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Abstract

User retention is a key focus for consumer based internet companies and promotions are an
effective lever to improve retention. However, companies rely either on non-causal churn
prediction to capture heterogeneity or on regular A/B testing to capture average treatment
effect. In this paper, we propose a heterogeneous treatment effect optimization framework
to capture both heterogeneity and causal effect.

We propose two algorithms to maximize heterogeneous treatment effect: 1) Ranking
based on point estimates of heterogeneous treatment effects obtained using existing esti-
mation methods with training labels adjusted based on Lagrangian Subgradient method.
2) A novel ranking algorithm which combines estimation and optimization in one stage and
directly optimizes for the aggregated targeted treatment effect.

We also develop an evaluation metric that captures the real-world business value of
different methods and use this to evaluate various approaches on our large-scale experiment
data set both offline and online. Our algorithm (approach 2) performs significantly better
than random explore benchmark and existing estimators (approach 1) in both offline and
online tests. This method has been deployed to production and is currently live in multiple
cities all over the world.

Keywords: Heterogeneous Treatment Effect, Causal Inference, User Retention, Opti-
mization, Promotion

1. Introduction

Improving user retention and preventing user churn have become an important focus for
many internet companies as the market matures and the cost of acquiring new users rises. In
addition to the natural friction, experiencing bad service is one of the main driving factors
behind user churn. In different industries, companies provide different services; examples
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include accommodation (Airbnb), ride-sharing (Uber, Lyft), and e-commerce (Amazon,
Ebay).

As suggested in a previous research study from Uber (Halperin et al., 2018), providing
a user with a promotion without explicit apology after a dissatisfied trip experience (for in-
stance, unreliable arrival times) will have a positive treatment effect on future billings. This
is also consistent with the finding in another study (Cohen et al., 2018) where researchers
conducted a similar experiment on Via (a ride-sharing company in NYC). However, as a
common practice, these previous research studies rely solely on non-causal churn predic-
tion or heuristics based on frustrating experiences for promo decisions instead of directly
optimizing the promotional heterogeneous treatment effect.

The goal of our work is to maximize the treatment effect of promotions on user retention
in order to reduce user churn (especially caused by experiencing an unsatisfactory service)
under a cost constraint. Compared to existing work on user promotions and heterogeneous
treatment effect estimation, novel contributions of this paper are:

• Treatment Effect based Promo Decision

A common approach for promotion decision relies on regular predictions, redemption,
or heuristics which are tied to specific scenarios and require rich background context.
In this paper, we propose a general framework that directly optimizes the promotional
heterogeneous treatment effect and could be applied to various business use cases with
minimum change.

• Heterogeneous Treatment Efficiency Optimization

Most of the research studies focus on the treatment effect of one single value and treat
the cost of that treatment as fixed. However, in many cases it is also necessary to
estimate the treatment effect on the cost and use the efficiency ratio of ∆value/∆cost
when making the resource allocation decision. Two algorithms we propose will address
this case.

• Ranking for Aggregated Treatment Effect

Similar to the case of search ranking vs point estimate of Click Through Rate (CTR),
here our objective is to maximize aggregated treatment effect instead of having a
perfect point estimate of individual treatment effect and thus we could achieve better
performance by moving from point estimate to ranking. We propose a novel algorithm
to solve this treatment effect ranking problem.

• Empirical Evaluation Method

A common difficulty in comparing the accuracy of heterogeneous treatment effect
estimators on real data is that we do not have access to the ground truth. The
alternative adopted by some research is the uplift curve (Rzepakowski and Jaroszewicz,
2012). In this paper we propose the ”cost curve”, a metric designed for the efficiency
ratio case above that is consistent with live performance.

The structure of this paper is as follows: in section 2, we will cover some preliminaries
for heterogeneous treatment effects and the importance of considering treatment effect on
cost instead of treating it as a fixed factor. In section 3, we will talk about evaluation
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metrics (e.g. cost curve) and our modeling approaches for heterogeneous treatment effect
optimization. In section 4, we will cover experiment design for data collection, model offline
comparison and real-world performance from the product we already launched. Finally, we
would briefly cover the related work and future research steps.

2. Preliminaries

2.1 Heterogeneous Treatment Effect

We formalize our problem in terms of the potential outcomes framework (Rubin, 1974).
We have n independent and identically distributed examples (Xi, Yi,Wi), i = 1, ..., n, where
Xi ∈ χ denotes per-sample features, Yi ∈ R is the observed outcome, and Wi ∈ {0, 1}
is the treatment assignment. We posit the existence of potential outcomes {Yi(0), Yi(1)}
corresponding to the outcome we would have observed given the treatment assignment
Wi = 0 or 1 respectively, such that Yi = Yi(Wi) and try to estimate the conditional average
treatment effect (CATE) function

τ(x) = E[Y (1)− Y (0)|X = x] (1)

We assume unconfoundedness, i.e., the treatment assignment is as good as random once we
control for the features Xi (Rosenbaum and Rubin, 1983).

{Yi(0), Yi(1)} ⊥Wi|Xi (2)

We write the treatment propensity as e(x) = P[W = 1|X = x].
In our case we have fully controlled randomized experiment, which means we have a

stronger assumption than unconfoundedness:

{Yi(0), Yi(1)} ⊥Wi (3)

And therefore, we have e(x) = p while p is the overall treatment percentage. We also have
the specific meaning for each variable mentioned above as follow:

• X: per trip features

• Y r: binary user retention outcome in a given period, 1 means this user took at least
1 trip and 0 means churn

• Y c: net cost of this user in a given period, which is the sum of net cost of each trip
this user has taken

• τ r: user level promotional treatment effect on retention

• τ c: user level promotional treatment effect on net cost

2.2 Problem Statement

We want to maximize the aggregated promotional treatment effect on user retention given a
promotion cost constraint. This requires us to identify a subgroup of samples that is more
efficient and thus provide a higher aggregated treatment effect. This could be described
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in Eq.(4) where zi is the binary variable indicates whether we select that sample into our
subgroup and B is the promotion cost budget.

max
n∑

i=1

τ r(xi)zi s.t.
n∑

i=1

τ c(xi)zi ≤ B, zi ∈ {0, 1} (4)

Note here we won’t have selection bias for heterogeneous treatment effect estimation
regarding decision variable zi as our treatment control split is after zi has been determined.
This means zi ⊥Wi.

2.3 Treatment Effect on Cost over Fixed Cost

Most research studies treat the cost of applying the treatment as fixed. Taking promotion
for example, they would use the fixed coupon value as the promo cost. However, this does
not accurately account for the incremental profit generated by behavior change induced by
the promotion.

Two users might have the same incremental retention effect but one could have a higher
usage and thus contribute a larger incremental profit. This can only be captured by mea-
suring the treatment effect on net cost.

3. Model

In this section, we will cover an evaluation metric closely related to our business use case
and introduce various models to solve the optimization problem mentioned above.

3.1 Model Evaluation Metric

The business objective is to achieve most incremental user retention with a given promotion
cost budget. The retention and cost here are 2 critical values mentioned above for the causal
ratio.

Cost curve. Now that we have 2 treatment outcomes τ r and τ c we care about, we draw
a curve and use incremental cost as X-axis and incremental value (retention in this case)
as Y-axis as illustrated in Figure 1. Similar to uplift curve (Rzepakowski and Jaroszewicz,
2012), assume we have a score for each sample Si = f(Xi) that represents how good the
sample is regarding the incremental cost and value. We could order samples by this score,
then each point on the curve could be calculated from the p percent highest scored samples.
The value for X and Y axis for each point could be calculated respectively by Eq.(5), taking
the number of treatment samples times ATE (Average Treatment Effect) of this group.

#{Wi = 1|Si > Spth
i } ×ATE{xi|Si > Spth

i } (5)

Note we can score the samples for both treatment and control as f does not depend on W .
Here function f is the one we want to learn and we will discuss it in more details in the
following section.

Figure 1 represents the idea of the cost curve: as you increase the percent p of samples
to be included for each point, the aggregated incremental cost and value would increase
(since you include more samples). So the end point of the cost curve (top right) is the one
that includes all samples. And the origin (down left) is the one includes no sample.
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Figure 1: Illustration for cost curve, X and Y axis are treatment effect on cost and value re-
spectively. Moving along the curve from origin to top right, we gradually increase
the sample included based on ranking score.

If the score Si is randomly generated, then there would be no difference between high
and low score points regarding the ratio of incremental cost and value, and thus the cost
curve should be a straight line. However, if the score is generated by a good model, then
the curve should be above the benchmark line. This means for the same level of incremental
cost, a better model would select samples to achieve higher incremental value.

Area Under Cost Curve (AUCC). Similar to Area Under Uplift Curve and AUC
of ROC curve, here we use the area under cost curve as the numerical metric. To normalize
the value, we use the ratio A/B as the AUCC, where A is the area between model curve
and the benchmark curve, and B is the area under benchmark curve (shown in Figure 1).
The equivalent formula for AUC of ROC curve is (A + B)/2B = A/2B + 0.5 where A/B
is the value that matters. The theoretical upper bound of A is B (the symmetric upper
triangle), which means with no incremental cost we can achieve all incremental value from
the sample. So this A/B should be bounded within [0, 1) and larger the AUCC, generally
better the model. One might argue that the model curve could below the benchmark line
if the model is really bad, and thus A could be negative. However if that’s the case, we
can always achieve a positive A by reversing the ranking score from this bad model. So the
worst we can achieve is the random explore benchmark line.

3.2 Cardinal Prediction

Most of the existing estimators provide cardinal prediction for one single outcome metric
and we need to adjust it to account for treatment effect ratio between value and cost for
our case. In this section we describe how we adjust existing estimators with Lagrangian
Subgradient method to maximize the total treatment effect on user retention with a given
promotion cost budget.
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Here we consider R-learner (Nie and Wager, 2017) and Causal Forest (Wager and Athey,
2017) as the treatment effect estimators. R-learner is a synthetic control fashion two-step
algorithm that estimates the marginal effect and then isolates the causal component. Causal
Forest is a matching fashion tree-based ensemble algorithm that partitions both treatment
and control samples based on their features and directly estimates the treatment effect
under each tree leaf. Generally, we can train above models and have cardinal predictions
τ̂(xi) for value (retention) and cost.

Individual Causal Ratio. Given cardinal prediction τ̂(xi) for value and cost, our
problem is actually a 0-1 knapsack problem:

max
n∑

i=1

τ̂ r(xi)zi s.t.
n∑

i=1

τ̂ c(xi)zi ≤ B, zi ∈ {0, 1} (6)

where zi is the binary indicator of promo decision and B is the promo cost budget. It’s not
feasible to directly solve this knapsack problem due to the large number of items. Because
the τ c of each item is much smaller than the total budget and we can always deviate a
certain amount from the budget, the capacity constraint can be relaxed and this problem
can be well approximated by a fractional knapsack problem (Dantzig, 1957) and the greedy
algorithm of selecting items with smallest τ c/τ r can be good enough and efficient. To get
the ratio, we need to train 2 models, one for τ̂ c and the other for τ̂ r, then we use Eq.(7)

Si =
τ̂ r(xi)

τ̂ c(xi)
(7)

as the ranking score (higher the score, better the sample).

Lagrangian. There are several issues with the approach above. The first is noisiness.
The treatment effect prediction is extremely noisy and the ratio will amplify that. Many
users will have small promotional treatment effect, which means we have a lot of zero
division in this ratio. We also need to take special care with the sign of the score. For
example, we want to give promo to user with τ r > 0, τ c < 0 but not vice versa. However,
the ratio will not distinguish these 2 cases. Additionally, from a system perspective, we need
to maintain two sets of models, one for retention and one for cost. Considering some models
are two-step (like R-learner), the total number of models we need to manage becomes four,
which is not ideal.

The optimization problem above actually could be rewritten in a Lagrangian form with
the relaxation of binary constraint on zi:

max g =

n∑
i=1

τ r(xi)zi + λ(B −
n∑

i=1

τ c(xi)zi) s.t. 0 ≤ zi ≤ 1 (8)

We can use the subgradient method here. Starting with any initial value λ, as λ and B
are constants, our optimization problem becomes:

max g =
n∑

i=1

τ r(xi)zi − λ
n∑

i=1

τ c(xi)zi (9)
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And g could be rewritten as Eq.(10).

g =
n∑

i=1

(τ r(xi)− λτ c(xi))zi (10)

This optimization problem has a heuristic solution:

τ r(xi)− λτ c(xi) > 0, zi = 1, o/w, zi = 0 (11)

Plugging in this solution and taking the derivative of g w.r.t λ, we have Eq.(12) where zi is
the solution from Eq.(11). And we could update λ by Eq.(13) where α is the learning rate.

∂g

∂λ
= B −

n∑
i=1

τ c(xi)zi (12)

λ→ λ+ α(B −
n∑

i=1

τ c(xi)) (13)

Based on the heuristic solution and the gradient, we could iteratively solve for λ (Bertsekas,
1999) .

Now, instead of using the ratio, we could use Eq.(14) as our ranking score. The intuition
is that the Lagrangian solution suggests we should include any sample with τ̂S(xi) > 0.
Larger this value, more contribution the sample will have and thus a higher ranking it
should get.

Si = τ̂S(xi) = τ̂ r(xi)− λτ̂ c(xi) (14)

This form is linear, so we have Eq.(15).

τ r(x)− λτ c(x) = E[(Y r(1)− λY c(1))− (Y r(0)− λY c(0))|X = x] (15)

This means we could use Y S = Y r−λY c to replace the original Y (single outcome for value
and cost respectively) in the estimators above. Then we train a model with this Y S and
the output becomes τ̂S which could be used directly.

The iterative process to solve λ could be slow as the value function g here is piece-wise
linear w.r.t λ. We take the approach to treat λ as a hyper-parameter and determine its
value through hyper-parameter optimization.

This Lagrangian helps us get rid of the instability of the ratio and the burden of having
multiple models; and it proves to have better performance than the ratio version in both
offline evaluation and online real world tests. Figure 2 shows the out-of-sample test cost
curve comparison between Lagrangian and Causal Ratio using Causal Forest. We used data
collected from our promotion experiment (details in 4.1) and optimize hyper-parameters
with forward validation(details in 4.2). We can see that the Lagrangian model dominates
the Causal Ratio model.
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Figure 2: Out-of-sample cost curve comparison between Lagrangian and causal ratio using
Causal Forest. Lagrangian (green curve) dominates causal ratio (blue curve).

3.3 Ordinal Prediction

The approach described in the previous section actually contains two steps, prediction and
optimization. However, the ultimate business objective is to identify a portfolio of users
or trips that we can achieve highest incremental user retention with a promo cost budget,
which does not rely on the perfect individual cardinal prediction (point estimate). This is
similar to the search ranking algorithm vs Click Through Rate (CTR) point estimate. We
should be able to achieve better performance and reduce noise by combining these two steps
together, and this is the algorithm we propose: Direct Ranking Model (DRM).

Revisiting the optimization problem we have, the decision variable zi is binary and
discrete, which indicates whether the sample i should be selected into the portfolio or not.
This is similar to a classification problem while the label represents discrete categories.
Inspired by this, we can also apply a similar continuous approximation in our portfolio
optimization problem. We use pi, the probability to select sample i to approximate the
decision variable zi. The higher the pi, the higher likelihood of selecting the sample.

We can construct the loss function as follows: as in Eq.(16) f is the function we want to
learn, which will output a score, indicating how efficient the sample is based on its features
Xi. f can be in any differentiable form like linear or any neural network structure and its
weights would be randomly initialized.

Si = f(Xi) (16)

Then we take hyperbolic tangent (tanh) of the score as a regularization (see details below).

si = tanh(Si) (17)
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After that we use softmax to transform regularized score to a probability (Eq.(18)), which
would sum to 1 respectively for Wi = 1 and Wi = 0.

pi =
esi∑n

j=1 IWj=Wie
sj

(18)

Here IWj=Wi is the indicator function for sample j whether it’s in the same group (treatment
or control) as sample i. It could be expanded as Eq.(19) and Eq.(20).

pi,Wi=1 =
esi∑

{j:Wj=1} e
sj

(19)

pi,Wi=0 =
esi∑

{j:Wj=0} e
sj

(20)

Based on this, we can calculate the probability weighted sample treatment effect for reten-
tion and cost (Eq.(21), Eq.(22)), which is the treatment effect of our fractional portfolio.

τ̄ r =
n∑

i=1

Y r
i pi(IWi=1 − IWi=0) (21)

τ̄ c =
n∑

i=1

Y c
i pi(IWi=1 − IWi=0) (22)

Finally, we have our loss function in Eq.(23), which is the sum of treatment effect efficiency
and regularization term.

f̂(·) = argminf

{
τ̄ c

τ̄ r
+ Λn(f(·))

}
(23)

Since all the operations above are differentiable, we can use any off-the-shelf optimization
method to minimize the loss function and learn the function f . In our case, we implemented
our approach using TensorFlow (Abadi et al., 2016) and used Adam optimizer (Kingma and
Ba, 2014).

Regularization for heterogeneous treatment effect. Any matching fashion method
will face the overfitting issue that during training, the model can always try to match sam-
ple from treatment and control to exaggerate the heterogeneous effect. In Causal Forest,
they used the honest split (use different data set for tree construction and leaf treatment
effect estimation) to control this. In our algorithm, the caveat is that it can put extremely
high scores to several samples which generate great treatment effect and ignore others. In
addition to the general regularization term on weights in loss function, we also use Eq.(17)
to control for this. Since tanh will be saturated for large absolute value, its gradient will
diminish once Si is relatively large. This prevents the algorithm from assigning larger scores
to a smaller sample and forces it to find a general pattern which could be applied to a larger
group. Empirically, this performs well, and without the control of tanh, the algorithm will
be easily overfitted.
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Table 1: Example experiment data set.
trip id user id Xi Wi Y r

i Y c
i

1 A (1.2, 3.3, ...) 1 1 $ 2.3
2 B (2.2, 1.3, ...) 0 0 $ -0.3

4. Empirical Results

In this section, we will cover the empirical results for approaches mentioned above (Causal
Forest, R-Learner, DRM). The results include both offline out-of-sample test and online
real-world launch. We will first describe the experiment data set and offline test setup.
Then we would analyze both offline test results and real-world performance. In summary,
cost curve offline evaluation is consistent with real-world result and DRM has the best
performance.

4.1 Experiment Design and Data

We launched a fully randomized explore experiment to collect data for model training and
offline evaluation.

Experiment Design. We use a user level A/B test as the general framework. For each
incoming sample we generate a random uniformly distributed score and check whether it’s
above a predefined threshold. If it is, we say it is targeted and the sample would be censored
and logged in our experiment. If not, we just ignore that sample. For the targeted samples,
we finally check whether the user is in treatment or control cohort (A/B). Note with the
experiment design, we won’t have selection bias even for model based exploit experiment
since we first select targeted samples than do the treatment control split. This ensures
condition in Eq.(3).

Each user will be only censored once so we can capture the long term effect. Only
targeted samples in treatment get the promotion. This promotion is valid for one trip and
expires in 7 days.

The experiment period is 1 week where each user will get at most one promo. After the
experiment week, we also have 4 blackout weeks that users who were censored during the
experiment week will not get any other promotion during these blackout weeks. This helps
us get the clean 4 week retention and cost outcomes Y r, Y c.

Data. In this experiment we collected over 1M trip (user) level data. Table 1 is an
example of the data set we have. We have around 70 features, which are constructed through
feature engineering from our raw source data.

4.2 Offline Test Setup

We mainly use forward test in our evaluation. Specifically, we split the data set into 3 parts:
train, validation and test sets with 50%, 20%, 30%. We first use the train and validation set
to do the hyper-parameter optimization for each type of model. Once the hyper-parameter
is finalized and fixed, we retrain the model on the train and validation set, and test it on
the test set. Although 30% might seem a high percentage for test split, we use it due to the
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Table 2: Area under the cost curve (AUCC) comparison for models in test and train set.
Model Test AUCC Train AUCC

Direct Ranking Model (DRM) 0.65 0.68
Causal Forest (CF) 0.61 0.87
R-Learner (rlearner) 0.59 0.74

noisiness of treatment effect evaluation. In order to have a stable test evaluation, the test
set should be large enough.

In addition to forward test, we also did cross-validation test. Note that due to the heavy
computation for hyper-parameter optimization, we still use the fixed hyper-parameter set
we got above. Then we use 5-fold cross-validation on the whole data set for test evaluation.
The results from cross-validation is consistent with the forward test. Since there might be
some information leak between hyper-parameter optimization and cross-validation test, we
only include the forward test results in the following section.

Details of the model structures are as follow. For hyper-parameter, we use forward
validation and random search on a coarse space first and then do a finer search in the
refined space. We will cover the specific search space for each model below.

R-Learner. We use Lasso Regression (Tibshirani, 1996) as the base estimator. Since
we have fully randomized experiment, we use the constant treatment percentage as our
propensity for all observations in the algorithm. Based on R-Learner original paper, Lasso
and Boosting based method have similar performance, and currently we only have Lasso
based algorithm implemented. As a next step, we are working on the implementation for
Boosting and will include the results in future research. Lagrangian approach is used here.
Regularization scale is the only hyper-parameter here and we choose 0.1. This is searched
among range [0.001, 100].

Causal Forest. We use a random forest of causal trees, with 90 trees, 1000 as the
minimum leaf size and 0.8 as the split alpha for scale between treatment effect and variance.
Other hyper-parameters are not sensitive so we leave them as default values. Lagrangian
approach is used here. The search range is as follow. Number of trees: [30, 300], minimum
leaf size: [100, 10000], split alpha: [0.3, 1.0].

DRM. We have tried linear form and multiple different Multi Layer Perceptron (MLP)
neural networks structures. With the current non-sparse feature set, linear form has the
best performance, so we use the linear form in this evaluation. We also include both L1
and L2 penalty with 0.1 as the scale factor, which is searched among range [0.001, 100].

4.3 Offline Results

Figure 3 represents the cost curve on test set and Table 2 shows the train and test AUCC
for each model. DRM is 6% better than Causal Forest and 11% better than R-Learner in
out-of-sample test. All models are significantly better than the benchmark explore. One
motivating example is to look at the vertical dash line at 1/5 of total incremental cost, we
can achieve 4X more incremental retention than random targeting by using the model here.
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Figure 3: Out-of-sample cost curve comparison for different models. DRM (blue curve)
dominates other models and achieves 4X more incremental value than the bench-
mark given the same level of incremental cost.

Figure 4 and second column in Table 2 show the performance of the models for training
set. These results suggest that DRM has the most consistent performance across train and
test, which demonstrate that DRM generalizes well on different data sets.

4.4 Online Results

This framework has already been deployed in production. As a multi-arm bandit (Kuleshov
and Precup, 2014) case, we use an epsilon-greedy approach to keep both explore and exploit
running with a certain percentage split. Both explore and exploit make promo decision
based on the prediction score and corresponding threshold where explore uses a random
score and exploit uses model prediction score. The threshold is determined by budget and
we only send out promotions when the prediction score is above the threshold, which means
we only give samples with higher score (more efficient) promotion in exploit mode.

In real-world online test, we use Eq.(24) as the evaluation metric, which is the slope of
the line between origin and one point on the cost curve.

R =
ATEr(xi|targeted)

ATEc(xi|targeted)
(24)

This measures the incremental retention per incremental cost for all samples we target
in each strategy. We treat Rexplore as the benchmark and use relative performance gain
Eq.(25) as the numerical metric. Note this metric is only valid when ATEr(xi|targeted)
and ATEc(xi|targeted) are large enough and at the same scale across explore and exploit.
Otherwise the efficiency ratio would not be comparable. In our online test, we monitored
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Figure 4: In-sample cost curve comparison for different models. DRM (blue curve) has
the worst in-sample performance but the best out-of-sample performance. This
suggests DRM is more consistent and could be generalized across different data
sets.

Table 3: Online Treatment Efficiency Gain
City DRM Efficiency Gain CF Efficiency Gain

A 75.3% 60.2%
B 61.5% 54.3%
C 101.2% 80.4%

these values and verified that they are significantly large and at the same scale.

Rexploit −Rexplore

Rexplore
(25)

Table 3 shows the online test results for 3 cities. They are consistent with the offline
results that all models are significantly better than random explore benchmark and DRM
performs better than Causal Forest in all cities. We have not included the online results for
R-Learner as it is not in our production yet.

5. Related Work

Promotion for user retention. There are two recent studies by Halperin et al. (2018)
and Cohen et al. (2018) that focus on understanding how apologies and promotions can
help when the trust between user and company is compromised. In a more general study,
Andrews et al. (2016) focused on the factors that affect coupon redemption. Hanna et al.
(2016) and Manzoor and Akoglu (2017) took this further and studied the redemption for
time limited promotions and how different factors affect them. While these research studies
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use real-world data and provide insights into promotion effects, they either focus on pro-
motion redemption or exploratory average treatment effect, which leave the headroom for
heterogeneous treatment effect optimization.

Heterogeneous Treatment Effect Estimation. In this work, we focus on heteroge-
neous promotion treatment effect. The main framework for estimating treatment effect was
proposed by Rubin where he studied the causal effects in randomized and non-randomized
studies (Rubin, 1974). Recently, there has been a considerable interest in developing flexi-
ble and performant methods for heterogeneous treatment effect estimation. These advances
include methods based on Lasso (Imai and Ratkovic, 2013), meta learners (Künzel et al.,
2017), recursive partitioning (Athey and Imbens, 2016), causal tree and random forests
(Wager and Athey, 2017), uplift tree (Rzepakowski and Jaroszewicz, 2012), boosting (Pow-
ers et al., 2017), neural networks (Louizos et al., 2017), and most recently quasi-oracle
estimation (Nie and Wager, 2017). A recent survey by Dorie et al. (2017) used simula-
tions and empirical data sets to show that these estimators can achieve good heterogeneous
treatment effect estimation. However, they did not consider the special case of a constraint
optimization problem where both cost and value are treatment effects.

Optimization. Our problem could be formed as a Knapsack problem (Hilliard et al.,
2014). Due to the large number of items and the small scale of the value and cost for
each item, greedy approximation can achieve decent results (Dantzig, 1957). That said,
this work can also use some other optimization algorithm such as SGD (Bottou, 2010)
and Adam optimizer (Kingma and Ba, 2014). These two algorithms are implemented in
TensorFlow (Abadi et al., 2016) and provide the foundation for training of our methodology.

6. Conclusion and Future Work

6.1 Conclusion

We propose a novel ranking method to optimize heterogeneous promotion treatment effect
for user retention. The method combines prediction and optimization into one single stage
and provides a general loss function that can be incorporated with any differentiable func-
tional form including linear and neural network structure. We also provide an empirical
evaluation metric and adjustments for existing estimator for the promotion treatment effect
optimization problem. We evaluate various methods empirically both offline and online.
Our proposed method achieves significantly better performance than explore benchmark
and existing estimators. After successful test, this method has been deployed to production
and is live in many cities all over the world.

6.2 Future Work

Sequential Learning. In this work we only consider the treatment effect of one single
promotion. But in reality, users will get promotion repeatedly and the ultimate treatment
effect is the compounded effect. As a next step, we will try to estimate the sequential
treatment effect and figure out the best promotion pattern for a user.

Smart Explore/Exploit. In current work we use epsilon-greedy explore, where we
use a a fixed percentage to split the budget between exploit and a fully randomized explore.
This approach is sub-optimal and sacrifices performance to blindly collect data for model
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training. As a better approach, we will try to use multi-arm bandit or Bayesian optimization
framework to guide our smart explore based on the model uncertainty.

Deep Embedding. Raw time and geo features are extremely sparse. Various em-
bedding techniques have been used for sparse features but none of them is specifically for
treatment effect. As treatment effect is different from its underlying outcome, the embed-
ding should also be different. Now that we have a general loss function which could be
incorporated with any neural network structure, we could start to work on the embedding
specifically for treatment effects.
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