rule was de-
veloped without any sort of calibration properties in mind;
but see (12). For us, preservation of the validity property is
essential, so we seek an alternative combination rule under
which validity can be maintained always and efficiency can
be gained when expert opinion agrees with the data.

4. Valid Inferential Model With Expert
Beliefs

4.1. Certain Case: β = 1

Recall that the random set S is designed to predict the
unobserved value of the auxiliary variable U in U in such
a way that validity and efficiency can be achieved. After
Y = y is observed, the constraint B can be mapped to a
subset of U:

Uy(B) =
⋃

ϑ∈B

{u : y = a(ϑ ,u)} ⊆ U.

This subset includes all the possible u values that corre-
spond to θ values in B with respect to the y that was ob-
served. For the case where B is a constraint, the recommen-
dation in Ermini Leaf and Liu (2012) was to consider an
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elastic random set S that would suitably stretch itself till
it had non-empty intersection with Uy(B). This stretching-
based strategy eliminates conflict cases but not via con-
ditioning as Dempster’s rule would do. Importantly, if S
already leads to a valid inferential model, then stretching
S will preserve the validity property, but causes some in-
efficiency due to the excessive overall size. To overcome
this inefficiency, Ermini Leaf and Liu (2012) suggest to
construct the inferential model using only the intersection
of Uy(B) and the stretched S, chopping off much of the
excess size, and they show that this construction, too, satis-
fies the validity property.1 But their strategy makes sense
only when β = 1, i.e., when B is a constraint. Here we
reformulate their developments in a way that will shed light
on the more interesting case of β ∈ (0,1) that is the focus
of Section 4.2.

Our strategy will be to equip the random set S with two
elasticity parameters, e and E, leading to a dually elastic
random set, denoted by Se,E , where

• e≥ 0 is a stretching parameter that controls how far S
is stretched toward Uy(B);

• and E ≥ 0 is a contraction parameter that controls
how much the stretched S gets shrunk in the opposite
direction to improve efficiency.

For the normal example above, with S as in (5), a realization
of Se,E would take the form

[minS+E,maxS+ e] or [minS− e,maxS−E], (8)

depending on where the realization of S is situated relative
to Uy(B). The question, of course, is how to select e and E.

Following Ermini Leaf and Liu (2012), we set e to be the
smallest value at which the intersection of Se,E and Uy(B)
is non-empty, i.e.,

ê = min{e : Se,E ∩Uy(B) 6=∅}.

Note that ê does not depend on E. In the context of the
normal example above, if the expert is certain that θ lies in
the interval B, so that

Uy(B) = [y−maxB,y−minB],

then

ê =


minUy(B)−maxS if maxS< minUy(B)
minS−maxUy(B) if minS> maxUy(B)
0 otherwise.

For the contraction parameter, E, first recall that we are
working with a random set which, in the absence of expert

1. When β = 1, the validity property is satisfied when the expert is
correct, i.e., when θ is indeed in B. It is not hard to imagine a situation
in which an expert exaggerates his/her confidence, but if they are
given a less-than-certain option but they choose certain, then they
have to live with whatever mistakes are made as a consequence.

opinion, yields a valid and efficient inferential model. What
characterizes the validity and efficiency of that inferential
model is the plausibility contour of S, given by γ(u) =
PS(S 3 u). If γ(U) ∼ Unif(0,1), as a function of U ∼ PU ,
then the inferential model is both valid and efficient. Our
proposal is to choose E in such a way that it preserves
the original plausibility contour’s properties even after the
stretching by ê. That is, if

γE(u) = PS(Sê,E 3 u) (9)

is the plausibility contour for the adjusted random set with
stretching parameter ê set according to the formulation
above, and contraction according to E, then the goal is to
specify E = Ê in such a way that γÊ(U)∼ Unif(0,1) as a
function of U ∼ PU , for θ ∈ B. It can be shown that this
leads to a valid plausibility function, i.e.,

PY |θ{pY (θ)≤ α}= PY |θ{PSê,Ê
{ΘY (Sê,Ê) 3 θ} ≤ α}

= PY |θ{PSê,Ê
{Sê,Ê 3 a−1

θ
(Y )} ≤ α}

= PU{γÊ

(
a−1

θ
(a(θ ,U))

)
≤ α}

= PU{γÊ(U)≤ α}= α.

Following Ermini Leaf and Liu (2012), consider

Ê = min{E : Sê,E ⊆ Uy(B)}, (10)

so that Sê,Ê is just the intersection of the stretched S with
Uy(B). Such choice is proven to lead to a valid plausibility
function for every assertion A⊂ B.

In the context of our normal example, we have

γ(u) = 2{1−Fn(|u|)}.

Then the validity and efficiency of the resulting inferential
model is, according to the results in Martin and Liu (2013),
a consequence of the simple fact that γ(U) ∼ Unif(0,1)
when U ∼ PU = N(0,n−1). We omit the details for the
sake of space, but it is a relatively simple exercise to show
that the contour function of Sê,Ê (Ê as in 10) also has a
uniform distribution like described above, for θ ∈ B. The
only challenge is that both ê and Ê depend on data but,
when Y is replaced by θ +U , the θ cancels and the uniform
distribution is easy to see. The validity proof in Ermini Leaf
and Liu (2012) is consistent with our claim that the choice
of Ê maintains the uniformity property.

Henceforth we will use the double-dagger symbol, ‡, to
denote quantities based on the dually elastic modifications
described above. For example, S‡ = Sê,Ê and the corre-
sponding plausibility function is

p‡
y(A) = 1−PS{Θy(S

‡)⊆ Ac} A⊆ B. (11)

4.2. Less-Than-Certain Case: β ∈ (0,1)

Both the stretching and contraction parameters are chosen
in an “extreme” way when the set B is a constraint. That
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is, ê stretches S all the way to Uy(B) and Ê contracts the
stretched random set down to the extent that it includes no
points outside of Uy(B). But in the less-than-certain case
where β ∈ (0,1) and, hence, B is not a constraint, these
extreme choices generally will not be satisfactory. Here we
can follow the general strategy laid out in Section 4.1 but
different ê and Ê are needed in this more difficult setting.

In this more ambitious context, the challenge is balancing
the expert’s degree of certainty in B with how much (or how
little) the data agrees with B. The key point is that, unlike
in the constraint case above, here we do not assume that
the expert is “right,” it is indeed possible that θ lies outside
of B. So, since we aim to achieve validity uniformly over
the entire parameter space, the elasticity parameters need
to be chosen more carefully. To guide our mathematical
developments, we list the following desiderata.

1. Data is sovereign. More conflict between data and
expert opinion makes the latter less influential.

2. The size of β matters. Larger β makes expert opinion
more influential.

3. Learning takes place. Larger n makes expert opinion
less influential.

4. Validity everywhere. The validity property is main-
tained, regardless of expert opinion, for all hypotheses
in and out of B.

5. No losses of efficiency, only gains. If data and expert
opinion agree, then there are efficiency gains, but no
significant loss of efficiency if they do not agree.

Desiderata 1–3 are related to the incorporation of expert
opinion into the original inferential model and, therefore,
correspond to the stretching parameter. Desiderata 4–5 are
related to the inferential model’s properties and, therefore,
pertain to the contraction parameter. For sure, these are
ambitious goals, and our strategies to achieve them are
considered next.

4.2.1. STRETCHING

The key to generalizing the extreme stretching in Sec-
tion 4.1 is to incorporate the expert’s belief probability
β about the set B. More specifically, if β = 1 corresponds
to extreme stretching, then we simply stretch less when
β < 1. We would not want to stretch proportionally to β ,
however, because that would negatively affect Desiderata 1
and 3. Instead we want an “updated” version of β that takes
into account how influential the expert opinion is. For this
we suggest

βy = PS,E {E = B |Θy(S)∩E 6=∅}. (12)

This is reminiscent of Dempster’s rule of combination dis-
cussed above, as it is based on the conditional distribution
of E , given the event {Θy(S)∩E 6=∅}, based on the (in-
dependent) joint distribution of (S,E ). This updated belief

probability is influenced primarily on the extent to which
data and expert opinion agree, as summarized by Θy(S) and
E , respectively. For example, if data and expert opinion
agree, then βy will tend to be large; but if data and expert
opinion do not strongly agree, then βy will be decreasing
in n, due to the fact that Θy(S) becomes more precise as n
increases. Therefore, if we set the stretching parameter, e,
as

ê = βy ·min{e : Uy(B)∩Se,E 6=∅}, (13)

then we immediately achieve Desiderata 1–3.
In the normal example considered here, with B = [a,b],

it is easy to show that

βy =


2βFn(y−a)

2βFn(y−a)+(1−β ) if y < a
2βFn(b−y)

2βFn(b−y)+(1−β ) if y > b

β otherwise,

and this determines the stretching parameter ê.

4.2.2. CONTRACTION

Stretching the original random set by any amount cannot
damage the validity property. However, with the presence of
expert opinion, there is an opportunity to gain in efficiency
by a corresponding shrinking or contraction operation ap-
plied in the opposite direction of the stretching. But this
contraction must be done carefully to ensure that efficiency
is generally gained but validity is not lost, even if the expert
opinion is “wrong.”

To determine the contraction parameter, E, the idea
of maintaining distributional properties of the original—
without expert opinion—plausibility contour, described in
Section 4.1, can be also applied here. Recall that γE(u)
in (9) is the plausibility contour for the adjusted random
set with stretching parameter ê and contraction parame-
ter E. The goal is to specify E = Ê in such a way that
γÊ(U) ∼ Unif(0,1) as a function of U ∼ PU , but now not
only for θ ∈ B, but for θ since the entire parameter space
is possible. The details of this derivation for our running
normal example are in Appendix A.

5. Numerical Results
As an illustration, consider the normal mean example from
Section 2. First, in Figure 2, we plot the plausibility contour
ϑ 7→ p‡

y({ϑ}) for the inferential model based on the dually
elastic random set S‡ presented above; here we denote this
as IM‡. The different settings we consider are y∈{0,2} and
n ∈ {1,10}. For the expert opinion, we take B = [1,4] and
consider two values of the belief probability, β ∈ {0.95,1}.
For comparison, we also display the plausibility contour for
the original inferential model in Section 2 that ignores the
expert’s opinion. Panel (a) shows how we gain efficiency
when the expert opinion agrees with the data; that is, the
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(a) n = 1 and y = 2
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(b) n = 1 and y = 0
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(c) n = 10 and y = 2
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(d) n = 10 and y = 0

Figure 2: Plots of the plausibility contour defined in (11),
with B = [1,4], β = 1 (dotted), and β = 0.95
(dashed). For comparison, we also display the
plausibility contour for the basic inferential
model in Section 2 that does not consider ex-
pert opinion (solid).

plausibility contour gets tighter when expert opinion is
incorporated, clearly more so when β = 1 and the expert

opinion is stronger. However, these gains mostly disappear
in Panel (c) because the expert opinion is less influential
when n is larger. In Panel (b) we can see how the plausibility
contour accommodates the expert opinion when β = 0.95,
but with virtually no loss of efficiency. Panel (d) shows
that, with larger n, the data is more influential and pulls the
plausibility contour away from the expert’s opinion when
β = 0.95; when β = 1, it is just a spike at ϑ = 1.

Consider now a simulation study to compare the validity
and efficiency of the proposed inferential model that incor-
porates expert opinion against that of several alternatives:

• the basic inferential model construction in Section 2
that ignores expert opinion;

• a Bayesian solution when a conjugate normal prior
is chosen so that the prior probability is consistent
with expert opinion, i.e., for given B and β , the prior
hyperparameters are chosen so that it assigns roughly
probability β to B;

• and an approach like described in Section 3 where
expert opinion is encoded by E and combined with
the basic inferential model via Dempster’s rule.

Comparisons are made for B = [2,9] and B = [2,4],
both with β = 0.95, and four values of the true parame-
ter, θ ∈ {3,1.5,0,−4}. Throughout, we take n = 1. For
each scenario, 5000 data sets are generated and, from each,
95% plausibility/credible intervals are extracted and the
coverage indicator and length is computed, resulting in
coverage probability and mean length comparisons, dis-
played in Tables 1 and 2, respectively. We do not display
the coverage probability for the basic inferential model’s
plausibility intervals because these are known to equal the
target confidence level. Moreover, the mean length of these
and of the Bayesian credible intervals are not shown be-
cause the lengths do not depend on data; for example, the
95% plausibility intervals for the basic inferential model
always have length 3.92.

From Table 1, we can see that the target coverage prob-
ability is attained for all values of θ only for IM‡. The
Bayesian solution is valid, or close to be valid, only when
the prior is right, i.e., when θ is inside [a,b]. Dempster’s
approach is valid only when the prior is right or extremely
wrong. Moreover, note how Dempster’s approach performs
quite poorly when the prior is close to being right, i.e.,
when θ = 1.5.

From Table 2, we observe that gains in efficiency happen
for IM‡ when B is right or close to being right. Moreover,
more precision is gained when B is itself narrower. Finally,
when θ = 0, so that the expert opinion is somewhat mislead-
ing, we can observe a loss of efficiency in the plausibility
intervals. But note that, when θ = −4, so that the expert
opinion is even more misleading, the lack of agreement
between data and prior would make βy in (12) close to
zero and, hence, the IM‡ solution is effectively ignoring the
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B θ Bayes Dempster IM‡

[2,9] 3.0 0.930 0.974 0.953
1.5 0.828 0.594 0.948
0.0 0.701 0.809 0.956
−4.0 0.239 0.955 0.941

[2,4] 3.0 1.00 0.992 0.946
1.5 0.080 0.601 0.957
0.0 0.000 0.804 0.954
−4.0 0.000 0.956 0.948

Table 1: Coverage probabilities 95% plausibility intervals
for Bayes, Dempster’s, and the IM‡ solutions with
β = 0.95, n = 1, and various θ and B.

expert opinion and the standard solution is again obtained.
Dempster’s solution almost always provides narrower plau-
sibility intervals, when compared to IM‡. However, such
gains are only useful if the expert opinion is right or ex-
tremely wrong since, otherwise, the coverage probability is
very low.

B θ Dempster IM‡

[2,9] 3.0 3.02 3.89
1.5 3.01 3.91
0.0 4.01 3.95
−4.0 3.90 3.92

[2,4] 3.0 2.18 3.85
1.5 2.86 3.88
0.0 4.02 3.95
−4.0 3.89 3.92

Table 2: Mean length of 95% plausibility intervals for the
Dempster and IM‡ approaches when β = 0.95, for
different values of θ and B. All standard errors
associated with the estimated averages are less
than 0.05.

6. Conclusion
This paper focuses on the fundamentally important and
challenging problem of combining data and vague prior
information/expert opinion into an inferential model that
provides valid and efficient inference about the parameter
even if that prior input is wrong or misleading in some
way. A Bayesian approach cannot accomplish this because
(a) prior distributions require expert opinion at a higher
resolution than is often available and (b) expert opinion
that is misleading will introduce bias and negatively impact
inferences. Dempster’s rule, on the other hand, can easily
accommodate the combination of data with vague prior
information, but it does not preserve any validity properties

that would hold when expert opinion is ignored. Here we
deal with this problem by considering an inferential model
driven by random sets with a dynamic, dually elastic be-
havior whereby they are stretched to accommodate expert
opinion that more-or-less agrees with the data and, simulta-
neously, contracts the random set in the opposite direction
just enough to preserve validity and achieve efficiency.

Our main contribution here is just the demonstration that
a solution to this fundamental problem is possible. There
are many technical details that remain to be sorted out. For
one thing, we have only considered here the relatively sim-
ple normal mean problem. The same techniques can be ap-
plied under different statistical models and the performance
is not affected; indeed, similarly promising results are ob-
tained for Poisson data. But the more difficult question is
about how to adjust the proposed stretching–contraction
strategy when θ is multi-dimensional. Moreover, there are
other kinds of expert opinions, e.g., about monotonicity
(Altendorf et al., 2005; Feelders and van der Gaag, 2005),
that cannot immediately be handled using the approach
described here. Though there are still many unanswered
questions, we are excited about this idea’s potential and we
will continue our investigation.
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Appendix A. Contraction When β ∈ (0,1)

Let Sα be an arbitrary realization of the random set S that
ignores the expert opinion such that

PU{U 6∈ Sα}= α.

To that same realization Sα , we can apply the stretching
according to ê in (13) and by some amount E, resulting in
a new set Sα,ê,E where

PU{U 6∈ Sα,ê,E}= αE .

The goal here is to choose E = Ê such that

1. αÊ = α for all α ∈ (0,1);
2. the focal elements S

α,ê,Ê form a nested collection Sê,Ê .

Therefore, by such construction,

PSê,Ê
{Sê,Ê ⊆ S

α,ê,Ê} ≡ PU{U ∈ S
α,ê,Ê}= 1−α .

Recall the plausibility contour, γE , in (9), and set QE(u) =
1− γE(u). For Ê according to the construction above, note
that QÊ(u)> 1−α iff u ∈ Sc

α,ê,Ê
. Thus,

PU{QÊ(U)> 1−α}= PU{U ∈ Sc
α,ê,Ê}
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= 1−PU{U ∈ S
α,ê,Ê}

= α.

Since α is arbitrary, QÊ(U)∼Unif(0,1) and, consequently,
γÊ(U)∼ Unif(0,1).

The question now is how to obtain such E = Ê. Consider
the case where minSα < minUy(B), so that we would want
to contract to the right; the case of contracting to the left is
analogous. The goal is to find E = Ê such that

PU{U < minSα + Ê}= α−λθ (α),

where

λθ (α) = PU{U > maxS
α,ê,Ê} ≤

α

2 .

Then Ê, when treated as a constant, would be

Ê = F−1
n
(
α−λθ (α)

)
−minSα ,

which depends on the unknown θ and, therefore, cannot
be used. But this obstacle can be overcome by allowing Ê
to depend on both α and the data y in an appropriate way.
Then our specific proposal is to take Ê = y−ϑ ?−minSα ,
where ϑ ? = ϑ ?(y,α) solves

F−1
n
(
α−λϑ (α)

)
= y−ϑ .

This equation can be solved numerically using Monte Carlo
to approximate the probabilities involved. And it is not
difficult to show that the resulting focal elements form a
nested collection, satisfying Condition 2 above, and also
that

PU{U < minSα + Ê}= α−λθ (α),

so condition 1 above also holds:

αÊ = PU{U < minSα + Ê}+λθ (α)

= α−λθ (α)+λθ (α)

= α.
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