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Abstract
Inference on parameters within a given model is fa-
miliar, as is ranking different models for the purpose
of selection. Less familiar, however, is the quantifica-
tion of uncertainty about the models themselves. A
Bayesian approach provides a posterior distribution
for the model but it comes with no validity guarantees,
and, therefore, is only suited for ranking and selection.
In this paper, I will present an alternative way to view
this model uncertainty problem, through the lens of a
valid inferential model based on random sets and non-
additive beliefs. Specifically, I will show that valid
uncertainty quantification about a model is attainable
within this framework in general, and highlight the
benefits in a classical signal detection problem.
Keywords: Bayesian; inferential model; marginaliza-
tion; plausibility; random set; variable selection.

1. Introduction

Statistical inference, with a certain model, is already a chal-
lenging problem, with a wide range of possible solutions,
even several competing philosophies, and has been a source
of heated debate for at least a century; see, for example,
Mayo (2018). However, it is rare for the statistical model
to be certain in real applications, and uncertainty about
the model itself creates additional challenges. A major one
being that the unknown parameters are often determined
by the model so, in the uncertain model case, the data
analyst must first select a model before the relevant statisti-
cal inference problem is defined. But when the data itself
determines, e.g., the hypotheses to be tested, this creates po-
tentially serious biases. One specific example of this bias is
discussed in Hong et al. (2018), and Taylor and Tibshirani
(2015) describe the general impact of model uncertainty
and selection biases. My focus here in this paper is on the
model itself, not on any model-specific parameter.

In this uncertain model case, there are a number of exist-
ing approaches. In a classical or frequentist framework, the
most familiar strategy is to use the data to drive selection
of a model; and then the quality of a selection strategy is
evaluated based on the frequency at which it identifies the
“correct” model in repeated sampling. Of course, this ap-
proach is analogous to point estimation and, therefore, does
not provide any uncertainty quantification. To address this,
there are other approaches, most notably, Bayesian (e.g.,

Clyde and George, 2004), that return as output a probability
distribution over the set of candidate models and, hence,
provide uncertainty quantification. The critical question,
however, is if the uncertainty quantification it provides is
valid in any meaningful sense. A basic and uncontroversial
requirement is that the probabilities assigned to “wrong”
models should be small and those assigned to “not wrong”
models should be relatively large. Challenges arise when it
comes time to define what “small” and “large” mean, and I
will address this in Section 3.

To set the scene for the present developments, consider
first the certain model case where inference about the model
parameters is the goal. I will define an inferential model
as a map that takes the data analysts’ inputs—including
the available data, that certain statistical model, and per-
haps other things, such as a prior distribution—to a function
whose input is a hypothesis about the parameter and the out-
put represents his/her degrees of belief in the truthfulness of
that hypothesis. In other words, an inferential model is just
a rule by which the information available to the data analyst
gets converted into degrees of belief about the unknowns.
This definition is quite general, so perhaps it comes as no
surprise that it covers a number of familiar approaches,
such as Bayesian, along with some less familiar. More de-
tails are given in Section 2; see, also, Martin (2019). When
it comes to uncertainty quantification, a desirable property
is that the inferential model be calibrated in the sense that
the degrees of belief it assigns to false hypotheses tend to
be small in a sufficiently precise way. Since magnitudes of
degrees of belief will be used by the data analyst to draw
inference, such a calibration property will protect him/her
from the undesirable risk of making “systematically mis-
leading conclusions” (Reid and Cox, 2015). An interesting
and surprising result is that the only inferential models that
satisfy (a strong form of) this calibration property, called
validity in Section 2, are those whose degrees of belief
are non-additive. That is, inferential models with additive
degrees of belief output, such as Bayesian, cannot satisfy
the validity property and, therefore, suffer from what Balch
et al. (2017) call false confidence. My view is that this
calibration property is essential to the logic of statistical
inference, so I will focus here on valid inferential models
which necessarily return non-additive degrees of belief.

Given that beyond-probability considerations are re-
quired for valid statistical inference even in the certain
model case, and that the uncertain model case is even more
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challenging, one would expect that similar considerations
are needed in the uncertain model case. My goal here is to
present first a definition of validity in the case where the
quantity of interest is the uncertain model, and to construct
an inferential model that achieves this property, thereby,
a framework for valid uncertainty quantification about a
model. Before doing so, I review in Section 2 the construc-
tion of a valid inferential model for the unknown parameter
in a certain model context, and then, in Section 3, describe
the transition from certain to uncertain model under the
proposed framework. Section 4 lays out a fairly general
approach to separating and isolating the model component
from the model-specific parameters and a notion of validity
in this context. Details of the inferential model construction
are presented in Section 5 in the context of an important
Gaussian signal detection example. There I describe the
precise formulation, prove a validity theorem, and show
how this result can be used to derive a procedure having
good frequentist properties; numerical results demonstrate
that this inferential model-based procedure is as good or
better than traditional methods across a range of settings.

2. Inferential Models

2.1. Definition

Let Y ∈ Y be the observable data and denote by P =
{PY |θ : θ ∈Θ} the certain statistical model. Then the goal
is to make inference on the unknown θ that determines
the distribution of Y based on an observation Y = y. In
this setting, the inferential model is simply a map from the
data, certain statistical model, and possibly other things
(e.g., a prior distribution) to a belief function defined on the
parameter space Θ, i.e.,

(y,P, . . .) 7→ bely,

where bely(A) ∈ [0,1] is interpreted as the data analyst’s
degrees of belief about the hypothesis A⊆Θ based on data
Y = y, relative to the posited model, etc. This inferential
model framework covers familiar modes of inference, such
as Bayesian, as well as some less familiar, such as fiducial
(e.g., Dempster, 1963; Fisher, 1973; Zabell, 1992), general-
ized fiducial (e.g., Hannig et al., 2016), confidence distribu-
tions (e.g., Schweder and Hjort, 2016), Dempster–Shafer
theory (e.g., Kohlas and Monney, 1995; Dempster, 2008;
Shafer, 1976), confidence structures (e.g., Balch, 2012),
possibility measures (e.g., Dubois and Prade, 1988), and
the approach in Martin and Liu (2013, 2016) described in
more details below.

2.2. Validity Property

Formally, an inferential model with output bely is said to
be valid if

sup
θ 6∈A

PY |θ{belY (A)> 1−α} ≤ α,

{
∀ α ∈ (0,1)
∀ A⊆Θ.

(1)

In words, false hypotheses—those that do not contain the
true θ—being assigned high belief is a rare event relative
to the posited model. This prevents false confidence and,
thereby, systematically misleading conclusions. It is not
difficult to see that an additive belief function cannot satisfy
(1), the key being that (1) covers all hypotheses A.

If the belief function bely is non-additive, then it has a
distinct dual, ply(A) = 1− bely(Ac), called a plausibility
function. Since (1) covers all hypotheses, an equivalent
condition can be expressed in terms of plausibility:

sup
θ∈A

PY |θ{plY (A)≤ α} ≤ α,

{
∀ α ∈ (0,1)
∀ A⊆Θ.

(2)

In words, this says that hypotheses which are not false—
the ones that contain the true θ—will tend to be assigned
relatively high plausibility.

The validity property offers a sort of calibration, so that
it is clear what it means for belief in a hypothesis to be
“large” or plausibility to be “small.” It also immediately
leads to decision procedures with guaranteed control on
the frequentist error rates. Such properties will show up in
what follows, but for the general results, see, e.g., Martin
and Liu (2013, Sec. 3.4).

2.3. Construction of Valid IMs

Non-additivity alone is not enough to achieve validity. Dis-
cussion of non-additive beliefs having such properties can
be found in Balch (2012) and Denœux and Li (2018). But,
to my knowledge, what follows is the only general con-
struction of a valid inferential model.

A-step Define an association consistent with P . That is,
introduce a : Θ×U→ Y such that data Y ∼ PY |θ can be
simulated by the algorithm Y = a(θ ,U), U ∼ PU , where
U ∈U is an auxiliary variable and its distribution, PU does
not depend on any unknown parameters. Then define the
set-valued map

Θy(u) = {ϑ : y = a(ϑ ,u)}, u ∈ U.

P-step Introduce a suitable random set S, with distri-
bution PS, taking values in 2U, designed to predict the
unobserved value of the auxiliary variable U.

C-step Combine Θy and S to get a new random set

Θy(S) =
⋃
u∈S

Θy(u). (3)
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Then the distribution of Θy(S) in (3), as a function of S∼
PS, for fixed y, determines the inferential model output:

bely(A) = PS{Θy(S)⊆ A}.

Under certain weak conditions on the user-specified S, it
can be shown that the inferential model constructed above
achieves the validity property in (1). For the sake of space,
and since these details won’t be needed in what follows, I’ll
refer the reader to Martin and Liu (2013, 2016) for more
on the random sets and the validity property.

2.4. Dimension Reduction

In the above discussion, I didn’t comment on the dimension
of Y , θ , or U . It will often be the case, e.g., in iid-data
settings, that the dimension of Y and U will be greater
than that of θ and, in such cases, it is advantageous, in
terms of efficiency, to reduce the dimension of U before
the introduction of a random set to predict its unobserved
value. The key observation in Martin and Liu (2015a) is
that, in such cases, there are features of U that are observed
and, therefore, do not need to be predicted, thus allowing a
dimension reduction. Moreover, by conditioning on those
observed features, it is possible to sharpen the prediction
of unobserved features. Below I briefly summarize this
dimension reduction procedure since it plays a role in the
developments of Section 4.

Typically, Y and U both are n-dimensional and here I’ll
assume that θ is d-dimensional, with d < n. I’ll further
assume that there exists a pair of one-to-one mappings y 7→
(T (y),H(y)) and u 7→ (τ(u),η(u)) such that the original
association, Y = a(θ ,U), can be re-expressed as

T (Y ) = b(θ ,τ(U)) and H(Y ) = η(U),

where b a known function analogous to the original a. Such
a re-expression is possible in “regular” cases where the
minimal sufficient statistic is also d-dimensional, among
others. I’ll assume this regularity here and in Section 4.
Then there are two key observations: first, there is no θ in
the second expression so the feature η(U) is observed and
does not need to be predicted; and second, the unobservable
feature τ(U) is of lower dimension than U , which simplifies
the random set construction and improves efficiency.

For the uncertain model context in Section 4, the re-
expression above will play a different role. Specifically, the
second expression will be free of the model-specific param-
eter, but will depend on the model itself. This will make it
possible to marginalize over the nuisance parameters and
get directly at the uncertain model of interest.

3. The Uncertain Model Problem
My jumping off point is the idea to write the model as part
of the “full parameter.” That is, if θ denotes the parameter

that determines the distribution of observable data Y , then
I will re-express θ as (M,θM), where M ∈M is a model
index and θM ∈ΘM denotes the model-specific parameter.
For example, perhaps Y might have a gamma distribution,
a log-normal distribution, or perhaps something else. Then,
when M = gamma, θM contains a shape and scale parame-
ter whereas, when M = log-normal, θM consists of a mean
and variance for logY . Another example is in linear re-
gression, Y = Xβ + ε , where M could represent the set of
predictor variables, i.e., columns of X , to be included in the
structural part of the linear model, and θM could consist
of the β coefficients that align with those active variables,
along with any other parameters that determine the distri-
bution of ε . The example in Section 5 is of this latter type.
In general, in the uncertain model case, the full statistical
model can be written as

P = {PY |M,θM : M ∈M ,θM ∈ΘM}. (4)

The model P is certain and the index M is uncertain. Both
P and M can/will be called “models,” but the meaning
should be clear from the context. The goal is to convert the
observed data Y = y, relative to model P , into information
about the pair (M,θM) and, in particular, about M.

By decomposing the full parameter θ as (M,θM), it be-
comes clear that the uncertain model problem is just a
special case where the full parameter can be split into dis-
joint sets of interest and nuisance parameters. That is, M
is the interest parameter and θM is the nuisance parameter.
Therefore, the goal is marginal inference on M.

As discussed in Section 1, in the classical/frequentist con-
text, the focus is primarily on model selection, which boils
down to point estimation of M. In the inferential model
context, there are Bayesian and generalized fiducial strate-
gies available which, of course, produce (additive) posterior
probabilities about M. In particular, in the Bayesian setting,
the marginal posterior distribution for M is given by

πy(M) ∝ π(M)
∫

ΘM

LM
y (θM)gM(θM)dθM, (5)

where π is the marginal prior distribution for M, gM is
the conditional prior density for θM , given M, LM

y is the
likelihood function under model M, and the proportionality
constant is determined by summing the right-hand side
above over all the models in M . An example of such a
calculation is given in Section 4.2.

Computational difficulties aside, Bayesian marginaliza-
tion to the model index M is conceptually straightforward,
but there are still some challenges. One is that, in the uncer-
tain model case, “non-informative” priors for θM , given M,
generally cannot be used so, in the typical case where little
or no prior information is available, there’s a risk of bias
from poor prior specification. On top of that, there’s a ques-
tion of whether πy in (5) provides meaningful or reliable
uncertainty quantification about M. That is, will πY (M)
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tend to be small and large, in some predictable way, when
M is “wrong” and “not wrong,” respectively? The existing
theory can only establish that, as data become more infor-
mative, e.g., as sample size increases, the posterior will put
mass 1 on the true M but, again, this only assists in model
selection, not in uncertainty quantification. And that addi-
tivity of the posterior can cause lack-of-calibration even
in the certain model case, gives strong reason to believe
that non-additivity is needed in the more difficult uncertain
model case to achieve valid uncertainty quantification.

4. Valid Inference About an Uncertain
Model

4.1. Definition

Whatever kind of inferential model I’m considering, it
will return to me (marginal) data-dependent degrees of
belief about hypotheses concerning the uncertain model
M. For example, the calculations above described how the
Bayesian inferential model assigns its degrees of belief
about M. That is, if A ⊆M is some hypothesis about
M, then, with a slight abuse of notation, one can get
πy(A) = ∑M∈A πy(M), and this would the data analyst’s
degrees of belief in the truthfulness of hypothesis A based
on y, with respect to the various inputs, including prior. I’ll
show a different way to construct (non-additive) degrees of
belief about the model in Section 4.3 below.

As the above discussion reveals, there is nothing really
special in the uncertain versus certain model context, at
least when it comes to interpretation of the inferential
model’s (marginal) plausibility function output. That is,
if a hypothesis about M is not true, then I would expect the
plausibility assigned to that hypothesis to tend to be small,
otherwise I’d be at risk of making systematically mislead-
ing conclusions if I rely on the magnitudes of my plausibil-
ity function values. Therefore, nothing really should change
when it comes to the properties I’d like my plausibility func-
tion to satisfy. Consequently, the validity property can be
stated very similar to before.

To emphasize that the present focus is on marginal plau-
sibility assigned to hypotheses about the uncertain model
M, I’ll write mply to denote that marginal plausibility func-
tion that depends explicitly on data y and implicitly on
other things. Then the corresponding inferential model is
valid (for M) if its marginal plausibility function satisfies

sup
M∈A

sup
θM∈ΘM

PY |M,θM{mplY (A)≤ α} ≤ α. (6)

As before, in addition to providing a scale on which the
plausibility function values can be interpreted, i.e., so one
knows what “small” and “large” means, decision proce-
dures with provable control on frequentist error rates can
be easily derived; see Section 5.

A question is if it is possible to construct an inferential
model that achieves the validity property (6). In the next
section, I demonstrate that the Bayesian inferential model,
as described in Section 3, doesn’t achieve validity.

4.2. Illustration

Let Y = (Y1,Y2), with Yi ∼ N(θi,1), i = 1,2, independent.
There are four “models” in this case, one for each zero and
non-zero combination for (θ1,θ2); that is,

M =
{
∅,{1},{2},{1,2}

}
,

where, e.g., M = {1} means that θ1 6= 0 and θ2 = 0. For
my Bayesian formulation, I will take a uniform prior for M
that assigns weight 0.25 to each of the four entries in M .
For the model-specific parameters, I take a N(0,v) prior for
each non-zero θi in the model, where the to-be-specified
variance, v > 0, controls the degree of prior uncertainty.

Here I will consider two model hypotheses, namely,

A =∅ and A =
{
∅,{1}

}
.

For uncertainty quantification about the model, given Y = y,
I will evaluate the posterior probabilities at each A above.
For those two hypotheses, respectively, the posterior proba-
bility is given by

πy(A) ∝ N(y1 | 0,1)N(y2 | 0,1)
πy(A) ∝ N(y1 | 0,1)N(y2 | 0,1+ v)

+N(y1 | 0,1)N(y2 | 0,1),

where the normalizing constant is the sum of all four
marginal likelihoods. These are easy to compute, the ques-
tion is how to interpret them. For example, the posterior
probability assigned to the true model ought to be relatively
large, but how large is large?

Figures 1–2 shows the distribution function

GA,θ (p) = PY |θ{πY (A)≤ p}, p ∈ [0,1], (7)

for the two hypotheses A of interest, for different values
of the true θ = (θ1,θ2), and for three different values of v.
The key observation here is that the scale on which the pos-
terior probability should be interpreted—i.e., the scale that
determines the “small” and “large” probabilities—depends
on a number of things, including v, θ , and A. The reader
likely is not surprised by this dependence, but contrast this
observation with the way we tend to interpret probabilities.
Indeed, the magnitudes of GA,θ (0.3) reveal that a proba-
bility 0.3 can be interpreted as small, large, or something
in between, depending on (v,θ ,A, . . .). This complicated
dependence makes interpretation of the raw posterior prob-
abilities difficult, which is perhaps why the tendency is
to focus on the relative magnitudes, i.e., which posterior
probabilities are largest? But the relative magnitudes are
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(b) (θ1,θ2) = (0,1), A = {∅,{1,}}

Figure 1: Plots of the distribution function GA,θ in (7) for
the two hypotheses A and different configura-
tions of the true (θ1,θ2) for which A is true. Gray
lines correspond to the Bayesian posterior with
prior variance v = 1,10,100; black line corre-
sponds to the solution described in Section 5.

useful only for selection purposes. If the goal is uncertainty
quantification about the model, then the raw magnitudes
are important and, therefore, a scale that doesn’t depend on
(v,θ ,A, . . .), such as Unif(0,1), is needed.

4.3. Construction

The choice to express the uncertain model case via a “full
parameter” (M,θM) has the following effect on the associ-
ation described in Section 2.3,

Y = aM(θM,U), U ∼ PU ,
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(b) (θ1,θ2) = (2,1), A = {∅,{1,}}

Figure 2: Same as in Figure 1 but where θ is such that the
hypotheses A are not true.

with PU not depending on either M or θM . If I treat M as
fixed, then there again is a mis-match between the dimen-
sion of U and that of θM , so I would apply the dimension
reduction strategy outlined in Section 2.4. That is, I would
identify maps y 7→ (TM(y),HM(y)) and u 7→ (τM(u),ηM(u))
such that the above association can be rewritten in the form

TM(Y ) = bM(θM,τM(U)) and HM(Y ) = ηM(U).

But M is not fixed, so I don’t actually observe ηM(U) and,
therefore, this re-expression of the baseline association
can’t be used as as in Section 2.4 to reduce the dimen-
sion. It is still useful, however, from the point of view of
marginalization. That is, θM only appears in the first equa-
tion and, as Martin and Liu (2015b) argue, the fact that
θM can be anything implies that the first equation actually
carries no direct information about M and, hence, can be ig-
nored. Applying that reasoning here in the uncertain model
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context, I obtain a marginal association for M by ignoring
the first equality in the above display and keeping only

HM(Y ) = ηM(U). (8)

This marginalization step might or might not result in some
dimension reduction, it depends on the example. The key
point is that the nuisance parameter θM is absent in (8),
creating an opportunity to get directly at M.

The intuition behind this argument is familiar even if the
specifics are not. Details will be given in Section 5 below,
but for now let me explain what’s going on in the context of
a specific example. Consider a regression problem where M
signals which of the p predictor variables (columns in the
n× p design matrix X) are to be included in the expression
for the mean response. Then the model-specific parameter
is θM = (βM,σ2), the subset of slope parameters and the
error variance. One way to represent the data in this case is
in terms of (a) the sufficient statistics TM(Y ) for θM , given
M, and (b) the residuals HM(Y ) of the model M fit. If M
is certain, then focus turns to the sufficient statistics and
the residuals can be ignored; but if M is uncertain, then
the residuals are needed to address questions about the
model fit, etc. So, all that I’m really suggesting above is
to implement the Stat 101 logic of using the residuals to
assess the quality and appropriateness of a posited model.

To put this proposal into action, starting from the
marginal association (8), I can introduce the same random
set S for predicting the unobserved value of U ; how this
looks can vary across applications, and I’ll give details in
Section 5. Using the observed data, y, and the equation in
(8), this random set can be mapped to M just like in the
C-step above, i.e.,

My(S) =
⋃
u∈S

My(u),

where My(u) = {M ∈M : HM(y) = ηM(u)}. This leads to
a data-dependent (marginal) belief/plausibility function on
M , give by

mply(A) = 1−PS{My(S)⊆ Ac}, A⊆M , (9)

which can be used to quantify uncertainty about M. Proper-
ties of this marginal inferential model in the general case
are still being developed, but results are available in certain
special cases, like in Section 5 below.

5. Gaussian Signal Detection
5.1. Setup and Construction

An important canonical example in statistics, signal process-
ing, and elsewhere is the normal means model, where Y ∼
Nn(θ , In). What makes this example interesting/challenging
is that the n-vector θ of unknown means contains some
exact zeros. That is, those Yi’s with θi = 0 correspond to

“noise” and those with θi 6= 0 correspond to “signal,” and the
goal is to detect those signals. This example has received
considerable attention in the literature for the insights it
provides on methods for estimation of high-dimensional
parameters with a certain kind of sparsity structure; see,
e.g., Martin and Walker (2014), Martin (2017), Martin and
Ning (2018), and the references therein.

An association to describe these data is straightforward,

Y = θ +U, U ∼ PU := Nn(0, In), (10)

where Nn(0, In) denotes the joint distribution of n indepen-
dent standard normal random variables. Here θ ∈ Rn is
unknown, except that it contains a relatively small number
of signals or non-zero values. This signal/noise separation,
along with the fact that a primary goal is to learn where the
signals are, suggests the introduction of a configuration M
that serves as a model index. That is, θ = (M,θM), where
M ⊆ {1,2, . . . ,n} identifies which indices correspond to
signals, and θM is the |M|-vector that contains the specific
non-zero signal values.

Splitting the above baseline association into two parts,
one free of the nuisance parameter θM , is immediate in this
case. For a generic n-vector x and M ⊆ {1,2, . . . ,n}, I’ll
write xM to denote the subvector (xi : i ∈M). Then (10) can
be rewritten as

YM = θM +UM and YMc =UMc .

Then, clearly, the marginal association (8) for M is

YMc =UMc .

This expression carries some nice intuition: model M is
plausible if the observed yMc resembles a vector of iid
standard normals. This can be made precise by introducing
a random set, S, to predict the unobserved value of U . That
is, if S∼ PS is a random set on the U-space, then

My(S) =
⋃
u∈S
{M : yMc = uMc}= {M : SMc 3 (0M,yMc)},

where (0M,yMc) is the n-vector resulting from filling in
around yMc with all 0’s, and the marginal plausibility func-
tion as in (9). In particular, for the class of hypotheses

AM = {M′ ∈M : M′ ⊆M}, M ∈M , (11)

which corresponds to a claim that M contains all the signals,
the plausibility function above simplifies:

mply(AM) = PS{S 3 (0M,yMc)}, M ∈M .

This makes clear the above intuition that model M is plau-
sible if yMc resembles a vector of iid standard normals.

What’s a good choice of the random set S in this case?
For situations like this, where the relevant signal detection
questions correspond to zero/non-zero questions about each
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individual parameter, treated simultaneously, I will follow
the arguments in Martin et al. (2016) and use the random
hyper-cube

S= {u : ‖u‖∞ ≤ ‖Ũ‖∞}, Ũ ∼ PU ,

where ‖x‖∞ = maxi |xi| is the `∞-norm. Note that realiza-
tions of S correspond to realization of Ũ ∼ PU and, hence,
the distribution of S is determined by PU . In this case, the
marginal plausibility function at AM in (11) simplifies:

mply(AM) = 1−Fn(‖yMc‖∞), M ∈M , (12)

where Fn(z) = P{ChiSq(1)≤ z2}n is the distribution func-
tion of the maximum modulus of n iid standard normals,
which is easy to compute. Of course, this is not the only
choice of random set; see Section 5.3. Note, finally, that
this IM construction is different from that presented in Liu
and Xie (2014).

5.2. Validity Property

For the class {AM : M ∈M } of hypotheses in (11), which
I’ll show is practically relevant, a validity result for the
inferential model constructed above is available.

Theorem 1 For the inferential model constructed above,
with marginal plausibility function in (9), the following
validity result holds:

sup
θM∈R|M|

PY |M,θM{mplY (AM)≤ α} ≤ α,

for all α ∈ (0,1) and any M ∈M .

Proof Fix any α ∈ (0,1) and note that

mplY (AM)≤ α ⇐⇒ ‖YMc‖∞ ≥ cα(M),

where cα(M) = F−1
n (1−α). Therefore,

PY |M,θM{mplY (AM)≤ α}= PY |M,θM{‖YMc‖∞ ≥ cα(M)}

= 1−P{ChiSq(1)≤ c2
α(M)}|Mc|

= 1−{(1−α)1/n}|Mc|

≤ α.

Since this equality holds for all α ∈ (0,1) and for all M ∈
M , the claim follows.

Theorem 1 provides a calibration of the marginal plausi-
bility function values for this special class of hypotheses,
which aids in their interpretation. That is, judgments about
what values of plausibility are small/large can be made
(conservatively) by comparing to quantiles of a Unif(0,1)
distribution. This explains why the black curves in Fig-
ure 1—where the corresponding AM-type hypothesis is
true—are on or to the right of Unif(0,1). Specifically, equal-
ity holds in the last line of the proof when M =∅, which
is the scenario in Figure 1(a).

5.3. Model Selection Procedure

If selection of a single model is required, then the validity
result suggests the following strategy: for a given α ∈ (0,1),
select the smallest M such that mply(AM)> α , i.e.,

M̂α(y) = smallest M such that mply(AM)> α. (13)

Intuitively, this corresponds to selecting the smallest model
that is “sufficiently plausible,” where the latter interpreta-
tion relies on the scale of mply established by Theorem 1.
In addition, I claim that this method satisfies a selection
validity property:

PY |M,θM{M̂α(Y )⊆M} ≥ 1−α, ∀M ∈M . (14)

Theorem 2 The rule (13) satisfies (14).

Proof Clearly, M̂α(y) ⊆M is implied by mply(AM) > α .
The latter event has probability no less than 1−α according
to Theorem 1, which proves the claim.

Note that (14) is analogous to family-wise error rate
control in the context of multiple hypothesis testing, as
discussed in, e.g., Lehmann and Romano (2005, Chap. 9).
Interestingly, validity considerations in the context of uncer-
tainty quantification about a model correspond to family-
wise error control rather than, say, false discovery rate
control as in Benjamini and Hochberg (1995); see below.

For this specific model selection task, one might be
tempted to try a slightly different inferential model con-
struction, one that uses a M-dependent random set for
each individual mply(AM) calculation. The point is that,
for hypothesis AM , the n-dimensional random hyper-cube
is used to predict a |Mc|-dimensional auxiliary variable,
and the mis-match in dimension means the set is, in some
sense, larger than necessary, which, in turn, suggests some
potential inefficiency. To overcome this, an idea is to re-
place the n-dimensional random hyper-cube with a |Mc|-
dimensional hyper-cube that is specifically tailored for cal-
culating mply(AM) for the given M. This choice would
still achieve the validity result in Theorem 1, with equality,
and similarly in (14). Despite the apparent benefits of this
adaptive-dimension approach, there’s an important down-
side, namely, that it can only produce belief/plausibility
for hypotheses of the form AM , not for general hypotheses
A ⊆M . Moreover, the numerical results below suggest
that there is actually no substantial gain in efficiency using
the adaptive version. For these latter two reasons, I choose
not to emphasize this approach here.

To conclude this section, I’ll present simulation results
that compare the performance of the two proposed in-
ferential model-driven selection methods—based on the
fixed- and adaptive-dimension random sets, respectively,
for α = 0.1—with a few classical methods, namely, the
lasso (Tibshirani, 1996), a universal thresholding rule
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R Method Subset Equal Superset FDR FNR
2 IMfi 0.880 0.022 0.004 0.082 0.066

IMad 0.878 0.024 0.004 0.081 0.066
Lasso 0.278 0.022 0.408 0.500 0.036
Thresh 0.730 0.052 0.018 0.164 0.060

BH 0.832 0.038 0.020 0.095 0.064
4 IMfi 0.214 0.700 0.060 0.034 0.011

IMad 0.208 0.698 0.068 0.037 0.010
Lasso 0.002 0.094 0.890 0.595 0.001
Thresh 0.102 0.674 0.188 0.088 0.006

BH 0.126 0.644 0.206 0.092 0.007
8 IMfi 0 0.926 0.074 0.025 0

IMad 0 0.918 0.082 0.028 0
Lasso 0 0.096 0.904 0.582 0
Thresh 0 0.764 0.236 0.083 0

BH 0 0.738 0.262 0.098 0

Table 1: Simulation results for various model selection
procedures, including those based on inferen-
tial models constructed with fixed- and adaptive-
dimension random sets, with n = 25. Explanation
of the methods and summaries is given in the text.

(e.g., Donoho and Johnstone, 1994), and the Benjamini–
Hochberg false discovery rate controlling procedure (Ben-
jamini and Hochberg, 1995). For the simulation settings, I
consider n ∈ {25,50} and, in each case, the n-vector θ is
filled with 10% signals of constant size R ∈ {2,4,8}. The
comparisons are made in terms of the probability that M̂α is
a subset, equal to, and a superset of the true M, and the false
discovery and non-discovery rate. Tables 1 and 2 summa-
rize the results based on 500 Monte Carlo samples. A key
observation is that, by property (14), both inferential model-
based approaches satisfy Subset+Equal ≈ 1−α = 0.90,
but none of the other methods do. Naturally, the problem
is harder for smaller signal size R and larger dimension n,
and this is reflected in the results. But the inferential model-
based methods proposed here perform very well compared
to the more traditional methods, across the board.

6. Conclusion

This paper presents some first thoughts on the construction
of an inferential model for valid uncertainty quantification
about an uncertain model. The focus here was on an impor-
tant albeit relatively simple normal means problem, but the
main ideas—and promising numerical results—should gen-
eralize to other cases. I’ll conclude here with a discussion
of some open questions and perspectives.

In my present formulation, writing the full parameter θ

as the pair (M,θM) was helpful because the problem could
be viewed as one of marginal inference where the goal is
to eliminate the nuisance parameter θM . But there are other

R Method Subset Equal Superset FDR FNR
2 IMfi 0.900 0.000 0.000 0.072 0.087

IMad 0.898 0.000 0.000 0.073 0.0871
Lasso 0.130 0.000 0.238 0.574 0.040
Thresh 0.786 0.000 0.000 0.135 0.081

BH 0.826 0.002 0.000 0.099 0.083
4 IMfi 0.562 0.356 0.028 0.018 0.019

IMad 0.554 0.362 0.030 0.018 0.018
Lasso 0.000 0.008 0.978 0.607 0.000
Thresh 0.346 0.450 0.098 0.041 0.012

BH 0.208 0.396 0.286 0.089 0.009
8 IMfi 0 0.916 0.084 0.014 0

IMad 0 0.904 0.096 0.016 0
Lasso 0 0.006 0.994 0.624 0
Thresh 0 0.798 0.202 0.036 0

BH 0 0.580 0.420 0.088 0

Table 2: Same as in Figure 1 but with n = 50.

situations where the goal is prediction of a new Ỹ or perhaps
inference on some parameter that is common across all
M, such as an error variance in regression. An interesting
question is if a version of the Bayesian “model averaging”
can be formulated in this different context. Techniques
similar to those in Martin and Lingham (2016) are expected
to be useful, but I’ve yet to attempt working out the details.

The modern versions of the signal detection problem de-
scribed in Section 5 are those where the dimension n is very
large but the signal is assumed to sparse in the sense that
most of the θi’s are zero. A now fairly standard approach
is to develop a sparsity-encouraging prior distribution and
carry about a Bayesian analysis. However, one often is lack-
ing genuine prior information about the signals and, in such
high-dimensional problems, the need to fill in the gap with
an artificial prior can create problems. A new perspective
was recently presented in Cella and Martin (2019), where
they attempt to incorporate incomplete prior information
into an inferential model formulation while maintaining
validity. Such an approach would, at least in principle, fit
in nicely here since an assumption of sparsity is effectively
just an incomplete prior for the model index M. This is an
important problem and the focus of ongoing work.
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