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Abstract

The global dynamics of event cascades are often governed by the local dynamics of peer
influence. However, detecting social influence from observational data is challenging due
to confounds like homophily and practical issues like missing data. We propose a simple
discriminative method to detect influence from observational data. The core of the approach
is to train a ranking algorithm to predict the source of the next event in a cascade, and
compare its out-of-sample accuracy against a competitive baseline which lacks access to
features corresponding to social influence. We analyze synthetically generated data to
show that this method correctly identifies influence in the presence of confounds, and is
robust to both missing data and misspecification — unlike well-known alternatives. We
apply the method to two real-world datasets: (1) the co-sponsorship of legislation in the
U.S. House of Representatives on a social network of shared campaign donors; (2) rumors
about the Higgs boson discovery on a follower network of 10° Twitter accounts. Our model
identifies the role of social influence in these scenarios and uses it to make more accurate
predictions about the future trajectory of cascades.

Keywords: Social Influence, Discriminative Learning, Network Cascades

1. Introduction

The spread of online social behaviors can often be attributed to peer influence, in which
the adoption likelihood of a behavior increases through exposures of past adoptions by
friends in a network (Crane, 1999; Goel et al., 2016; Karsai et al., 2014; Yang and Leskovec,
2010). In experimental settings, influence can be measured by randomly assigning some
individuals to be exposed to the adoption decisions of their friends, or by blocking some
individuals from viewing such exposures (Bond et al., 2012; Salganik et al., 2006; Muchnik
et al., 2013). However, there are many contexts in which experimental methods cannot be
applied: for example, it is not possible to measure the effect of peer influence on the passage
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of real legislation by a randomized experiment. In such cases, we face the more challenging
task of detecting peer influence from observational data. This is difficult because influence
is confounded with homophily — the tendency of individuals with similar properties to
establish social network connections. Even when peer influence is absent, the presence of
homophily can give rise to network-correlated behaviors which are indistinguishable from
the effects of social influence (Shalizi and Thomas, 2011). This concern can be partially
addressed by techniques from causal inference, which create comparisons that approximate
a randomized experiment, under various limiting assumptions (e.g., Anagnostopoulos et al.,
2008; Aral et al., 2009; La Fond and Neville, 2010).

However, a key question is whether existing methods are robust to phenomena such as
missing data and misspecification. In realistic scenarios ranging from social media analysis
to criminology, researchers lack complete records of event cascades: social media platforms
may provide only a small sample, or relevant data may go unreported. Second, paramet-
ric models such as the Hawkes Process require specifying hyperparameters, such as the
timescale of the cascade. In real scenarios, there may be only a single cascade, making
cross-validation impossible. As we show, such methods perform poorly when such hyper-
parameters are incorrectly specified.

To address these issues, we propose a simple Granger-style test for social influence, which
builds on predictive analysis of social event cascades. The core of our approach is an online,
discriminatively trained ranker, which learns to assign a high rank to nodes that are likely
to host the next event in a cascade. This is a simpler problem than modeling the probability
of a cascade as a series of time-stamped events. This simplicity enables the application of
powerful methods from supervised machine learning, which can account for confounds such
as homophily through the inclusion of social network node embeddings in the prediction
model (Tang et al., 2015). To detect social influence, we train two ranking models: my,
the most accurate ranker that we can build without including features that measure social
influence (including all known confounds), and my, which contains all features in mg, plus
features that measure social influence. We then compare m; and mg on held out data: if
mq is more accurate, then this is evidence for social influence, under the usual assumption
of no unobserved confounds.

We validate this approach on a battery of synthetic data experiments, showing that it is
well-calibrated (Type I error rate at or below the desired p-value) when there is homophily,
self-excitation, missing data, and model misspecification. The method of ranker compar-
ison obtains higher statistical power than a classical shuflle test across all scenarios, and
outperforms a Hawkes Process goodness-of-fit test under conditions of missing data and
misspecification. In addition, the Type I error rate of the Hawkes Process test approaches
one in some settings involving missing data or misspecification of the temporal kernel.

Our contributions are summarized as follows. First, we propose a simple discrimina-
tive method to detect peer influence from observational data (§3), which avoids parametric
assumptions about the generative process. Second, we demonstrate the robustness of our
approach empirically through several synthetic data experiments under conditions of prac-
tical importance (§4). Finally, we show the application of our method on two real-world
datasets: the cosponsorship of legislation in the United States House of Representatives,
and the spread of “scientific rumors” about the discovery of the Higgs boson. The lat-
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ter dataset demonstrates the ability of our method to detect social influence and predict
cascade trajectories in networks with 10° nodes and 107 edges.

2. Related Work

Social influence induces a systematic temporal pattern in the order of adoptions. This
insight is leveraged by Anagnostopoulos et al. (2008), who propose the shuffle test to detect
social influence. In this test, social correlation is measured from the observed sequence of
adoptions, and compared to a distribution of social correlation after repeatedly shuffling
the order of adoptions. Shuffling eliminates any systematic patterns present due to social
influence, while preserving patterns that are due to homophily. If the observed social
correlation significantly differs from the correlation after shuffling, then the result of the test
is compatible with social influence. The shuffle test assumes a static underlying network,
but it can be generalized to dynamic networks (La Fond and Neville, 2010). The shuffle
test offers a simple method to detect social influence, without assumptions about the data
generation process. However, it makes no attempt to incorporate fine-grained temporal
information or node-level covariates. Our method incorporates these features, and is found
to be a more powerful statistical test on a range of synthetic data scenarios.

An alternative to shuffling is proposed by Aral et al. (2009), who divide nodes in a
network into control and treatment groups, depending on whether they have an adopter
friend in their ego network. To account for homophily, units from both groups are matched
using propensity scores based on demographic covariates. The average adoption rate in both
groups is then compared across groups. As we show in § 3, our discriminative learning model
can capture homophily in the network structure. Our method can also incorporate personal
attributes, but otherwise uses structural similarity as a proxy for homophily. Unlike the
method of Aral et al., our method is capable of predicting the future trajectory of event
cascades.

The principle of Granger causality, which relates causation to improvement in predic-
tive accuracy, has been leveraged to detect influence in observational data (Chikhaoui et al.,
2015). This principle motivates the use of transfer entropy, an information-theoretic mea-
sure of the reduction in conditional entropy in a user’s action by incorporating past actions
of its network neighbors Ver Steeg and Galstyan (2012, 2013); He et al. (2013). Although
effective in detecting influence, these methods do not learn to make predictions and their
robustness on conditions of missing data is unknown. Our proposed method is also based
on Granger causality, but we show empirically that its robust under practical limiting con-
ditions of missing data.

An alternative predictive approach is to estimate a parametric influence network by
modeling one or more timestamped event cascades as a Hawkes Process (HP; Hawkes,
1971; Du et al., 2013; Yang and Zha, 2013; Zhao et al., 2015). If the social excitation
parameters are estimated to be non-zero, this is consistent with social influence (Xu et al.,
2016); alternatively, a goodness-of-fit test can be used to compare nested parametric Hawkes
Process models, with and without access to features of the social network (Goel et al.,
2016). Our discriminative learning model is similar in some respects: it is a learning based
model, and also builds on the assumption that past events modulate the rate of future
events. However, the Hawkes process is a generative model of events in a cascade, while
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our proposed approach is discriminative. As we show, violations of the assumptions of
the HP generative model lead to incorrect inferences, yielding high Type I error rates. In
contrast, our discriminative modeling approach is agnostic to the event generation process,
and is robust to missing data and relatively insensitive to misspecification. While there are
targeted solutions for misspecification and missing data (e.g., He et al., 2016; Duong et al.,
2011; Lokhov, 2016; Xu et al., 2017), there is no general approach that makes the Hawkes
process immune to all such concerns.

Granger causality can be applied to Hawkes process models to learn pairwise influence
parameters (Xu et al., 2016). Our approach is aimed at testing the presence of social
influence at the network scale, rather than reliably estimating pairwise influence. This
makes it possible to formulate our approach through the relatively simpler framework of
model comparison, rather than attempting to induce group-sparse excitation parameters.
Other predictive models focus on properties such as the cascade’s ultimate size (e.g., Cheng
et al., 2014) or the susceptibility of individuals (e.g., Du et al., 2013), but these models do
not easily lend themselves to the detection of social influence as a causal phenomenon.

The Granger causality principle is also the basis of some proposed discriminative models
that make predictions about user actions from the past actions of their neighbors (Tang
et al., 2013; Zhang et al., 2015; Qiu et al., 2018). However, these models pre-suppose the
existence of social influence to make predictions in contrast to our objective of identifying
social influence in the presence of confounds.

3. Discriminative Model

Our objective is to detect social influence given a cascade of timestamped events from indi-
vidual nodes in a social network. We do this by solving an auxiliary task: predicting which
node will be the next to be activated in the cascade. Specifically, we learn a discriminative
ranking function, which scores each node by weights on features of the individual nodes
and the cascade history. Observed confounds — variables that predict both the presence of
social network connections and participation in the event cascade — can be incorporated
into the ranker as features on individual nodes. (The usual assumption of no unobserved
confounds is still required (Shalizi and Thomas, 2011).) The question of whether there is
social influence is then transformed to the proxy question of whether the prediction task
is aided by the inclusion of features that measure social influence. This is similar to the
principle of Granger causality (Granger, 1969), which states that X Granger-causes Y if
prediction of Y is aided by knowledge of X .1

3.1 Features for discriminative ranking

To order all nodes in the network by their likelihood of being the next node to be activated
in the cascade, we compute a scoring function which depends on static features of the node,
and the history of the cascade. The static features can account for confounders, which relate
to the base propensity of each node to participate in the cascade; the history features can

1. Note that ranking the nodes by their likelihood of being activated next in a sequence is different from
ranking nodes by their influence in the network (Chen et al., 2012).
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account for both self-excitation and social influence. The score for node 7 at time ¢ is:

Ui (£:0,0) = h(giid) + Y 0 fusin(t —te;w), (1)
ete<t
where both g; and f._,; are node-specific feature vectors for node i, and e indicates an event
with source s, and time t..

The features g capture intrinsic properties of the node; these features are static in
all subsequent evaluations, but the model generalizes trivially to dynamic features. The
function A transforms the features into a scalar value, and is parameterized by ¢; this
function could be, e.g., a simple inner product of features and weights, or a multilayer
neural network. The features f capture the properties of each dyad. For the ordered dyad
Se — 1, the features are written f;__,;, and the associated weights are written 6. As in
the Hawkes Process, these features are weighted by a temporal kernel x, with bandwidth
parameter w.

The ranker is applied in an online fashion, recomputing scores for each node at the time
of every new event. While the scoring function is closely related to the intensity function of
the Hawkes Process (see Equation 5) there are two key differences. First, the intensity of a
generative model like a Hawkes Process has to be non-negative at any time, however, the
scoring function of our ranker is free from such constraints and can yield negative scores.
Second, in addition to calculating the probability of an event, the Hawkes Process has to
further calculate the survival probability resulting in the computation of complicated inte-
grals of the intensity function over inter-event periods. In contrast, our ranker is online and
we are concerned only with the order of the nodes for the next event. The ranker therefore
avoids integrating the intensity function over inter-event periods, simplifying estimation.

3.1.1 NODE-LEVEL FEATURES.

The features g can act as a proxy for homophily between the nodes, which might otherwise
confound the detection of social influence. In some cases, specific covariates are available: for
example, the political party of each legislator, or the age of members of a social network.
But in other cases, the relevant covariates are unknown. In this case, we assume that
the latent features that drive the event cascades are related to the properties that drive
the formation of social network ties; it is just these features that risk confounding the
estimation of social influence. Network structural properties can be captured by computing
node embeddings, where neighbors in the network are nearby in the embedding space. There
are several ways of calculating the node embeddings (Grover and Leskovec, 2016; Tang et al.,
2015); in the analyses that follow, we use spectral embeddings obtained from the graph
Laplacian (Donetti and Munoz, 2004). To increase the expressive power of the ranker,
each node embedding is transformed into a scalar by a feedforward neural network, which
finds the parts of the network that are most susceptible to participating in the cascade.
During learning, the node embeddings are finetuned by minimizing the ranking loss objective
described in §3.2.

3.1.2 DYADIC FEATURES.

In addition to the intrinsic node features, the ranker also utilizes dyadic features extracted
from past events. As in the Hawkes Process, these features are multiplied by a decay
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kernel k, and aggregated over the entire history of past events. The decay kernel captures
the intuition that events in the distant past should have less impact on the score than
more recent events. In our experiments, we use a simple exponential decay kernel x(t) o
exp(—wt), with w acting as a bandwidth parameter. However, the decay kernel can be
a more complex function, such as a linear combination of simple kernels, or a Gaussian
process (Bacry et al., 2012). We incorporate two dyadic features: self-excitation, which is
the tendency for a node to repeatedly activate after the first activation; and social influence,
which is the tendency for a node to be activated by exposure from its neighbors. The
complete set of features used in our model and their description is given in Table 1.

3.2 Learning

Ranking weights can be estimated by minimizing the a pairwise loss called WARP (Weighted
Approximate Rank Pairwise; Usunier et al., 2009). To avoid evaluating the quadratic num-
ber of node comparisons, we apply the well-known WSABIE approximation (Weston et al.,
2011), which samples pairs until a violation is found.

Let A(t) be the set of nodes with an event at time ¢, and let R;(¢) be the rank of node
1 according to the scoring function ¥. We define R} (t) as the margin-penalized rank,

Ri(t) = Y 11+ W;(t) > Ui(t)], (2)
JEA()

which is equal to the number of margin violations for active node i, where 1] is the indicator
function. Using these terms, we can compute the WARP loss at time t:

Z w E : (1= Wi(t) + ¥;(t))+, (3)
R (t)
i€ A(t) i JEA(L)

where (-)4 is shorthand for max(-,0) and L(k) is a ranking error function. We choose a
simple “one-best” error function, whose value is one if k > 1 and zero otherwise; however,
the formalism enables a flexible class of alternative error functions (Usunier et al., 2009).

Calculating the loss in (3) naively is inefficient for a large network. The WSABIE
algorithm approximates this loss by repeatedly sampling inactive nodes randomly until a
node is found which violates the margin constraint. The rank of the activated node is
approximated by the inverse of the number of samples required to find such a node. The
overall loss function used by the WSABIE algorithm is given by,

> o[ |) x 0w .. (1)

trials;
ieAt) ria S'L,t

where M is the number of nodes, trials;; is the number of trials required to find a margin
violation, and j is the violating node. This loss is calculated at each time, and the scoring
function parameters are updated by taking a gradient step to minimize the loss.

3.3 Model Comparison

To test for social influence, we compare the performance of alternative ranking models
mg and my, which are identical in all respects except one: m; includes features that are
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Table 1: The complete set of features used by the ranker. Note that the dyadic features are
scaled by the decay kernel and are aggregated for the entire history.

Feature Type Range Description

emd Node RE The spectral embedding for each node ¢

self Dyad {0,1} Self excitation; active for node i if j has a previous event
and j =1

social  Dyad {0,1} Social feature; active for node 7 if j has a previous event and
Aji=1

activated under the condition of social influence, and mg does not. In particular, mq includes
a feature that fires for node ¢ at time ¢ if any of the social network neighbors of ¢ have an
event at time t' < t. This feature is included in the vector f_,; in Equation 1. Each ranker
is then applied to heldout data, and evaluated according to a ranking metric. In most cases,
we use mean reciprocal rank (e.g. all cases in the synthetic data experiments).

To determine whether the performance difference between mq and my is unlikely to have
arisen due to chance alone, we must apply a statistical significance test to compare their
performance on a heldout test set. Of the various statistical significance tests that have
been proposed for rankers (e.g., Cormack and Lynam, 2006; Sakai, 2006; Wilbur, 1994),
we select the non-parametric permutation test (Smucker et al., 2007). In this test, the
predictions between the two rankers are repeatedly exchanged (permuted), to create an
empirical distribution of the difference in ranker performance under the null hypothesis
that the two rankers are identical. The right-tailed p-value is the fraction of permutations
in which the difference in ranker performance was greater than the observed difference in
the original unpermuted data. This tests the null hypothesis that adding social influence
features does not improve ranking accuracy on heldout data, which is the Granger-based
proxy of the null hypothesis of no social influence. In the following section, we demonstrate
the reliability of this proxy through a series of experiments on synthetic data.

4. Synthetic Data Evaluation

To determine the validity and efficacy of our proposed test for social influence, we evaluate
it on a set of synthetic cascades generated over a real social network. Some cascades are
generated without social influence, to test the Type I error rate of our method (incorrect
rejection of the null hypothesis); other cascades are generated with social influence, to test
the power (correct rejection of the null hypothesis). In both cases, we consider the impact of
homophily, self-excitation, missing data, and model misspecification. The use of synthetic
data makes it possible to quantify these characteristics precisely, before moving to real data
in the next section.

4.1 Data

Event cascades are generated using a multivariate Hawkes Process (HP), which is an in-
homogenous Poisson process in which the intensity is modulated by the past history of
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events (Hawkes, 1971). The intensity of node ¢ at time t represents the instantaneous
activation rate, and is given by,

M
ANt =i+ Y eI <1, (5)

j=11:7€T;

where p, o, and w are the parameters of the intensity function and 7; is the set of events
from node j. The base generation rate is p, and a is the matrix of pairwise excitation
parameters between nodes.

To generate cascades under conditions of social influence and various confounds, we
specify these parameters as follows:

Qj i = al [] = ’L] + bAj*)’i]l[j # l] (6)
pi=o (Bl +1) ()

where v() is the second eigenvector of the Laplacian matrix of the network; o(-) is the
sigmoid function, which ensures that the base rate is positive; and A is the adjacency
matrix of the network. We can then generate cascades under various conditions of interest:

Social influence. By setting b = 0, we generate cascades without social influence. These
cascades are used to measure the Type I error rate of our test. As b increases, so does
the impact of social influence. Throughout the evaluation, b is varied between 0 to 1 in
increments of .1, depending on the experimental setting.

Homophily. The similarity of nodes (i, j) is captured by the similarity between the com-

ponents of the second eigenvectors ”1(2) and vj(?). By conditioning the base adoption rate
of these nodes on this parameter, it is possible to generate cascades in which events are
strongly correlated with the network, even without social influence. This corresponds to
the case in which nodes ¢ and j form a friendship because they both share an interest, and
then participate in cascades that reflect that same interest. By varying the parameter g3,
the importance of homophily in shaping the cascades can be increased or decreased. f is
varied between 0 to 7 in increments of 1, depending on the experiment condition. In all
experiment settings, 7 is set to —5 for all the nodes.

Self excitation. For some types of cascades, nodes can participate repeatedly. Self exci-
tation occurs when a node’s own participation in the cascade spurs further participation
in the future. For instance, after learning a new slang or a hashtag and using it once, a
user is likely to repeat its usage (Goel et al., 2016). This tendency can be controlled by
setting a > 0. We vary a between 0 to 1 in increments of .25, depending on the experiment
condition.

Network structure. Rather than generating a synthetic network, we use a real “mention”
network from Twitter. This static and directed network was constructed as follows. First,
we select all individuals who used a partisan political hashtag (e.g., #clintonkaine2016)
between October 1-15, 2016. Then we identify all individuals who were mentioned by
someone in this initial set. The directed edge ¢ — j indicates that ¢ mentioned j on
Twitter during this time period. We then select the largest weakly connected component
as the underlying network for all synthetic cascades.
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4.2 Evaluation Metrics

We evaluate the ranking test on two metrics: wvalidity and power.

4.2.1 VALIDITY

A test is statistically valid if its p-values are well calibrated: at the threshold p = «, the test
should reject a true null hypothesis with probability less than or equal to a. To establish
validity, we evaluate the test on cascades where the null hypothesis is known to be true.
The rate at which the test rejects the null hypothesis is the Type I error rate.

4.2.2 POWER

A test has high statistical power if it consistently rejects a false null hypothesis. Failure to
reject a false null hypothesis leads to a Type II error and the power is the probability of
not making a Type II error. To establish power, we evaluate the test on multiple cascades
where the null hypothesis is known to be false. The rate at which the test fails to reject the
null hypothesis is the Type II error rate. An ideal test should be valid under all conditions
and should have high statistical power.

4.3 Methods

We compare the performance of the ranking test against two well known alternatives: (1)
the shuffle test from Anagnostopoulos et al. (Anagnostopoulos et al., 2008), and (2) a test
that compares the goodness of fit between two parametric Hawkes Processes (HP): one with
access to social influence parameters, and one in which these parameters are clamped to
zero. We now describe these tests in detail.

4.3.1 SHUFFLE TEST

The shuffle test infers social influence by calculating a measure of social correlation from
an observed cascade, and comparing it with the distribution of the same measure after
repeatedly shuffling the order of events in the cascade. This shuffling breaks the effect
of social influence, providing an estimate of the amount of social correlation that can be
attributed to factors other than influence. We use the infection risk as our measure of social
correlation, which is calculated as the ratio of adopters to innovators:

e adopters are nodes that are activated only after at least one of their network neighbors
were activated;

e innovators are nodes that are activated before any of their network neighbors.

To calculate the infection risk, only the first activation of a node is considered. The infection
risk has been used as a measure for social correlation in other studies (e.g., Aral et al., 2009).
As there is no learning involved, the computational expense for this test is not huge. The
statistics involved in the calculation of the infection risk can be computed efficiently using
vectorized operations.
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Figure 1: Quantile-Quantile plots of p-values for all the three tests under high homophily.
The dotted red line shows the expected plot for an ideal well-calibrated test.

4.3.2 HP GOODNESS-OF-FIT TEST

The Hawkes Process (HP) can be used to test for social influence by comparing the goodness-
of-fit between two nested models: an HP that includes social influence parameters, and an
HP that does not (e.g., Goel et al., 2016). To perform this test, we estimate the parameters
of the HP described in Equations 5, 6 and 7 from training data. To test whether the
goodness-of-fit improved significantly by the addition of the social feature, we use the
likelihood ratio test (Wilks, 1938). Since the synthetic data was truly generated from
a Hawkes Process, we expect this test to perform well, unless there is missing data or
misspecification in the data generation process.

4.4 Results
4.4.1 FULL DATA

We first consider the case when every test has access to full data: all the events in the
cascade and all the edges in the network are known to each test. We also assume that
the generative process is correctly specified, meaning that the exponential decay kernel and
the bandwidth parameter that modulate the rate of generation of future events are known
during learning and testing. We will relax these assumptions later.

Validity. To check for validity, 100 cascades of 5000 events each are generated under
conditions of no social influence (b = 0), varying homophily (8 > 0) and varying self-
excitation (a > 0). The null hypothesis of no social influence is true by design for every
such cascade. Figure 1 shows the calibration of the tests when there is high homophily
(8 =T7) and low (left) or high self-excitation (right). Both the ranking and shuffle tests are
well-calibrated. The goodness-of-fit test of HP produces conservative p-values, but satisfies
the condition of validity, which is that the Type I error rate is bounded by p-value. All

10
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Figure 2: Power for all the three tests under high homophily.

three tests have low Type I error rates even under different amounts of homophily and
self-excitation.

Power. To check for statistical power, 100 cascades of 5000 events each are generated
by varying social influence at fixed values of homophily and self-excitation. As shown in
Figure 2, the power increases with social influence for all tests, as expected. The HP test is
the most powerful across these conditions, and the shuffle test is least powerful. As noted
above, since the HP captures the true generative process, it should outperform the shuffle
test, which is agnostic to the generative process. Because the ranking test also outperforms
the shuffle test, in the subsequent evaluations we only compare the ranking test to HP.

4.4.2 MODEL MISSPECIFICATION

Next we examine how the tests fare under misspecification, focusing on the bandwidth
parameter (w) for the temporal decay kernel. We generated 100 cascades of 5000 events each
for the influence (b = 1) and no-influence condition (b = 0), both with highest homophily
and self-excitation (a = 0.5; f = 7). During generation, the bandwidth was fixed (w* = 1),
but we assumed that both the HP learner and the ranker did not know this true value of the
bandwidth parameter. We then varied the values of w used by these tests, to understand
their effect on validity and the statistical power of both the tests. Varying the bandwidth
parameter has a natural interpretation: as w decreases, the scope of the history is effectively
widened; increasing this parameter has the opposite effect. The results for both validity
and power are shown in Figure 3.

Increasing the bandwidth parameter causes the temporal kernel to decay sharply, nul-
lifying the effect of spurious activations of neighbors from the past, limiting Type I error
but also power. The Type I error rate decreases with bandwidth for exactly the opposite
reason: as the bandwidth parameter decreases, the impact of past events is larger on each
node’s activation. Irrelevant activations of neighbors in the distant past may be mistakenly

11
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Figure 3: Type I error rate (left) and power (right) for HP and ranker test under misspec-
ification of kernel bandwidth(w). The HP test is invalid when w < 1; this is indicated by
black circles around relevant data points when showing power.

deemed consequential, leading the test to overestimate the role of social influence. The HP
model is quite sensitive to this parameter, and misspecification severely undermines the
validity of the test for practical purposes.

In contrast, the ranking test is robust to misspecification: for a wide range of bandwidth
values, the ranker maintains a low Type I error rate and has considerable power. This is
because the ranking objective requires only that the relative order of each node is main-
tained. Spurious events in the distant past affect many nodes, and the resulting changes in
rank are not significant. While there is research on augmenting the Hawkes Process with
nonparametric kernels that are learned from data (e.g., Zhou et al., 2013), such methods
are complex to implement, and require large amounts of training data. For a parametric
kernel, the bandwidth can be learned by cross-validation, but only if multiple cascades are
available and if the parameter is guaranteed to be static over time. In contrast, the ranking
test can easily incorporate multiple kernels into the discriminative ranking function and is
completely online, thereby having the flexibility to learn complex triggering patterns from
a single cascade.

4.4.3 MISSING DATA

We have thus far assumed that all events in the cascade are available. There are various
reasons that this assumption can be violated in real data: full data collection is often
too expensive; there are rate limits on collecting events from public APIs for sites such as
Twitter; individuals may erase past events in their history; data may be lost accidentally, as
can happen when a server crashes during data acquisition; data collection may have begun
only after the cascade was initiated. Incomplete data can diminish statistical power, giving
the appearance of unprompted innovations to events that were in fact socially motivated.
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Figure 4: Type I error rate and power for HP and ranker test on 99 % random missing events
on cascades of increasing length. The ranker’s power is always higher than HP particularly
on cascades of shorter length (5000 events). The Type I error rate for both methods is
around 0.05.

To quantify this phenomenon, we generate cascades with two different types of missing
events: events missing at random, and events missing in contiguous blocks.?

RANDOM MISSING EVENTS

We generate 100 cascades of varying lengths, and randomly drop events in each cascade at a
specified rate of 99% before presenting them to the learners. This sampling rate matches a
published estimate of the fraction of tweets included in Twitter’s streaming API (Morstatter
et al., 2013). Figure 4 shows the power of the HP and ranking tests, as a function of cascade
length. While both tests increase in power with the cascade length, the HP is marginally
less powerful across all cascades, particularly on short cascades. The Type I error rate for
both tests is around 0.05 even as cascade length increases, and is therefore not shown.

DOUBLY CENSORED EVENTS

Xu et al. (2017) consider an alternative scenario, in which contiguous blocks of events are
missing both at the start and the end of the cascade, resulting in short doubly censored
sequences. The censoring scenario is relevant to scenarios like social media analysis; for
example, the Twitter API restricts the collection of data from the distant past. We gener-
ated 100 cascades of different lengths and dropped 99% of events, with half of the dropped
events in a contiguous block at the beginning and the remaining half in a contiguous block
at the end of the cascade. On censored cascades, the goodness-of-fit test for HP suffered
from a high Type I error rate, limiting its validity. This bias towards overestimating so-
cial influence is consistent with findings from Xu et al. (2017), who note that maximizing
the likelihood of an HP can lead to overfitting in this scenario. Conversely, the validity
of the ranking test was not affected by censoring, because the ranking test does not rely

2. Other types of missing data, such as missing edges or missing nodes, should also be considered (Duong
et al., 2011; Linderman et al., 2017). We leave the validation of our test against these types of missing
data for future work.
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Table 2: The statistics for the network in both the datasets.

Statistic Legislator Network Friends-Follower
Network

Type undirected directed

Total nodes 436 456626

Total edges 31323 14855842

Giant component size (% nodes) 98.1 78.9

Average degree 143.68 39.15

on explaining the temporal distribution of events. However, the loss of information due to
censoring does affect the power of the ranking test, especially if the length of the cascade
is small; this is a natural consequence of the difficulty of estimation from limited data.

4.5 Summary

To summarize the main findings from synthetic data:

e The shuffle test is underpowered, because it uses only the first-time activations for
each node, and because it ignores the time between activations.

e The HP test has low Type I error rate and high power when (a) the model is correctly
specified and (b) complete data is available.

e However, the HP test is highly sensitive to misspecification of the time kernel, and to
missing events. These cases can make the test statistically invalid or hurt its power.

e The ranking test is robust across all scenarios: it is valid in all scenarios, and nearly
matches the HP test’s power when complete data is available; model misspecification
has little impact on its validity or power; and it is reasonably powerful even under
different types of missing data conditions.

5. Real Data Evaluation

The synthetic data experiments demonstrate the power and validity of our ranker in de-
tecting social influence. In this section, we highly its predictive ability by applying it to two
real world datasets: cosponsorship of bills in the U.S. House of Representatives (§ 5.1) and
spread of rumors around the discovery of the Higgs boson particle (§ 5.2).

5.1 Legislative co-sponsorship and political finance networks

A key step in the legislative process is when a bill receives endorsement from legislators be-
sides its original author, called cosponsors. Cosponsorship decisions are important markers
of wider support; they signal the expertise of the original sponsor, and provide information
about the bill’s content and the party, ideological, or constituency base for whom the bill
advocates. However, cosponsorship is also a low-cost means of position taking, reflective of
favor-trading, vote-buying, and special interest politics (Kessler and Krehbiel, 1996). An

14



DETECTING SOCIAL INFLUENCE IN EVENT CASCADES BY COMPARING DISCRIMINATIVE RANKERS

open question is whether cosponsorship decisions are influenced by campaign donations, for
example by facilitating special access to legislators (Kalla and Broockman, 2016). To test
this question, we construct an affiliation network among legislators if they share common
campaign donors, and apply our discriminative ranking test to sequences of cosponsor-
ship decisions. The detection of influence on this network would be compatible with the
hypothesis that campaign donations influence cosponsorship decisions.

5.1.1 CASCADE DATA

We collect cosponsorship sequences on bills introduced in the 115th U.S. House of Rep-
resentatives, using ProPublica’s Congress AP1.> We only consider bills from the House of
Representatives, and ignore resolutions, since these are not presented to the President to
become law. We filter out bills that have fewer than five or more than 200 cosponsors,
resulting in a total of 1022 bills. The cosponsorship sequence for each bill — a sequence of
events with a legislator as the source and the date as the time — is considered as a separate
cascade. The typical average number of events per cascade is eight.

5.1.2 SOCIAL NETWORK DATA

For every representative, we collect a list of their top 20 campaign donors from public
sources.* We construct a social network such that a pair of legislators is connected if
they share a top donor. Some statistics for this network are described in Table 2. For
every legislator, we include two node-level covariates: party affiliation and the state they

represent.

5.1.3 PROBLEM SETUP AND EVALUATION

To obtain evidence of network influence, we use the ranking test to compare predictive
performance of two rankers. We randomly divide the set of bills into a training and test set
of equal sizes. All events from bills in the training set are used for estimating the parameters
of the rankers, and both rankers make predictions for every event from bills in the test set.
One distinctive feature of this data is the temporal resolution of the cascades: events are
timestamped only by date, and there are often multiple new cosponsors on the same date.
This creates a problem during training, since our discriminative ranker is based on the
mean reciprocal rank (MRR), which assumes a single event at any time.> We resolve this
by adding a small amount of random “noise” to the time of each event during training to
separate them but preserve their order of occurrence. We evaluate predictive performance
by calculating the mean average precision (MAP), rather than MRR, for each bill in the
test set.

5.1.4 BASELINE

The features from Table 1 are not all applicable to cosponsorship cascades. In particu-
lar, self-excitation is not applicable since representatives do not cosponsor the same bill

3. https://projects.propublica.org/api-docs/congress-api/

4. https://www.opensecrets.org/

5. It is possible to formulate the WARP loss with an alternative error function, allowing multiple events at
each “query”, or time point. We leave this for future work.
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Figure 5: Ranking performance for the legislation co-sponsorship cascades, organized by
the position of each co-sponsor in the cascade. Position 0 is the initial sponsor.

twice; however, cosponsorship may be affected by dyadic features such as party or state
affiliation. For the baseline ranker, we use two dyadic features for every node, which are
activated if past cosponsors are from the same party or same state respectively. We also
learn per-representative parameters that capture the tendency of each legislator to cospon-
sor legislation. We then add the social feature from Table 1 to the set of features in the
baseline to construct our socially-augmented ranker.

5.1.5 RESULTS

The campaign finance network significantly improved ranking performance, p < .0001 by a
paired t-test on the mean average precisions across cascades (t = 7.9). The social influence
features improve ranking performance on out-of-sample data as shown in Figure 5. These
improvements are particularly strong for the earliest co-sponsors, who may be more likely
to be motivated by campaign finance considerations.

5.2 Scientific rumors

On 4th July, 2012, the Higgs boson particle was discovered. Before this discovery was
announced, rumors began on social media that the particle might indeed be the Higgs
boson. These “scientific rumors” on Twitter were collected by De Domenico et al. (2013) to
study dynamics behind their spread. We applied our discriminative ranker to predict the
users most likely to spread the rumor.

5.2.1 DATA

De Domenico et al. collected tweets from users who mentioned any phrase from a set they
identified to be about the Higgs boson discovery from July 1 to July 7, 2012. In conjunction,
they collected the friends-follower, retweet, reply and mention networks between users of
these tweets. Some network statistics about this data® is given in Table 2. For our work,
we used the strongly-connected giant component of the friends-follower network and the
cascade of first 5000 retweets spanning approximately the first two days of the cascade.

6. Available at http://snap.stanford.edu/data/higgs-twitter.html
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Table 3: Average precision of predicting the next users to spread rumors of the Higgs boson
discovery.

Rankers Average precision

Baseline 1 (random) 0.0002
Baseline 2 (by tweeting rate) 0.0008

Discriminative ranker 0.0014

5.2.2 PROBLEM SETUP AND EVALUATION

To predict the users who spread the rumor, we rank them by training the discriminative
ranker on all but the last 100 events of the cascade using all features described in Table 1.
The accuracy of ranking is then computed on these remaining 100 events, and is evaluated
with average precision.

5.2.3 BASELINES

We set up two baselines. To compare the quality of predictions with chance, in the first
baseline users are ranked randomly. In the second baseline, users are ranked by their number
of past events (tweets about the Higgs boson); for users with no such events, we rank by
network degree, with the intuition that this is a rough proxy for their rate of tweeting.

5.2.4 RESULTS

Results are shown in Table 3. As indicated by the baseline performance, this is a very
difficult ranking task, since any of the 4.5 x 10° nodes in the network could potentially be
the next to share the rumor. Ranking the nodes by their tweeting rate improves the average
prediction somewhat, but the discriminative ranker yields the best overall performance.
This demonstrates the importance of combining activity rate and network structure in this
task.

6. Discussion

The experiments on both synthetic and real data demonstrate the utility of discrimina-
tive ranking for the detection of social influence and the prediction of cascades. Despite
this evidence in favor of the ranking test, it has limitations. First, Granger causality is
a limited, predictive notion of causality; the detection of Granger causality in an event
cascade does not necessarily imply that an intervention into the cascade at time ¢ would
affect subsequent events. More concretely, it is generally not possible to distinguish social
influence from homophily using observational data without taking the assumptions that
all homophily-related confounds are observed and properly specified (Shalizi and Thomas,
2011). Our approach is built on the assumption that homophily is effectively proxied by
social network node embeddings. While such assumptions are required of any test that is
based on observational data, the ranking test still has advantages over other such tests.
The discriminative nature of the ranker allows easy addition of a variety of features to im-
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prove prediction, including social network node embeddings that can summarize structural
information that is likely to be related to unobserved confounds (see also contemporaneous
work by Veitch et al., 2019). Researchers such as Hofman et al. (2017) have argued that
social scientific methods should have predictive strength in addition to explanatory power,
and we view this discriminative ranking test as an example of that vision.

More technically, the ranker comparison is based on a permutation test, which is a non-
parametric distribution-free approach. When the predictions of the two rankers are very
similar, the resulting distribution can have low variance, leading to conservative p-values.
This problem is especially severe in three cases: when the network size is small; when
the heldout set is small; and when the base ranker is already very accurate, leaving little
room for improvement with the addition of the social features. The conservativeness of the
permutation test does not affect the validity of the test (Edgington and Onghena, 2007),
but it can affect the power. Future work may explore alternative methods for comparing
rankers.

There are also several avenues for future research. We motivated the synthetic data
experiments by practical constraints on the data, but more complex scenarios can occur in
real world and their impact on our test needs to be empirically tested. For example, missing
data can itself be correlated with the social network, as in the case that neighboring nodes
in a social media network decide to make their posts private. Another direction for future
work is to adapt our discriminative ranker to dynamic networks. In our discriminative
approach, this should be possible by using node embeddings at the input layer which can
then be updated during learning as the network changes over time.
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