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Abstract
Sum-Product Networks (SPN) are deep probabilis-
tic models that have shown to achieve state-of-the-
art performance in several machine learning tasks.
As with many other probabilistic models, performing
Maximum-A-Posteriori (MAP) inference is NP-hard
in SPNs. A notable exception is selective SPNs, that
constrain the network so as to allow MAP inference to
be performed in linear time. Due to the high number of
parameters, SPNs learned from data can produce unre-
liable and overconfident inference; this phenomenon
can be partially mitigated by performing a Robust-
ness Analysis of the model predictions to changes in
the parameters. In this work, we address the problem
of assessing the robustness of MAP inferences pro-
duced with Selective SPNs to global perturbations of
the parameters. We present efficient algorithms and an
empirical analysis with realistic problems.
Keywords: Robust statistics, sensitivity analysis, sum-
product networks, tractable probabilistic models.

1. Introduction
Sum-Product Networks (SPNs) are a class of deep proba-
bilistic graphical models with an intuitive semantics given
by context-specific independences [27, 23, 34, 14, 31]. An
SPN represents a probability distribution over a set of
random variables by a rooted directed-acyclic graph with
tractable distributions as leaves, and weighted sums and
product operations as inner nodes [27].

SPNs have obtained impressive results in many machine
learning tasks due to their ability to represent complicated
multidimensional distributions [27, 1, 37, 29, 28, 8, 26].
While SPNs allow for linear time predictive inference
(i.e., computing the probability of a joint configuration
of the variables), many tasks are more effectively solved
by finding a maximal probability joint configuration of the
variables that is consistent with a given evidence, a prob-
lem known as Maximum-A-Posteriori (MAP) inference
[27, 35, 10]. This problem is known to be NP-hard even to
approximate, and even for shallow structures [24, 10]. A no-
table exception is when SPNs are selective, that is, when the
sub-networks of each sum node define distributions with
disjoint supports. Selective SPNs admit MAP inference
in linear time by a simple and parallelizable greedy algo-
rithm [23, 24]. While selective SPNs are less expressive

than non-selective SPNs [9, Theorem 4], empirical results
have shown that learned selective SPNs obtain performance
comparable to learned non-selective SPNS [23].

In spite of its relative success, and on par with other prob-
abilistic models, SPNs learned from data generalize poorly
on regions with insufficient statistical support, leading to
unreliable, overconfident and prior-dependent conclusions.
This issue can be mitigated by performing a sensitivity anal-
ysis of the model predictions to changes in the parameters
[2]. Let us clarify the way we intend sensitivity analysis
here, and in doing so, let us review related work.

Sensitivity analysis can be split into quantitative ap-
proaches and qualitative approaches. The former evaluate
the effect of perturbation in the model parameters on the
value of a particular inference. The latter concerns the clas-
sification of inferences into robust or not, depending on how
an inference changes according to changes in the model pa-
rameters. Most of the previous work in sensitivity analysis
in probabilistic graphical models is quantitative, with par-
ticular focus on the computation of marginal posterior prob-
abilities over a single variable [15, 32, 20, 4, 6, 18, 16, 5].
Qualitative sensitivity analysis received much less atten-
tion, with some notable examples [21, 7, 30]. A second
distinction can be made between local and global analyses.
The former considers the effect of the perturbation of a
single parameter, or a small group of related parameters;
the latter aims at more general perturbations possibly affect-
ing all the parameters of the model simultaneously. Initial
work on algorithms for sensitivity analysis in probabilistic
graphical models focused on local perturbations [5, 18];
more recently, algorithms for global analyses have been
proposed [4, 6, 16].

The only approach to global sensitivity analysis in SPNs
is the recent work by Mauá et al. [21], who considered
Credal SPNs, that is, sets of SPNs obtained by a simultane-
ous perturbation of all model parameters. They developed
efficient algorithms for producing upper and lower bound
on the probability of evidence, and for performing credal
classification for small number of classes. Importantly, they
showed that performing global quantitative sensitivity anal-
ysis of MAP inference in these models is NP-hard.

In this work we develop efficient algorithms for global
quantitative analysis of MAP inference in selective SPNs.
In particular, we devise a polynomial-time procedure to
decide whether a given MAP configuration is admissible
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with respect to a selective credal SPN, that is, whether
the configuration is the single maximizer of all SPNs in
the set. Experiments with real-world datasets show that
this approach can discriminate easy- and hard-to-classify
instances, often more accurately than criteria based on (pre-
cise) probabilities induced by the model.

This paper is organized as follows. We fix the notation
and terminology regarding random variables in Section 2.
Then, in Section 3, we introduce some basic knowledge
about selective SPNs and MAP inference. In Section 4,
we review Credal Sum-Product Networks. In Section 6,
we show the experimental results of our robustness anal-
ysis. Finally, we conclude the paper and discuss possible
improvements in Section 7.

2. Notation

We start with some notation and terminology. We write
integers in lower case (e.g., i, j), sets of integers using
capital calligraphic letters (e.g., V ) and Random Variables
(RV) in capital letters (e.g., Xi). A collection of RVs Xi, i ∈
V is written as XV , or simply X when the index set is
not important. The set of values that a RV Xi assumes
is denoted as val(Xi) and the set of all realizations of a
collection of RVs X is denoted by val(X) = ×N

i=1val(Xi),
where × denotes the Cartesian product. An element of
val(X) is written as x. In this work we assume that RVs
take on a finite number of values; therefore we can represent
every random variable Xi with a set of indicator variables
{λi,k : k = 0, . . . ,m−1}, where λi,k denotes that Xi takes on
its k-th value (for some arbitrary ordering of val(Xi). We
denote an arbitrary specification of the indicator variables
associated with RVs XV as λ .

3. Selective Sum-Product Networks

A Sum-Product Network S is a rooted weighted acyclic
directed graph with indicator variables as leaves, and sum
and product operations as internal nodes. The arcs i→ h of
the network are associated with non-negative weights wi j
such that arcs leaving product nodes are assigned weight
one (and usually omitted). The set of all weights is denoted
w. If i is a node in SPN S we write Si to denote the sub-SPN
rooted at i. The children of a node i (the nodes to which
there is an arc from i) are denoted by ch(i). The scope
of an SPN is the set of RVs associated with the indicator
variables in the network. Figure 1 shows an SPN with scope
X0,X1,X2.

The evaluation of an SPN S at a realization x of its
scope is defined recursively: S(x) = 1 if S is an indicator
node consistent with x; S(x) = 0 if S is an indicator node
not consistent with x; S(x) = ∑ j∈ch(i) wi jS j(x), where i
is the root; and S(x) = ∏ j∈ch(i) S j(x). This value can be
computed in linear time by traversing the network from

λ0,1 λ0,0

λ1,1 λ1,0 λ1,1 λ1,0λ2,1 λ2,0 λ2,1 λ2,0

+ ++ +

× ×

+

.4 .6

.7 .3 .2 .8.6 .4 .9.1

Figure 1: Selective Sum-Product Network over three bi-
nary variables.

the leaves towards the root (caching values). For example,
the evaluation of the SPN in Figure1 at X0 = 1, X1 = 1 and
X2 = 0 is S(x) = 0.4(1×0.7×0.4)+0.6(0.2×0.9×0) =
0.112.

In order to ensure that an SPN represents a valid distri-
butions [27], we impose the following conditions:

Completeness: The children of a sum node have identical
scope;

Decomposition: The children of a product node have dis-
joint scopes;

Normalization: The sum of the weights of arcs leaving a
sum node is one.

The SPN in Figure 1 is complete, decomposable, and nor-
malized. For the rest of this paper, we assume that SPNs
are complete, decomposable and normalized.

To ensure linear time MAP inference [23], we also im-
pose the following additional property:

Selectivity: At most one child sub-network of any sum
node evaluates to nonzero at any realization of its
scope.

The SPN in Figure 1 is selective. An alternative way to state
the above condition is to assume that the supports of the
distributions induced by the children of any sum node are
disjoint. This implies for any realization x and sum node i
that Si(x) = wi jS j(x) for j ∈ ch(i).

Given a realization x we say that a node i of an SPN S is
active if Si(x)> 0. If the network is selective then at most
one child of each sum node is active for any realization.
The calculation tree TS(x) of an SPN S is the SPN induced
by the sequence of active nodes for x rooted at the root of
S. Due to the decomposition property, the calculation tree
of a selective SPN is a tree, hence justifying its name. In
this case, we have that

TS(x) = ∏
i→ j∈TS(x)

wi j . (1)
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In Figure 1, the sub-SPN induced by highlighted arcs rep-
resents the calculation tree for X0 = X1 = X2 = 0, and
T(0,0,0) = 0.6×0.8×0.9 = 0.432 .

3.1. Learning Selective Sum-Product Networks

Given a dataset D of i.i.d. realizations x∈ val(X), Equation
(1) allows us to obtain a closed-form maximum likelihood
estimator for the weights of a fixed-structure selective SPN
S by

wi j =
N j

Ni
, (2)

where Nk = |x∈D : k ∈ TS(x)| is the number of calculation
trees containing node k. We can obtain more robust estima-
tors by smoothing the count above, for example, by using
the estimator wi j = (N j+s j)/(N j+s) for s=∑ j s j. A com-
mon choice is Laplace smoothing, which uses s j = 1. Note
that this is equivalent to obtain Bayesian estimators assum-
ing independent Dirichlet priors on the weights associated
with a sum node.

Inspired by structure learning of standard probabilistic
graphical models [17] and Equation (2), Peharz et al. [23]
proposed learning selective SPNs by maximizing a penal-
ized log-likelihood function that discounts the size of the
graph of the data log-likelihood. They developed an algo-
rithm that learn selective SPNs by performing a greedy
hill-climbing search in the space of structures.

More recently, Liang et al. [19] developed an algorithm
to learning Probabilistic Setential Decision Diagrams, a
similar type of probabilistic models which can efficiently
be translated into selective sum-product networks. At each
step, their algorithm performs local modifications to the
network that improve the test-set penalized log-likelihood.
They show state-of-the-art performance according to test-
set likelihood in benchmarks when learning ensemble of
PSDDs using bagging and an EM-like procedure. Note
however that the use of ensembles makes MAP inference
NP-hard [10].

3.2. Maximum-A-Posteriori Inference

A normalized SPN S induces a probability measure PS over
the domain of its scope. Thus, given an SPN S with scope
{X,E} and evidence e ∈ val(E), we define the set of MAP
instantiations as:

x∗ ∈ arg max
x∈val(X)

P(x|e) = arg max
x∈val(X)

S(x,e) .

Although MAP inference is NP-hard in SPN even when
restricted to binary variables and height-two networks
[10, 33, 22, 25], the problem is solvable in linear time
in the size of the network for Selective SPNs by the simple
Max-Product algorithm [23, 25]. This algorithm consists
in replacing sum operations with maximizations (obtain-
ing a so-called Max-Product network), then evaluating the

0.36 ≤ w1 ≤ 0.46 w1 + w2 = 1

0.63 ≤ w3 ≤ 0.73 w3 + w4 = 1

0.54 ≤ w5 ≤ 0.64 w5 + w6 = 1

0.18 ≤ w7 ≤ 0.28 w7 + w8 = 1

0.09 ≤ w9 ≤ 0.19 w9 + w10 = 1

λ0,1 λ0,0

λ1,1 λ1,0 λ1,1 λ1,0λ2,1 λ2,0 λ2,1 λ2,0

+ ++ +

× ×

+
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Figure 2: Credal Sum-Product Network obtained by 0.1-
contamination of the Sum-Product Network in
Figure 1.

network by traversing nodes from the leaves towards the
root. We say that a leaf node is consistent if its scope is in
X, or if its scope is E j ∈ E and the node evaluates to 1 at e.
The algorithm can be described by the following recursion
(caching values to achieve linear time):

MAPi =



1 if i is a consistent leaf node,
0 if i is an inconsistent leaf,

∏
j∈ch(i)

MAP j if i is a product node,

max
j∈ch(i)

wi jMAP j if i is a sum node.

The corresponding MAP instantiation is obtained by back-
tracking the solutions of the maximizations from the root
toward the leaves. The circuit tree in Figure 1 contains the
arcs selected by Max-Product when backtracking from the
root (i.e., it contains the arguments of the maximizations).

4. Credal Sum-Product Networks

We denote by Sw an SPN whose weights are w. A Credal
SPN (CSPN) is a set of (consistent, decomposable and
normalized) SPNs {Sw : w ∈ C } which all share the same
network structure [21]. The space of weights C is usually
taken as the Cartesian product of closed and convex sets of
weights Ci, one for each sum node i in the network. Since,
the networks are normalized, a CSPN induces a credal set
over the weights associated with outgoing edges of each
sum node. An example of CSPN is shown in Figure 2.

Mauá et al. [21] developed a polynomial-time algorithm
to compute the upper joint probability of a given instantia-
tion induced by a given a Credal SPN Sw and a realization
x of its variables. The algorithm visits nodes in topological
reverse ordering, evaluating the following expression at
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each node i (we omit words “leaf” and “node” below):

Li(x,e) =



1 if i is consistent,
0 if i is inconsistent,

∏
j

L j(x,e) if i is a product,

max
wi∈Ci

∑ j∈ch(i) wi jL j(x,e) if i is a sum.

(3)
The desired value is obtained at the root of the network, that
is, Lr(x,e) = maxw Sw(x,e). Note that for selective credal
SPNs, the sum in the last equation has at most one positive
term.

4.1. Credal SPNs for Robustness Analysis

We can investigate the robustness of inferences drawn with
a (precise) SPN by comparing the inferences produced by
a CSPN built “around” the investigated SPN. A common
approach is to obtain a CSPN by applying a perturbation to
each weight in the network, while still respecting the nor-
malization property. Given ε ∈ (0,1), the ε-contamination
of the vector u is the set:

Cu,ε =

{
(1− ε)u+ εv : v j ≥ 0,∑

j
v j = 1

}
. (4)

We say that a CSPN is obtained by ε-contamination of an
SPN Sw if the weights associated with each sum node vary
in the set obtained by the ε-contamination of the weights
in S:

{Sw : wi ∈ Cw,ε , i is a sum node} , (5)

where wi denotes the weights associated with sum node i.
Alternatively, we can obtain a CSPN by varying the

priors used for estimating the parameters of the SPN. Recall
from Equation (2) that the weights of a selective SPN can
be estimated as a Multinomial-Dirichlet model with counts
N j, and prior strength s. Thus, we can obtain a local credal
set for a sum node i given a count vector N as:

CN,s =

{
wi : wi j =

N j + s · vi

Ni + s
,v j ≥ 0,∑

j
v j = 1

}
. (6)

The equation above coincides with the Imprecise Dirichlet
Model [36] for a (latent) RV representing the sum node i,
whose value “selects” which edge is active.

5. Robustness of MAP Inferences in SPNs
In this work, we consider an instance x∗ robust with respect
to a credal SPN {Sw : w ∈ C } and evidence e if x∗ is the
single maximizer of each SPN Sw in the credal set, that is,
if:

max
x6=x∗

max
w∈C

(
Sw(x,e)
Sw(x∗,e)

)
< 1 .

Note that for SPNs (i.e., when C is a singleton) the problem
reduces to deciding if there exists an instantiation x s.t.
S(x,e) > S(x∗,e), Bodlaender et al. [3] showed that this
problem is NP-hard for Bayesian networks; one can adapt
their proof using ideas from [10] to show that deciding if
an instance x∗ is robust is NP-hard.

Before formulating an algorithm for deciding robustness
of MAP inference, let us consider the simpler problem
of computing the MAP instantiation with maximum joint
probability over the set of induced SPNs. This will be used
as a subroutine to verify robustness later. Thus consider a
credal SPN {Sw : w∈C }where C is given by the Cartesian
product of sets Ci for each sum node i, and some evidence
e. We are thus interested in computing

max
x

max
w∈C

Sw(x,e) .

Call a leaf node of the network a MAP leaf if its scope
is in X, otherwise call it an evidence leaf. The following
algorithm computes the above quantity by traversing the
network, calculating at each node i:

Mi =



1 if i is consistent,
0 if i is inconsistent,

∏
j∈ch(i)

M j if i is a product node,

max
j∈ch(i)

max
wi∈Ci

wi jM j if i is a sum node.

The definition of consistent and inconsistent nodes applies
to leaf nodes and is identical to the one used to define the
Max-Product algorithm. The soundness and complexity of
the algorithm above are given by the following result.

Theorem 1 Consider a selective CSPN {Sw : w ∈ C }
with root r, where C is the Cartesian product of finitely-
generated polytopes Ci, one for each sum node i. Then Mr

computes max
x

max
w

Sw(x) in O(|S|) time, where |S| is the

number of nodes and arcs in the model (assuming the local
optimizations over the weights in Mi take linear time).

Proof We prove corrrectness by induction in the height h of
S. The base case for h=0 is immediate, as it consists of a leaf
node which is maximized by setting the associated indicator
to one, for the case of MAP leafs, or simply evaluated at
the evidence. Assume that the inductive hypothesis is valid
for networks of height h ≥ 0 or smaller, and consider a
network of height h+ 1 whose root is i. Recall that in a
selective SPN, at most one child j of a sum node satisfies
S j(x,e)> 0 for each instantiation x. Let X j denote the set
of instantiations x ∈ val(X) for which S j(x,e)> 0. Then

max
x∈val(X)

max
w

Si
w(x,e) = max

j∈ch(i)
max
x∈X j

max
w

wi jS
j
w j(x,e) .

Thus, if i is a sum node, it follows that

max
x

max
w

Si
w(x,e) = max

j∈ch(i)
max

wi j∈Ci j
wi j max

x
max

w j
S j

w j(x,e)
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= max
j∈ch(i)

max
wi j∈Ci j

wi jM j = Mi .

If i is a product node, we have that

max
x

max
w ∏

j∈ch(i)
S j

w j(x) = ∏
j∈ch(i)

max
x

max
w j

S j
w j(x,e)

= ∏
j∈ch(i)

M j = Mi .

The weights w j in the first equation can be optimized in-
dependently for each j ∈ ch(i), and the disjointedness of
scopes for product nodes ensures that no weight is shared
among the child sub-networks.

If we cache the values computed, then each node com-
putes one value Mi in polynomial time in the number of
edges of the network, considering that the local optimiza-
tion over weights wi j is polynomial (which is the case for
most sensible credal SPNs). Therefore the total cost of this
computation is O(|S|).

The following algorithm decides if a MAP instantiation
is robust, by traversing the network from the leaves to the
root, computing, for each node i:

V i =



1 if i is consistent,
0 if i is inconsistent,

∏
j

V j if i is a product node,

max
{

max
j∈ch(i), j 6=k

U j, V k
}

if i is a sum node,

where k is the active child of i for S at x∗,e, and

U j = max
wi∈Ci

wi jM j

wikLk(x∗,e)
.

Where M j and Lk was introduced at the previous section
in equations 5 and 3 respectively.

The following result states the soundness and complexity
of the algorithm for tree-shaped networks.

Theorem 2 Consider a tree-shaped CSPN {Sw : w ∈ C }
with root r, where C is the Cartesian product of finitely-
generated polytopes Ci, one for each sum node i. Then V r

computes

max
x

max
w∈C

(
Sw(x,e)
Sw(x∗,e)

)
in O(|S|) time, where |S| is the number of nodes and arcs
in the model (assuming the optimizations over wi in U j can
be performed in linear time).

Proof We prove that the algorithm is correct by induction
in the height h of S . The base case for h=0 is immediate. So
assume that the inductive hypotheses is valid for networks
of height h≥ 0 or smaller, and consider a network of height
h+ 1 whose root is i. Assume that i is a sum node. The

tree shape of the network implies that the weights w j that
appear in a sub-network S j, j ∈ ch(i), do not appear in any
other sub-network S j′ , j′ ∈ ch(i), j′ 6= j. Denote by X j the
subset of val(X) for which S j(x,e)> 0. We have that

max
x

max
w

Sw(x,e)
Sw(x∗,e)

= max
j∈ch(i)

max
w

wi j maxx∈X j S j
w j(x,e)

wikSk
wk
(x∗,e)

,

where k is the child of i for which Sk(x∗,e)> 0. For j = k
it follows that

max
w

wi j maxx∈X j S j
w j(x,e)

wikSk
wk
(x∗,e)

= max
x

max
wk

Sk
w j
(x,e)

Sk
wk
(x∗,e)

=V k.

For j 6= k, w j and wk can be optimized independently, as
the network is tree-shaped. Hence,

max
w

wi j maxx∈X j S j
w j(x,e)

wikSk
wk
(x∗,e)

= max
wi∈Ci

wi j max
x

max
w j

S j
w j(x,e)

wik min
wk

Sk
wk
(x∗,e)

= max
wi∈Ci

wi jM j

wikLk(x∗,e)
=U j .

If i is a product node then

max
x

max
w

(
∏ j S

j
w j(x)

∏ j S
j
w j(x∗)

)
= max

x
max

w ∏
j∈ch(i)

S j
w j(x,e)

S j
w j(x∗,e)

= ∏
j

max
x

max
w j

S j
w j(x,e)

S j
w j(x∗,e)

= ∏
j

V j =V i .

Computing V i for a node i with the values of the children
pre-computed and stored takes at most linear time in the
number of children. Hence, the total cost of the computation
is O(|Sk|).

The complexity of deciding robustness for multiply-
connected CSPNs remains an open question.

6. Experiments
We evaluate the ability of our proposed method to distin-
guish between robust and and non-robust MAP inferences
in two different tasks. The first task requires learning a
probabilistic model from complete data and then use that
model to complete the missing values in the test data by
maximizing the joint probability value of each instance.
(this is also known as data imputation in the literature). We
let X be the missing part and e the non-missing part. The
second task considers multilabel classification, where ob-
jects are assignment multiple labels. This task can be solved
by representing labels as a binary vector X, which can be
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Table 1: Characteristics of datasets used in completion
tasks.

Dataset Train Test Evidence Query

DNA 1600 1186 90 90
Jester 9000 4116 50 50
NLTCS 16181 3236 8 8
MSNBC 291326 58265 9 8

predicted by a probabilistic model of relevance labels X
given features e.

We learn selective SPNs for both tasks using the algo-
rithm by Peharz et al. [23]. We then obtain CSPNs by either
ε-contamination (Equation (5)) or the Imprecise Dirichlet
Model over the smoothed counts (Equation (6)). We use
the CSPNs to determine the robustness of each MAP in-
ference drawn with the (precise) SPN, and compare the
performance of robust and non-robust classifications. We
use a validation dataset to select values for ε and s that
maximizes the performance of robust inferences (according
to some metric, as discussed later). We also compare our
methods against a baseline robust analysis that compare the
difference between the probability of the MAP instatiation
and the second-best MAP instatiantion (i.e., the second
most probable configuration consistent with evidence). An
instance is considered robust in this scheme if this differ-
ence is greater than a given threshold. We use a validation
set to determine the best threshold for each dataset and
task.

6.1. Completion

We learned selective SPNs from four well-known datasets
for density estimation [11], available at https://
github.com/arranger1044/DEBD. The selected
datasets and their characteristics appear in Table 1. These
datasets are complete and all variables have been bina-
rized. We build completion tasks in the test sets by running
MAP inference in the first 50% of the variables with the
remaining variables given as evidence. We use the avail-
able training/validation/test partition in the datasets to learn,
select parameters, and evaluate the methods, respectively.

We measure the performance of the completions by the
Hamming Score (HS) and Exact Match (EM) metrics. Ham-
ming score measures the percentage of correct value com-
pletions:

HS =
1

NR

N

∑
i=1

R

∑
j=1

I(x∗i, j = x̂i, j) ,

where x is the MAP instantiation, x̂ is the true completion,
N is the number of instances and R is the number of missing
values (50% of the number of variables in this case). Exact

match computes the percentage of perfect completions:

EM =
1
N

N

∑
i=1

I(x∗i = x̂i) .

For each metric,we select the values for ε∗, s∗ and the
probability difference p∗ by maximizing the performance
of the robust instances on the validation set (according to
some criterion). These values are kept fixed during evalua-
tion in the test set.

The results are shown in Table 2, where ε∗, s∗ and p∗
stand for ε-contamination, IDM and probability difference
criterion, with the parameters and threshold selected using
a validation set, as described. The best performing method
for each dataset and partition is shown in boldface. We
omit the results for the DNA dataset, as all instances had
more than on MAP instantiation, making all inferences
non-robust by any of the criteria.

According to the results, ε-contamination outperforms
all other methods in terms of both Hamming Score and Ex-
act Match. It also achieves the highest discrepancy between
the performance of robust and non robust predictions. IDM
is outperformed by the other methods in two datasets.

Figure 3 shows the test-set performance of robust in-
stances in the test set as for different values of ε , s and
different thresholds for probability difference. The curves
with green triangle marks shown Exact Match, while the
curves in orange square marks denote Hamming scores.
We see that ε-contamination improves performance as the
value of ε is increased, while the correlation of the thresh-
old for probability difference and accuracy is less clear.
IDM obtains intermediary results. All three approaches
perform similarly at the highest values.

6.2. Multilabel Classification

We perform the robustness analysis of predictions on 10
benchmark of multilabel classification domains.1 Table 3
shows general characteristics of the datasets used: domain,
number of features M, number of instances N, number of
labels L, label cardinality LC = 1

N ∑
N
i=1 |xi| and label density

LD = 1
N ∑

N
i=1
|xi|
R , where |x| returns the number of ones in

the instantiation x.
In addition to Exact Match, we also evaluate multilabel

classifications by a common measure [12, 13], which re-
wards relevant predictions while discounting for irrelevant
predictions. We name this metric Accuracy (Acc), and com-
pute it as:

Acc =
1
N

N

∑
i=1

|x∗i ∧ x̂i|
|x∗i ∨ x̂i|

,

where again N is the test dataset size, x∗ is the MAP in-
ference and x̂ the true labels. The operations ∧ (resp. ∨)

1. The datasets were also used in [13, 35] and are available at
https://github.com/nicoladimauro/dcsn and http:
//meka.sourceforge.net.
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Table 2: Results for completion tasks, %I column shows instances percentage, ∆EM and ∆HS is the metric difference
between Robust and ¬Robust subsets.

Dataset Exact Match Hamming Score
Robust %I ¬Robust %I ∆EM Robust %I ¬Robust %I ∆HS

Jester
ε∗ 0.259 0.66 0.001 99.34 0.258 0.66 0.913 99.34 0.692 0.221
s∗ 0.076 2.26 .001 97.74 0.075 0.755 2.26 0.692 97.74 0.063
p∗ 0.016 13.34 0.001 86.66 0.015 0.858 3.86 0.687 96.14 0.171

NLTCS
ε∗ 0.736 25.06 0.248 74.94 0.488 0.934 25.06 0.77 74.94 0.164
s∗ 0.736 25.06 0.2487 74.94 0.488 0.934 25.06 0.77 74.94 0.164
p∗ 0.736 25.12 0.248 74.88 0.488 0.933 25.12 0.77 74.88 0.163

MSNBC
ε∗ 1 0.01 0.247 99.99 0.753 1 0.01 0.783 99.99 0.217
s∗ 0.464 12.69 0.215 87.31 0.249 0.875 12.69 0.769 87.31 0.106
p∗ 0.727 0.02 0.247 99.98 0.48 0.92 0.02 0.783 99.98 0.137

ε-contamination IDM Prob. Diff.
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Figure 3: Test-set performance vs. threshold for completion tasks. Each row displays results for a dataset. From the top
to bottom row: Jester, NLTCS, MSNBC. The curves with green triangle marks shown Exact Match, while the
curves in orange square marks denote Hamming scores.
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Table 3: Multi-Label Datasets, their domains, size of their
feature vector (M), number of instances (N) , num-
ber of labels (L), label cardinality (LC) and label
density (LD).

Dataset Domain M N L LC LD

Arts-Yahoo Text 500 7484 26 1.65 0.06
Business-Yahoo Text 500 11214 30 1.6 0.05
CAL500 Music 68 502 174 26.04 0.15
Emotions Music 72 593 6 1.87 0.31
Flags Images 19 194 7 3.39 0.48
Health-Yahoo Text 500 9205 32 1.64 0.05
Human Biological 440 3106 14 1.19 0.08
Plant Biological 440 978 12 1.08 0.09
Scene Images 294 2407 6 1.07 0.18
Yeast Biological 103 2417 14 4.24 0.3

denote the vector obtained by coordinate-wise minimum
(resp. maximum) of the instances. We do not use Hamming
Score, as it does not distinguish between correct prediction
of presence and absence of labels, and can lead to overop-
timistic measures when the number of labels is high and
label density is low.

Similar to the previous task, we select the best values
ε∗, s∗ and p∗ using the validation dataset, an then perform
a robustness analysis for each multilabel prediction in the
test dataset. The results are summarized in Table 4. All
instances in the CAL500 dataset contained more that one
MAP instantiation and are therefore deemed non-robust by
all methods. We omit these results from the table.

One sees from these results that the CSPNs obtained by
IDM achieve the highest accuracy in 5 of the 9 domains,
followed by the CSPNs obtained with ε-contamination (3
out of 9). Probability difference outperforms the other meth-
ods with respect to accuracy only for Human, where the
CSPN-based methods consider all instances robust. Yet,
the difference in accuracy (or exact match scores) for ro-
bust and non-robust is very small, showing that the two
sets perform indeed very similar (but perhaps it would be
more sensible to classify all instances as non-robust). The
IDM-based CSPNs perform particularly poorly in the Arts
domain, where the accuracy of the robust portion is signif-
icantly inferior to the accuracy in the non-robust portion.
We conjecture that this is due to some peculiarity of the
learned network, but were not able to provide any deep
explanation at this point.

Regarding Exact Match, we see that IDM-based CSPNS
outperform other methods in 4/9 of the domains, while
probability difference achieves the best performance in 3/9
of domains. CSPNs based on ε-contamination are outper-
formed in all but one domain (Arts), where IDM-based re-
sults exhibit the same strange behavior (robust instances ob-
tain worse results than non-robust instances). One possible

explanation for the best performance of ε-contamination
is that it is more conservative, assigning more instances to
the non-robust portion; this is particularly beneficial under
exact match, which is more strict with mistakes.

7. Conclusion

Sum-Product Networks (SPNs) are deep probabilistic mod-
els that have shown very promising results in several
tasks. Selective SPNs are a subclass of models that allows
tractable MAP inference with only a small decrease in accu-
racy. In this work, we presented polynomial-time algorithm
for robust analysis of MAP inference in tree-shaped selec-
tive SPNs. We evaluated our algorithms in two different
tasks: completing missing values and performing multilabel
classification. Our results show that the proposed algorithm
is better at discrimination of robust and non-robust infer-
ences than the standard approach based on the difference
of probabilities. We left for the future the analysis of the
complexity of robustness for multiply-connected SPNs, as
well as a more extensive empirical evaluation.
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