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Abstract

Many causal processes in biomedicine contain cycles and evolve. However, most causal dis-
covery algorithms assume that the underlying causal process follows a single directed acyclic
graph (DAG) that does not change over time. The algorithms can therefore infer erroneous
causal relations with high confidence when run on real biomedical data. In this paper, I relax
the single DAG assumption by modeling causal processes using a mixture of DAGs so that
the graph can change over time. I then describe a causal discovery algorithm called Causal
Inference over Mixtures (CIM) to infer causal structure from a mixture of DAGs using longitu-
dinal data. CIM improves the accuracy of causal discovery on both real and synthetic clinical
datasets even when cycles, non-stationarity, non-linearity, latent variables and selection bias
exist simultaneously. Code is available at https://github.com/ericstrobl/CIM.
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1. The Problem

Causal discovery refers to the process of inferring causal relations from data. Biomedical
scientists usually discover causal relations using randomized controlled trials (RCTs). However,
RCTs can be unethical, non-generalizable, time-consuming or expensive. Consider for example
trying to discover the long term effects of an illicit substance. Randomly administering a
potentially dangerous substance to human subjects is unethical, so scientists often resort to
animal studies knowing that the results may not generalize to humans. Scientists may also
have trouble implementing RCTs that examine the causal effects of trauma, homelessness or
other complex social situations in at-risk populations. We would however like to discover causal
relations even in those cases because they play an important role in the practice of medicine.

In this paper, we will describe a method for inferring causation directly from human ob-
servational data, or data collected from human subjects without the need for randomized
assignment. Denote the variables in the observational dataset with the bolded letter X. We
can summarize the causal relationships between the variables in X using a directed graph.
A directed graph contains directed edges between the variables in X. For any two variables
Xi, Xj ∈ X, we have the directed edge Xi → Xj if Xi is a direct cause of Xj . A sequence of
directed edges is called a directed path. We have a directed path from Xi to Xj if Xi is a cause
of Xj (not necessarily direct). A directed graph contains a cycle or feedback loop when there
exists a directed path from Xi to Xj as well as a directed path from Xj to Xi. A directed
graph is called a directed acyclic graph (DAG) if it does not contain cycles. We provide an
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Figure 1: Part of the thyroid system depicted as a directed graph. The thyroid system is an
example of a causal process in biomedicine involving feedback loops.

example of a directed graph representing a clinically relevant causal process in Figure 1. The
figure depicts part of the thyroid system, where TRH release from the hypothalamus is a direct
cause of TSH release from the pituitary which in turn is a direct cause of T4 release from the
thyroid gland. The T4 hormone in turn invokes a negative feedback loop by directly causing
an inhibition of TRH and TSH release. Note then that TRH release is a cause of T4 release
but not a direct cause. Moreover, the directed graph in Figure 1 contains two cycles.

Many methods currently exist for recovering the underlying directed graph from observa-
tional data. Most of these methods nevertheless impose assumptions which do not apply to
causal processes in biomedicine. For example, some of the most widely used algorithms assume
an underlying DAG even though many causal processes in biomedicine are known to contain
cycles (Spirtes et al., 2000); we have already provided an example of a process with feedback
loops in the previous paragraph. The parathyroid system, cortisol system and multiple neural
pathways within the brain and spinal cord contain feedback as well (Habener, 1981; Tasker
and Herman, 2011; Saalmann et al., 2007; Cervero et al., 1984). At the single cell level, we
may cite the cell cycle targeted by chemotherapeutics as well as glycogenesis/glycogenolysis
targeted by metformin and glucagon as additional examples (Baynes and Dominiczak, 2018;
Evan and Vousden, 2001). Unfortunately, only a handful of causal discovery algorithms can
handle feedback loops.

Among those algorithms that can handle feedback loops, even fewer can also handle non-
stationary distributions, or distributions which change over time. Most causal discovery algo-
rithms assume that the joint distribution over X is stationary. Stationarity however is also
violated frequently in biomedicine, a fact which we can appreciate using almost any sizable lon-
gitudinal dataset. We take a public longitudinal dataset from the Framingham Heart Study
as an example (Mahmood et al., 2014). The dataset contains variables that are routinely
measured by primary care physicians over three waves. We plot the empirical cumulative
distribution functions (CDFs) of total cholesterol, systolic blood pressure, BMI and glucose
across the three waves in Figure 2. If the joint distribution is stationary, we expect the same
marginal CDFs across the waves for all 4 variables. However, we reject the null of equivalent
CDFs in eight of the 12 pairwise comparisons (4 variables each with 3 comparisons between
the waves) as assessed by Kolmogorov-Smirnov tests with a Bonferonni corrected threshold of
0.05/12. Only the marginal distribution of BMI remains stationary throughout all 3 waves. We
conclude that the marginal distributions of even some of the most routinely measured variables
in medicine are non-stationary; hence, the joint distribution over X is also non-stationary.1

Clinical Significance The purpose of this paper is to introduce an algorithm called Causal
Inference over Mixtures (CIM) for performing causal discovery with longitudinal data even

1. Recall that the same joint distribution implies the same marginal distributions because the joint distribution
uniquely determines the marginals. By contrapositive then, different marginal distributions imply different
joint distributions.

2



Causal Discovery Using a Mixture of DAGs

Figure 2: Empirical CDFs of four variables routinely measured in clinical practice. The mea-
surements were obtained from a longitudinal dataset as part of the Framingham Heart Study
across 3 waves separated by roughly 6 years each. Only the marginal distribution of BMI
remains stationary across all of the waves.
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when cycles and non-stationary distributions exist. CIM can also handle other issues which
arise with real data including latent variables, selection bias and/or non-parametric distribu-
tions. CIM therefore enables more principled causal discovery from messy biomedical data by
dropping the restrictive assumptions required by past methods.

Technical Significance CIM achieves the aforementioned feat while maintaining a solid
theoretical foundation that guarantees soundness with a conditional independence (CI) oracle.
In particular, we propose to represent cycles and non-stationary distributions using a mixture
of probabilistic DAGs. We then derive the corresponding global Markov property that allows
us to read off the CI relations in the joint distribution directly from a graph. This in turn
enables the design of the CIM algorithm for the cyclic and non-stationary setting.

We organize the paper as follows. We start by surveying related past works in Section
2. We then provide background material in Section 3. In Section 4, we represent cycles as
a mixture of acyclic causal processes. Next, we derive the global Markov property of the
proposed representation in Section 5. We then design the CIM algorithm in Section 6 in order
to recover causal structure using the global Markov property as well as longitudinal data.
Experimental results in Section 7 on both synthetic and real data confirm the utility of the
approach even when cycles, non-stationarity, non-linearity, latent variables and selection bias
exist simultaneously. We finally conclude the paper in Section 8. The longer proofs are located
in the Appendix.

2. Related Past Works

Multiple algorithms currently exist for performing causal discovery with cycles. The Cyclic
Causal Discovery (CCD) algorithm recovers causal structure even when cycles exist, but the
method assumes linearity, no latent variables, no selection bias and stationarity (Richardson
and Spirtes, 1999; Richardson, 1996). Cyclic Causal Inference (CCI) extends CCD to handle
latent variables as well as selection bias, but CCI still requires linearity as well as stationar-
ity (Strobl, 2018). Other algorithms utilize satisfiability solvers or answer set programming
(ASP), but these methods are generally limited to datasets with less than 10 variables due to
scalability issues (Hyttinen et al., 2013, 2914). Both of these methods also assume linearity
and stationarity.

The Fast Causal Inference (FCI) algorithm developed in (Spirtes et al., 2000; Zhang, 2008)
can recover causal structure with latent variables, selection bias, non-linearity and cycles under
an acyclic transformation of the directed graph called the collapsed graph. This is a previously
unrecognized result, so we provide the proof in Proposition 3 in Appendix 9.1. FCI can still
work with non-linear cycles because the collapsed graph eliminates all information within the
cycles, so the problem of causal discovery with cycles simplifies to that without cycles. A similar
approach based on ASP can perform causal discovery with cycles under non-linearity, but the
method takes the same approach as FCI by utilizing the collapsed graph (Forré and Mooij, 2017,
2018); hence, it too cannot recover any causal relations within the cycles. Moreover, neither
FCI nor the ASP method can recover causal structure with non-stationary distributions.

Other approaches exist for handling non-stationarity and cycles simultaneously. Most of
these methods nonetheless require longitudinal or time series data and assume that the prob-
ability distribution is faithful to a single directed graph across the time steps (Dagum et al.,
1995; Blondel et al., 2017). Even if we simplify the problem by assuming no cycles, existing
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methods still fall short under non-stationarity alone because they also assume a single DAG
model (Zhang et al., 2017; Magliacane et al., 2016; Triantafillou and Tsamardinos, 2015).
This is a serious issue because random simulations frequently violate faithfulness when non-
stationarity holds (although violating faithfulness is difficult in the stationary setting at the
population level (Uhler et al., 2013)). For example, consider sampling from the two DAGs
X1 → X2 X3 and X1 X2 → X3. Let the variable T = 1 index the first DAG and
T = 2 the second. The single composite DAG X1 → X2 → X3 used in the aforemen-
tioned works implies that we have X1 6⊥⊥ X3. However, we actually have X1 ⊥⊥ X3 because
f(X1, X3) = f(X1)

∑
T f(T )f(X3|T ) = f(X1)f(X3). Notice that this is not a fancy counterex-

ample - it is just a directed path with two edges. We conclude that previous works can fail
to recover causal structure when the joint distribution cannot be modeled by a single directed
graph.

We are only aware of three methods which can recover causal structure with cycles and a
potentially changing graph. Thiesson et al. (1998) proposed the first algorithm which utilizes
Bayesian modeling in conjunction with the EM algorithm, but the method cannot handle latent
variables. The mixture modeling also inhibits a straightforward extension of the method to
the non-parametric setting even in the linear case. Two other algorithms can handle latent
variables by replacing Bayesian modeling with CI testing, but these methods depend on mixture
modeling as well and therefore do not generalize to the non-parametric setting as is (Strobl,
2017; Zhang and Glymour, 2018). The method proposed in (Strobl, 2017) also often fails to
recover any causal structure when we cannot model the joint distribution with a few DAGs.
No existing method can therefore recover causal structure with cycles and non-stationarity
without imposing strong distributional assumptions.

In summary then, no algorithm currently exists for recovering causal structure when cycles,
latent variables, selection bias, and non-linearity exist simultaneously with potentially shifting
graphical structure. We will therefore propose such an algorithm in this paper in order to deal
with the complexities present within real biomedical data.

3. Background Material

We now delve into the background material required to understand the proposed methodology.

3.1 Graphical Terminology

In addition to directed edges, we also consider other edge types including: ↔ (bidirected), —
(undirected), ◦→ (partially directed), ◦− (partially undirected) and ◦−◦ (nondirected). Notice
that the edges contain three endpoint types: arrowheads, tails and circles. We say that two
vertices Xi and Xj are adjacent if there exists an edge between the two vertices. We refer
to the triple Xi∗→ Xj ←∗Xk as a collider or v-structure when each asterisk corresponds to
an arbitrary endpoint type. A collider or v-structure is said to be unshielded when Xi and
Xk are non-adjacent. The triple Xi ∗−∗ Xj ∗−∗ Xk is conversely a triangle if Xi and Xk are
adjacent. The vertex Xj lies within the set PDS(Xi) if Xi and Xj are adjacent or there exists
a path between Xi and Xj such that every triple on the path is a v-structure or a triangle.
Xi is an ancestor of Xj if there exists a directed path from Xi to Xj or Xi = Xj . We write
Xi ∈ AncG(Xj) when Xi is an ancestor of Xj in the graph G. We also apply the definition of
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an ancestor to a set of vertices Y ⊆X or a set of sets Y ′ = {Y 1, . . . ,Y q} as follows:

AncG(Y ) = {Xi|Xi ∈ AncG(Xj) for some Xj ∈ Y },
AncG(Y ′) = {Xi|Xi ∈ AncG(Xj) for some Xj ∈ ∪qi=1Y

i}.

If A, B and C are disjoint sets of vertices in X, then A and B are said to be d-connected by
C in a directed graph G if there exists a path Π between some vertex in A and some vertex in B
such that, for any collider Xi on Π, Xi is an ancestor of C and no non-collider on Π is in C. We
also say that A and B are d-separated by C if they are not d-connected by C. For shorthand,
we write A ⊥⊥d B|C to denote d-separation and A 6⊥⊥d B|C to denote d-connection. The set
C is more specifically called a minimal separating set if we have A ⊥⊥d B|C but A 6⊥⊥d B|D,
where D denotes any proper subset of C.

A mixed graph contains edges with only arrowheads or tails, while a partially oriented mixed
graph may also include circles. We will only consider mixed graphs that contain at most one
edge between any two vertices. We can associate a mixed graph G∗ with a directed graph
G as follows. We first consider the partition X = O ∪ L ∪ S denoting observed, latent and
selection variables, respectively. We then consider a mixed graph over O which summarizes
the ancestral relations in G using the following endpoint interpretations: we have Oi∗→ Oj

in G∗ if Oj 6∈ AncG(Oi ∪ S), and we have Oi ∗—Oj in G∗ if Oj ∈ AncG(Oi ∪ S). Any mixed
graph which satisfies the above two criteria is also known as an almost ancestral graph (AAG)
(Strobl, 2018).

3.2 Probabilistic Interpretation of a Graph

We will assume that a distribution P obeys a structural equation model with independent errors
(SEM-IE) with respect to (w.r.t.) a directed graph G. Here we have Xi = gi(PaG(Xi), εi)
for all Xi ∈ X such that Xi is σ(PaG(Xi), εi) measurable and εi ∈ ε, where ε denotes a
set of mutually independent random variables (Evans, 2016). We can simulate data from an
SEM-IE using the fixed point method, where we sample the independent error terms and then
iteratively apply the structural equations until each random variable converges almost surely.
Note that the values of each random variable may not converge to a unique fixed point for all
SEM-IEs, but we only consider those SEM-IEs which do satisfy this property. We refer to the
distribution reached at the fixed point as the equilibrium distribution P. Notice that P must
be stationary.

If G is acyclic and P admits a density, then P also satisfies the Markov property such that
its density factorizes into the product of the conditional densities of each variable given its
parents:

f(X) =

p∏
i=1

f(Xi|PaG(Xi)). (1)

Any distribution which satisfies Markov property also satisfies the global Markov property w.r.t.
G where, if we have A ⊥⊥d B|C in G, then A and B are conditionally independent given C
(Lauritzen et al., 1990). We denote the CI as A ⊥⊥ B|C for short. We refer to the converse
of the global Markov property as d-separation faithfulness. An algorithm is constraint-based if
the algorithm utilizes CI testing to recover some aspects of G∗ as a consequence of the global
Markov property and d-separation faithfulness.

Now if G contains cycles, then P does not necessarily follow the global Markov property
w.r.t. G. The distribution does however follow the global Markov property w.r.t. the collapsed

6



Causal Discovery Using a Mixture of DAGs

graph of G constructed by (1) removing all edges within each cycle group, or vertices involved
in intersecting cycles, (2) arbitrary numbering the vertices in each cycle group, and then (3)
drawing directed edges from the lower to higher numbered vertices in each cycle group (Spirtes,
1995). Moreover, if the structural equations are all linear, then Spirtes (1995) showed that P
more specifically follows the global Markov property w.r.t. the original directed graph G.

4. Cycles as Mixtures of Acyclic Causal Processes

We often cannot model causal processes in biomedicine using equilibriated SEM-IEs. In fact,
the data collected in the Framingham Heart Study contradicts the SEM-IE setup because some
of the marginal CDFs change over time. The change implies that the values of the variables
also change over time, so almost sure equality likely does not hold. We also cannot prescribe
the change to measurement error because the investigators implemented a standardized mea-
surement protocol over the waves (Cheng et al., 2012). As a result, any measurement error
should have the same distribution over time, so we should at least have equality in the CDFs
(i.e., equality in distribution) over the waves across all four variables if the SEM-IE represen-
tation holds. Third, we know that systolic blood pressure increases with age primarily due
to large artery stiffness (O’Rourke et al., 2002). Any claim for a stationary distribution thus
automatically conflicts with known biology.

Other representations of cycles exist, but they have trouble generalizing to biomedical
causal processes as well. Dynamic Bayesian networks for example usually require acyclicity to
hold within each wave (Malinsky and Spirtes, 2018; Robinson and Hartemink, 2009). Dynamic
Bayesian networks which allow intra-wave cycles also impose the equilibrium distribution as-
sumption, which we already argued against in the previous paragraph. Chain graphs require an
equilibrium distribution as well (Lauritzen and Richardson, 2002). Furthermore, chain graphs
do not represent cycles with directed edges, so we lose directionality information within the
cycles which we would ideally like to preserve.

We need a different representation of cycles that can handle non-stationary distributions
while preserving information within the cycles. In this report, we will represent a cyclic causal
process over time as a set of acyclic ones. Intuitively, a feedback loop occurs when we iteratively
“cycle through” or “unravel” the variables in the feedback loop. We can conceptualize this
intuition using an example. Consider the cyclic graph involving two variables represented in
Figure 3 (a). We will decompose this cycle into two DAGs: X1 → X2 and X2 → X1. In
particular, say X1 first causes X2 at time point 1. We therefore have the DAG X1 → X2

and obtain samples from f(X1, X2|T = 1) = f(X2|X1, T = 1)f(X1|T = 1). We include
two samples from f(X1, X2|T = 1) in the dataset depicted in Table 3 (b). After X1 causes
X2, X2 causes X1 at time point 2. We thus have the DAG X2 → X1 and obtain samples
from f(X1, X2|T = 2) = f(X1|X2, T = 2)f(X2|T = 2). We include three samples from
f(X1, X2|T = 2) as the last three samples in Table 3 (b). We ultimately have samples from
the distribution f(X1, X2, T ) in Table 3 (b), where T = 1 or T = 2. We now have a clear
understanding of the sampling process from the cycle in Figure 3 (a); we have a mixture of
samples from two probabilistic DAGs because sometimes we obtain samples when X1 causes
X2, and other times we obtain samples when X2 causes X1.

The above example unfortunately fails to model the complexities of real data in several
respects. For example, the causal process may cycle through X1 and X2 many more times than
once. Second, we may not observe the time variable T but instead sample from f(X1, X2) =
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X1 X2

(a)

X1 X2 T

0.21 -0.20 1
0.68 -0.47 1
1.05 -0.19 2
0.72 -1.40 2
0.13 -0.56 2

(b)

X1 X3 X4 X7 · · · T

0.31 -1.01 5 0 · · · 1.29
0.89 -0.58 6 0 · · · 7.30
1.11 -0.79 2 1 · · · 4.33
0.14 -1.23 5 0 · · · 0.10
0.21 -0.20 4 1 · · · 2.91

...
...

...
...

...
...

(c)

Figure 3: We decompose the cycle in (a) into two DAGs: X1 → X2 and X2 → X1 at time
points 1 and 2, respectively. The first two samples in the table in (b) are generated from the
joint density f(X1, X2|T = 1) which factorizes according to X1 → X2. Similarly, the next
three are generated from f(X1, X2|T = 2) which factorizes according to X2 → X1. The table
in (c) depicts a more realistic dataset containing many more variables and samples.

∑
T f(X1, X2, T ) by treating T as a latent variable. Moreover, the ordering of the samples may

be scrambled, so we cannot say that any two adjacent samples are taken from similar time
points. Fourth, we may have samples from many different time points potentially taken from a
continuous rather than a discrete distribution. Fifth, causal processes may involve many more
variables in X, and we may only observe a subset of them. Some of the variables may also be
discrete and others may be continuous. A real dataset therefore looks more like Table 3 (c)
than Table 3 (b), where T may or may not be observed. We can fortunately handle all of the
aforementioned challenges under the proposed framework, provided that we generalize it from
the example given in the previous paragraph.

4.1 The Mixture of DAGs Framework

We develop the new framework as follows. We consider the set of vertices Z = X ∪ T , where
we may divide up Z into three non-overlapping sets O, L and S denoting observed, latent
and selection variables, respectively. At each time point t, we then consider the joint density
f(X, T = t) and assume that it factorizes according to a DAG Gt over Z:

f(Z) = f(T )f(X|T )

= f(T )

p∏
i=1

f(Xi|PaGT (Xi), T ). (2)

Now the set PaGT (Xi) may not change if we vary the value of T over its codomain. Moreover,
we may have f(Xi|PaGT (Xi) \T, T ) = f(Xi|PaGT (Xi) \T ). Let X∅ denote the set of variables
satisfying the above two critiera. We may write the following for those Xi ∈X∅:

f(Xi|PaGT (Xi), T ) =f(Xi|PaGT (Xi))

=f(Xi|PaG∅(Xi)),
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where G∅ refers to a single graph in G′T . We use the notation G′T to denote the set of unique
DAGs over Z indexed by T ; G′T must have finite size because the cardinality of Z is finite.
Hence, we may rewrite Equation (2) as follows:

f(T )

p∏
i=1

f(Xi|PaGT (Xi), T )

=f(T )

r∏
i=1

f(Xi|PaGT (Xi))

u∏
i=1

f(Xi|PaG∅(Xi)). (3)

where we assume that T ∈ PaGT (Xi) for all Xi ∈ [X \X∅], and T 6∈ PaG∅(Xi) for all Xi ∈X∅.
Notice how the above equation differs from Equation (1) for a single DAG; the parent set

PaG(Xi) remains constant over time in Equation (1) but the parent set PaGT (Xi) may vary
over time in Equation (3). We thus may have Gt1 6= Gt2 for any two time points t1 6= t2. We
assume then that we can at least sample from f(O|S), the mixture density defined as follows:

f(O|S) =
∑
T

f(O|T,S)f(T |S),

where mixing occurs over time T in the integration. We will refer to the above equation as the
mixture of DAGs framework.

Now observe that Equation (3) can handle both stationary and non-stationary densities.
We more technically say that a density is stationary when we have f(X|T ) = f(X) or equality
in density over time. Equation (3) simplifies to the usual factorization of a DAG when the
density over X is stationary because in that case we have:

f(Z) = f(T )f(X)

= f(T )

p∏
i=1

f(Xi|PaG(Xi))

=

p+1∏
i=1

f(Zi|PaG(Zi)).

Equation (3) can also handle non-stationary densities even when a cycle is not present. This
can be important for example when causal processes take a long time to complete. We may
have Xi → Xj in one DAG and no directed path from Xi to Xj in another because Xi takes
several years to cause Xj . Thus, Xi lies in the parent set of Xj in the first DAG but not in
the second one. A concrete example involves high glucose levels and peripheral sensation in
type 2 diabetics, where high glucose levels decrease peripheral sensation in older individuals
but not in the younger ones (Said, 2007).

4.2 An Improved Factorization

We can derive a global Markov property using Equation (3). However, the property will not
imply many CI relations if X\X∅ is large. This result would thus be incongruent with empirical
results on real data, where we frequently observe non-stationarity but fail to reject many CI
relations. We hypothesize therefore that T may directly index multiple independent random
variables in nature. The above formulation unfortunately fails to capture those independent
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variables indexed by time because Equation (3) lumps all of them into T . We therefore more
specifically consider the set M = {M1, . . . ,Ms} of mutually independent random variables and
assume that nature has an instantiation of M at every time point; in other words, we have
f(M |T ) = f(M) =

∏s
i=1 f(Mi). The set M may for example correspond to s feedback loops

cycling independently. Working with M instead of T directly will allow us to derive a more
fine-grained factorization of the joint density.

We now consider the set of vertices Z = X ∪M instead of the original X ∪ T . We may
divide up Z into three non-overlapping sets O, L and S as before so that Z = O ∪L∪S. At
each time point t, we assume an instantion of M and a joint density f(X,M) that factorizes
according to a DAG GM over Z:

f(Z) = f(M)f(X|M)

=
s∏

i=1

f(Mi)

p∏
i=1

f(Xi|PaGM (Xi),M). (4)

Notice that the above equation mirrors Equation (2). Now the set PaGM (Xi) may not change
if we vary the values of M \ Ni given any value of Ni ⊆ M . Moreover, we may have
f(Xi|PaGM (Xi) \Ni,Ni) = f(Xi|PaGM (Xi) \Ni). We can therefore write the following when
those two criteria hold:

f(Xi|PaGM (Xi),Ni) =f(Xi|PaGM (Xi))

=f(Xi|PaGNi (Xi)),

where GNi refers to a single graph within G′Ni
, a subset of G′M containing all those DAGs

whose parents of Xi do not change when we vary the values of M \Ni given any value of Ni.
The set G′M = G′T in turn refers to the set of unique DAGs over Z indexed by M . Hence, we
may rewrite Equation (4) as follows:

s∏
i=1

f(Mi)

p∏
i=1

f(Xi|PaGM (Xi),M)

=

s∏
i=1

f(Mi)

p∏
i=1

f(Xi|PaGNi (Xi)), (5)

where we assume that all members of Ni and no members of M \Ni are contained within
PaGNi (Xi) for all Xi ∈ X similar to Equation (3). We will write Equation (5) as follows for
shorthand:

p+s∏
i=1

f(Zi|PaGNi (Zi)), (6)

where PaGNi (Zi) = PaG∅(Zi) = ∅ for all Zi ∈M .
We assume then that we can at least sample from f(O|S), the mixture density defined as

follows:
f(O|S) =

∑
M

f(O|M ,S)f(M |S),

Notice that the mixing now occurs over M instead of T because we treat M as a set of
variables indexed by T . We therefore also refer to M as the set of mixture variables.
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X1
1 X1

3

X1
2 M1

1

X2
1 X2

3

X2
2 M2

1

(a)

X1 X3

X2
T

(b)

Figure 4: The mother graph versus the father graph. We plot the two DAGs over Z next to
each to create the mother DAG in (a). In (b), we draw the father graph which misses the
independence relation X1 ⊥⊥ X3.

5. The Global Markov Property for Mixtures of DAGs

The factorization in Equation (6) implies certain CI relations. In this section, we will identify
the CI relations by deriving a global Markov property similar to the traditional DAG case.
The basic idea is to plot the DAGs in G′M next to each other to form a mother DAG M.
We then read off the implied CI relations from M by utilizing d-separation across groups of
variables rather than just singletons.

We provide an example in Figure 4 (a) before providing a rigorous characterization. Sup-
pose G′M contains two DAGs. Let the superscripts of the vertices index the number of each
DAG. We can plot each of the unique DAGs over Z = {X1, X2, X3,M1} next to each other as
in Figure 4 (a) and call the resultant graph the mother DAGM. Notice that we have X1

1 → X1
2

in the first DAG while we have X2
2 → X2

3 in the second; however, we do not have the directed
path Xj

1 → Xj
2 → Xj

3 in either DAG. Now suppose we want to determine if X1 ⊥⊥ X3. We
can read off the d-separation relation between {X1

1 , X
2
1} and {X1

3 , X
2
3} inM. The vertices are

d-separated in M, so the relation X1 ⊥⊥ X3 is implied by the global Markov property of M.

We now make the idea rigorous. Denote the number of unique DAGs indexed by M with
q ∈ N+. We will place q copies of Z into the set (of sets) Z ′ so that we have Z ′ = {Z1, . . . ,Zq}.
We also write A′ to mean the set {A1, . . . ,Aq} for any subset A ⊆ Z. We will now construct
the mother graph from which a directed Markov property will follow. Let Gj correspond to
the DAG over Zj . Recall that we use G′M to denote the set of all q DAGs indexed by M .
We can associate a single DAG Gj ∈ G′M for each instantiation of M by Equation (4). Note
that we may have Gm1 = Gm2 for two instantiations m1 6= m2. Now plot each of the q DAGs
in G′M adjacent to each other and denote the resultant graph as M. We have the following
property:

Theorem 1. If f(Z) factorizes according to Equation (6), then f(Z) obeys the global Markov
property with respect to (w.r.t.) M; that is, if A′ ⊥⊥d B′|C ′ in M where A,B,C are disjoint
subsets of Z, then we have A ⊥⊥ B|C.
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We provide the proof in Appendix 9.2. We refer to the converse as d-separation faithfulness
w.r.t. M: if A ⊥⊥ B|C, then A′ ⊥⊥d B′|C ′ in M.

Note that Spirtes (1994) also characterized the global Markov property across a mixture
of DAGs. There, the author constructed a different graph F (not necessarily acyclic) by first
including a directed edge Xi to Xj if and only if the directed edge exists in any one of the
DAGs in G′T . The author then introduced the vertex T and included a directed edge from T
to the vertex Xi ∈ X whenever f(Xi|PaGt1 (Xi), T = t1) 6= f(Xi|PaGt2 (Xi), T = t2) for some
t1 6= t2. We will call F the father graph. While the global Markov property does hold over X
with the father graph, F implies less CI relations than M. The example provided in Figure
4 also illustrates this fact. We have drawn out F in Figure 4 (b). Notice that X1 and X3 are
d-connected in F even though {X1

1 , X
2
1} and {X1

3 , X
2
3} are d-separated in M in Figure 4 (a).

We have established an instance where the mother graph implies strictly more independence
relations than the father graph.

The mother graph in fact always implies at least the same number of CI relations as the
father graph across all possible mixtures of DAGs:

Proposition 1. Let A,B,C denote disjoint subsets of X. If A ⊥⊥d B|C in F , then A′ ⊥⊥d

B′|C ′ in M.

We may now claim that M is superior to F because (1) M implies at least as many CI
relations as F across all possible mixtures of DAGs, and (2) there exist instances where M
implies strictly more conditional independencies. The mother graph M also enumerates the
CI relations involving M which Spirtes (1994) did not touch.

6. Designing a Discovery Algorithm

The father graph is nonetheless more intuitive than the mother graph because F can summarize
cycles in one directed graph. We therefore choose to utilize the global Markov property of M
in order to recover an AAG of the father graph (F∗). For example, suppose we have the
mother graph drawn in Figure 5 (a). In this case, we assume a cycle involving {X1, X2, X4}
and consider two slow causal relations: X2 → X4 and X4 → X1. We thus have X2 → X4

in the first DAG in M, but X4 is overwritten by this causal relation, so we do not observe
X4 → X1 here. Likewise, we have X4 → X1 in the second DAG, but X2 is overwritten, so we
do not observe X2 → X4 in this case. We therefore cannot observe X2 causing X1 in either
DAG due to the two rate limiting steps even though X2 does cause X1 in the cycle involving
{X1, X2, X4}. Moreover, if we intervene on the value of X2, then X2 cannot be overwritten in
the second DAG, so we would observe X2 causing X1. Now we have also drawn out F in Figure
5 (b). Notice that X2 is an ancestor of X1 in F even though {X1

2 , X
2
2} is not an ancestor of

{X1
1 , X

2
1} in M. Discovering F∗ thus allows us to infer cycles that are not present within M

but exist once the DAGs are combined in F .

Recovering F∗ using the global Markov property of M is however not simple. We say
that two graphs G1 and G2 lie within the same Markov equivalence class over O if and only if
they share the exact same d-separation and d-connection relations over O. We first have the
following negative result which states that we cannot infer non-ancestral relations with a CI
oracle alone:
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X1
1

X1
2

X1
3

X1
4

M1
1

X2
1

X2
2

X2
3

X2
4

M2
1

(a)

X1

X2

X3

X4

T

(b)

X1 1

X1 2

X2 3

X1 4

(c)

Figure 5: We have the mother graph in (a) and the father graph in (b). Subfigure (c) contains
the father AAG as well as wave information.

Proposition 2. If we have Oi 6∈ AncF (Oj ∪ S) in a father graph F with a corresponding
mother graph M, then we have Oi ∈ AncF2(Oj) in another father graph F2 such that its
corresponding mother graph M2 lies within the same Markov equivalence class over O as M.

We fortunately however can infer ancestral relations. We therefore rely on additional infor-
mation to orient arrowheads. In this paper, we will utilize longitudinal data, or data arising
from a longitudinal density. Recall that we have Z = O ∪ L ∪ S. We can consider further
partitioning the observed variables into w sets or waves so that O = ∪wk=1 Ok . We then have
the following definition:

Definition 1. (Longitudinal density) A longitudinal density is a density f(∪wk=1 Ok ,L,S) that
factorizes according to Equation (6) such that no variable in wave j is an ancestor of a variable
in wave i < j and w ≥ 2.

The restriction that no variable in wave j can be an ancestor of a variable in wave i < j will
allow us to infer some arrowheads instead of relying on the output of a CI oracle to do so. In
contrast, we define a cross sectional density as the marginal density f( O1 ,L,S) where w = 1.

Now divide each Zj ∈ Z ′ into three non-overlapping sets Zj = Oj ∪Lj ∪Sj corresponding
to the observable, latent and selection variables, respectively. We require that Oj = Ok for
any j 6= k but we do not require the equality for the latent and selection variables. If Y ⊆ Z,
then we write Y ′, Yk and Yk ′ to mean {Y 1, . . . ,Y q}, Y ∩ Ok and [ Yk ]′, respectively. Let
AdjF∗( O

k
i) denote those variables in wave k adjacent to Ok i in F∗. We will specifically

construct F∗ with the following adjacencies:

List 1. (Adjacency Interpretations)

1. If we have Oa i ∗−∗ Ob j (with possibly a = b), then Oa ′
i 6⊥⊥d Ob ′

j |W ′ ∪ S′ in M for all

W ⊆ AdjF∗( O
a

i) \ Ob j and all W ⊆ AdjF∗( O
b

j) \ Oa i.

2. If we do not have Oa i ∗−∗ Ob j (with possibly a = b), then Oa ′
i ⊥⊥d Ob ′

j |W ′ ∪S′ in M for

some W ⊆ Oa \ { Oa i, O
b

j} or some W ⊆ Ob \ { Oa i, O
b

j}.
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For the first point, notice that we restrict W to include only those variables that are adjacent
to Oa i or Ob j and within the same waves. The endpoints of F∗ will also have the following
interpretations:

List 2. (Endpoint Interpretations)

1. If we have Oi∗→ Oj, then we have Oj 6∈ AncF (Oi).

2. If we have Oi ∗−Oj, then we have Oj ∈ AncF (Oi ∪ S).

Note that the arrowheads do not take into account selection variables because we often cannot
a priori specify whether a variable is an ancestor of S in F using either wave information
or other prior knowledge in practice. Now call F∗ with the above adjacency and endpoint
interpretations more specifically the father AAG. We have drawn an example of M in Figure
5 (a) and its corresponding father AAG in Figure 5 (c), where we let O = X, L = ∅, S = ∅
and w = 2.

We unfortunately cannot just apply a constraint-based algorithm like FCI on data arising
from a mixture of DAGs and expect to recover a partially oriented father AAG. Generally
speaking, FCI assumes a single underlying directed graph, so FCI may make incorrect inferences
if G′M contains more than one DAG. More technically, FCI does not work well because M
often implies more CI relations than F (Proposition 1). This in turn may cause FCI to infer
incorrect arrowheads. Consider for example the mother graph in Figure 6 (a). Notice that O1 1

is an ancestor of O1 3 in F drawn in Figure 6 (b), but we have { O1 1
1, O

1 2
1} ⊥⊥d { O1 1

3, O
1 2

3} in
M, so O1 1 and O1 3 are independent by Theorem 1. FCI therefore infers the incorrect collider
O1 1∗→ O1 2 ←∗ O1 3 in F∗ during v-structure discovery. FCI indeed does orient too many

colliders with real observational datasets, a phenomenon which we quantify in Section 7.2.
The same problem holds with algorithms like CCI that allow cycles because CCI also assumes
a single underlying directed graph. We thus require an alternative algorithm for correctly
inferring F∗.

6.1 The Algorithm

We now present an algorithm called Causal Inference over Mixtures (CIM) which recovers
causal relations assuming a mixture of DAGs framework. We have summarized the procedure
in Algorithm 1.

The CIM algorithm works as follows. First, CIM runs a variant of PC-stable’s skeleton
discovery procedure in order to discover adjacencies as well as minimal separating sets in Step
1 (Colombo and Maathuis, 2014). This step recovers the adjacencies with interpretations
listed in List 1. The algorithm stores the minimal separating sets in the array Sep so that
Sep(Oi, Oj) contains a minimal separating set of Oi and Oj , if such a set exists. We do not
run FCI’s skeleton discovery procedure because FCI can orient erroneous unshielded triples as
colliders with enough mixing as we observed in the example illustrated in Figure 6; this causes
FCI’s conditioning sets to grow large in practice. Notice also that Algorithm 2 only conditions
on variables within one wave. We do not condition on all prior waves because we empirically
find that this procedure places later waves at a disadvantage by removing too many adjacencies
in the finite sample setting.
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O1 2
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O1 2
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Figure 6: An example where both FCI and CCI fail. We have a mother graph in (a) and its
father graph in (b). Subfigure (c) contains the correct father AAG, but FCI and CCI infer the
incorrect collider O1 1∗→ O1 2 ←∗ O1 3.

Data: CI oracle, waves W, other prior information P
Result: estimated father AAG F̂∗

1 Run Algorithm 2, a variant of PC-stable’s skeleton discovery procedure.
2 If we have Oi ∗−◦Oj and Oi lies within an earlier wave than Oj according to W or Oj

cannot be an ancestor of Oi according to P, then orient Oi ∗−◦Oj as Oi∗→ Oj in F̂∗.
3 If we have Oi∗→ Oj ∗−∗Ok with Oi and Ok non-adjacent, Oj 6∈ Sep(Oi, Oj) and there

exists another minimal separating set W ⊆ PDS(Oi) \Ok containing Oj , then record
W into Sep2(Oi, Oj , Ok).

4 If we have Oi∗→ Oj◦−∗Ok with Oi and Ok non-adjacent, and either Oj ∈ Sep(Oi, Ok)

or Sep2(Oi, Oj , Ok) is non-empty, then orient Oj◦−∗Ok as Oj −∗Ok in F̂∗.
5 Execute the following orientation rule until no more edges can be oriented: if we have

the sequence of vertices 〈O1, . . . , On〉 such that Oi −∗Oi+1 with 1 ≤ i ≤ n− 1, and we
have O1◦−∗On, then orient O1◦−∗On as O1 −∗On in F̂∗.

Algorithm 1: Causal Inference over Mixtures (CIM)
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The CIM algorithm next adds arrowheads in Step 2. Recall that it is impossible to orient
arrowheads under a mixture of DAGs framework using a CI oracle alone according to Propo-
sition 2. CIM therefore uses wave information from a longitudinal dataset with the list W
that contains the indices of the variables in each wave. In particular, if we have Oa i◦−◦ Ob j

with b > a, then CIM orients Oa i◦→ Ob j because we must have Ob j 6∈ AncF ( Oa i) (although we

may have Ob j ∈ AncF (S)). We can similarly orient additional arrowheads using other prior
knowledge P. For example, systolic blood pressure cannot be an ancestor of chronological age
or gender because intervening on systolic blood pressure can never change age or gender. Step
2 orients many arrowheads in practice, so long as we have at least two waves of data.

For every triple Oi∗→ Oj ∗−∗ Ok with Oi and Ok non-adjacent, CIM then attempts to
find a minimal separating set that contains Oj in Step 3. These sets are important due to the
following lemma which allows us to infer tail endpoints in Step 4:

Lemma 1. Suppose that we have O′i ⊥⊥d O
′
j |W ′ ∪S′ in M but we have O′i 6⊥⊥d O

′
j |V ′ ∪S′ for

every V ⊂W . If Ok ∈W , then Ok ∈ AncF ({Oi, Oj} ∪ S).

Thus, unlike arrowheads, we can fortunately infer tails without additional prior knowledge.
CIM finally adds some additional tails in Step 5, a step which we can justify due to the
transitivity of the tails.

We now formally claim that Algorithm 1 is sound:

Theorem 2. Suppose that the longitudinal density f(∪wk=1 Ok ,L,S) factorizes according to
Equation (6). Assume that all arrowheads deduced from P are correct. Then, under d-
separation faithfulness w.r.t. M, the CIM algorithm returns a partially oriented father AAG.

Proof. Under d-separation faithfulness w.r.t. M, CI and d-separation w.r.t. M are equivalent
by Theorem 1, so we can refer to them interchangeably. Algorithm 2 finds the adjacencies
in List 1 because we must always have AdjF∗( O

a
i) ⊆ AdjF̂∗( O

a
i) in Step 9 of Algorithm 2.

Step 4 discovers the correct tails by Lemma 1. Step 5 follows directly by transitivity of the
tails.

Note that d-separation faithfulness w.r.t. M is equivalent to normal d-separation faithfulness
when we have a single DAG in G′M . The d-separation faithfulness assumption imposed by
Theorem 2 is therefore at least as weak as the normal d-separation faithfulness assumption for
a single DAG.

CIM finally carries the same polynomial time complexity as the CCD algorithm at O(u4)
due to Step 3, where the maximum number of CI tests is bounded above by 3

(
u
3

)∑q
i=0

(
u−3
i

)
≤

(q+1)u3(u−3)q+1

q! = O(u4) with fixed q , maxi |PDS(Oi)| − 1 and u denoting the cardinality of
O. The runtime of the algorithm therefore depends on the underlying sparsity of the mother
graph. Practically, we find that CIM completes in about the same amount of time as PC on a
variety of longitudinal datasets with less than 10 vertices in each wave using a laptop carrying
an Intel (R) Core (TM) i7-6700HQ 2.60 GHz CPU and 16GB of RAM.

6.2 Algorithm Trace

We now run through the CIM algorithm with an example. We consider the mother graph
drawn in Figure 7 (a). Step 1 of CIM discovers the skeleton depicted in Figure 7 (b). In
Step 2, we assume access to wave information and therefore add the arrowheads at wave 2
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Figure 7: Algorithm trace of CIM. The ground truth mother graph in (a). Step 1 of CIM
returns (b). Step 2 orients the arrowheads in (c) and Step 4 the tails. CIM ultimately returns
the partially oriented father AAG in (c). In contrast, FCI and CCI return (d) which contains
two incorrect arrowheads.

on the edges between wave 1 and wave 2. We may also know that O1 3 is not an ancestor
of O1 2 using prior knowledge, so we orient the arrowheads in Figure 7 (c). We then orient
the two tails in Figure 7 (c) in Step 4 because we have { O1 j

1}4j=1 ⊥⊥d { O2 j
2}4j=1|{ O2

j
1}4j=1 and

{ O1 j
2}4j=1 ⊥⊥d { O2 j

3}4j=1|{ O1
j
3}4j=1 as discovered in Step 1. CIM does not orient any endpoints

in Step 5 in this case. In contrast, FCI and CCI discover the partially oriented graph in Figure
7 (d) which contains two incorrect arrowheads: O2 3∗→ O2 2 and O1 3∗→ O1 2.

7. Experiments

7.1 Algorithms

We compared the following five algorithms in recovering the ancestral and nonancestral rela-
tions in F :
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1. CIM

2. PC

3. FCI

4. RFCI

5. CCI

We equipped all algorithms with the nonparametric RCoT test (Strobl et al., 2018) and fixed
α = 0.01 across all experiments. The F2CI algorithm proposed in (Strobl, 2017) did not
orient any endpoints on the real datasets because it assumes mixtures of Gaussians for edge
orientation. We therefore do not report the results of this algorithm. PC is the canonical
algorithm for causal discovery over a DAG (Spirtes et al., 2000). FCI extends PC to handle
latent variables and selection bias (Spirtes et al., 2000; Zhang, 2008). RFCI speeds up FCI
by utilizing smaller conditioning sets (Colombo et al., 2012). CCI in turn extends FCI to the
cyclic case provided that linearity holds (Strobl, 2018).

We gave all algorithms the same wave information during skeleton discovery in order to
avoid giving CIM an unfair advantage. PC, FCI, RFCI and CCI perform much worse without
the additional wave information. We additionally provided CIM and PC with the arrowhead
information based on the waves and prior knowledge. We could not provide this information
to FCI, RFCI and CCI based on their arrowhead interpretation because we often do not know
if variables are ancestors of a selection variable.

We had two overarching goals in mind. First, we wanted to evaluate the performance of
CIM against the other algorithms on real data with some known ground truth. We also sought
to reconstruct the real data results using synthetic data in order to evaluate the mixture of
DAGs framework as a reasonable model of nature. We therefore present the real data results
first.

7.2 Real Data

We utilized the following three longitudinal datasets and a priori known direct causal relations:

1. Framingham Heart Study (Mahmood et al., 2014)

(a) number of cigarettes per day causes heart rate (via cardiac nicotonic acetylcholine
receptors (Aronow et al., 1971; Levy, 1971; Haass and Kübler, 1997))

(b) age causes systolic blood pressure (due to increased large artery stiffness (Pinto,
2007; Safar, 2005))

(c) BMI causes number of cigarettes per day (smoking cigarettes is a common weight
loss strategy (Jo et al., 2002; Chiolero et al., 2008))

2. Mayo Clinic Primary Biliary Cirrhosis (Fleming and Harrington, 1991)

(a) bilirubin & prothrombin cause transplant status (clinical criteria now incorporated
into the MELD score (Kamath et al., 2001; Kamath and Kim, 2007))

(b) histological stage causes hepatomegaly (due to fibrosis and chronic inflammation
(Lang, 2009))

(c) transplant status causes bilirubin & prothrombin (acute decrease post transplanta-
tion (Hickman et al., 1997)), hepatomegaly (transplantation immediately reduces
liver size)
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3. Cognition and Aging USA (McArdle et al., 2015)

(a) years of education causes numeracy & serial 7s (increased education improves ability
to solve math problems)

(b) age causes episodic memory (decreased episodic memory secondary to neurodegen-
eration (Rajah and D’esposito, 2005; Head et al., 2008))

We chose the above datasets due to the ability to identify partial ground truth using clinical
knowledge. All of the datasets are publicly available. Note also that all of the aforementioned
datasets contain three waves of data. We evaluated the algorithms according to known ground
truth and time information; that is, (1) the ability to correctly discover the known causal
relations listed above, and (2) the ability to avoid discovering incorrect causal relations directed
backwards in time. For the second point, we more specifically removed all arrowheads at wave
3 on edges between waves 2 and 3. As a result, the algorithms could orient tails at wave 3 on
edges between waves 2 and 3.

We summarize the results from the Framingham Heart Study over 100 bootstrapped
datasets in Figure 8. CIM oriented significantly less tails directed backwards in time than
PC (t=-12.13, p<2.2E-16; Figure 8 (a)). RFCI, FCI and CCI oriented few backwards tails as
well, but the output of CIM contained many more tails on average than any of those algorithms
(min t = 39.10, p<2.2E-16; Figure 8 (b)). Note that CCI almost never oriented tails; the algo-
rithm oriented about 0.57 tails on average (95% CI: [0.40, 0.74]) as opposed to 34.42 for CIM
(95% CI: [33.11, 35.73]). Recall that these findings are congruent with the mixture of DAGs
framework, where we expect traditional algorithms to orient too many arrowheads. Third,
CIM discovered more known causal relations than FCI, RFCI and CCI (min t=38.64, p<2.2E-
16; Figure 8 (c)). CIM outperformed PC in this case too (t=20.05, p<2.2E-16), although this
relation appeared to be dataset dependent because it did not hold in the other two datasets
(Appendix Figures 12 (c) and 13 (c)). Next, CIM took the least amount of time to complete
(max t=-9.02, p=1.53E-14; Figure 8 (d)). We finally replicated all of the aforementioned re-
sults in the Mayo Clinic Primary Biliary Cirrhosis and Cognition and Aging USA studies as
presented in Figures 12 and 13 in Appendix 9.4, respectively. We conclude that, with real
data, CIM (1) makes few errors based on time and (2) detects many known causal relations
while (3) orienting many tails and (4) completing within a short time frame. In contrast, PC
orients many incorrect tails, and FCI, RFCI and CCI orient too many arrowheads.

7.3 Synthetic Data

We seek to approximate the real data results using synthetic data generated from a mixture
of DAGs. Empirical results on the real data suggest a sparse underlying mother graph with
a high degree of mixing causing algorithms like CCI to orient relatively few tails. To account
for the sparsity and the few tails, we hypothesized the existence of many variables in M and
only a few children for each variable in M . Thus, even if Xi causes Xj in the father graph, we
may not have a directed path from X ′i to X ′j in the mother graph like in Figure 4.

We therefore sampled according to a mixture of DAGs as follows. We generated 100
probabilistic models by drawing q = 5 to 15 binary variables in M . For each Mi ∈M , we then
instantiated two Gaussian DAGs each with an expected neighborhood size E(N) = 1/q and p =
24 vertices. For each DAG, we permuted the ordering of the 24 vertices and then generated an
upper triangular adjacency matrix A using independent realizations of Bernoulli(E(N)/(p−1))
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(a) (b)

(c) (d)

Figure 8: Framingham Heart Study results. Bar heights represent empirical means and error
bars their 95% confidence intervals (CIs). (a) CIM orients less tails from wave 3 to wave 2
than PC. (b) CIM orients more tails than FCI, RFCI and CCI combined. (c) CIM detects the
most known ancestral relations. (d) CIM takes the least amount of time to complete.
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random variables. Restoring the variable order to before the permutation allowed us to obtain
a DAG over X with an adjacency matrix not necessarily restricted to the upper triangle. We
then replaced the non-zero entries in A with independent realizations of Uniform([−1,−0.25]∪
[0.25, 1]) random variables. We thus generated 10 to 30 DAGs indexed by 5 to 15 binary
variables in M .

We next modified each DAG to represent a longitudinal density. We assigned the first
8 variables to wave 1, the second 8 to wave 2, and the third 8 to wave 3. We then added
a directed edge from the nth variable in wave 1 to the nth variable in wave 2 for the DAG
associated with Mi = 0, and similarly added the directed edges from wave 2 to wave 3 for the
DAG associated with Mi = 1 in order to model self-loops. Next, we deleted all edges from a
higher to a lower numbered wave to remove ancestral relations directed backwards in time. We
finally introduced latent and selection variables as follows. We first randomly selected a set of
0-2 latent common causes without replacement from X, which we placed in L in addition to
the variables in M . We then selected a set of 0-2 selection variables S without replacement
from the set X \L.

We generated 1000 samples from each probabilistic model as follows. We uniformly instan-
tiated the mixing probabilities f(Mi = 0) and f(Mi = 1) for each Mi ∈M so that we have one
probability value for each of its two DAGs. For each sample, we then drew an instantiation
M = m according to

∏q
i=1 f(Mi) and created the directed graph containing the union of the

edges present in each of the 5 to 15 DAGs associated with m. If this directed graph was
cyclic, we removed a directed edge in each cycle to ensure acyclicity. We can thus associate
each instantiation of M with a DAG but cycles may exist in the father graph. Repeating the
above process 1000 times thus generates 1000 samples over Z according to Equation (6). We
finally removed the latent variables and introduced selection bias by removing the bottom kth

percentile for each selection variable, with k chosen uniformly between 10 and 50.

We report the results in Figure 9. Like with the real data, CIM discovered significantly
less backwards tails than PC (max t=-16.85, p<2.2E-16). CIM also oriented a larger number
of tails than FCI, RFCI and CCI (min t=10.94, p<2.2E-16). We next analyzed the algorithm
outputs within waves 2 and 3 as well as from waves 2 to 3, where CIM can orient tails with
the synthetic data. Here, the proposed algorithm identified the most known ancestral relations
based on the ground truth father graph (min t = 8.03, p=2.09E-12). PC discovered the second
most known ancestral relations on average, but it also oriented many backwards tails. We
therefore conclude that FCI, RFCI and CCI output too few tails just like with the real data.
Moreover, PC can often output incorrect tails.

We can also compute other more common performance measures with the synthetic data
because we know the ground truth father graphs. We plot the precision results in Figure 10 (a)
by analyzing the endpoints within waves 2 and 3 as well as from waves 2 to 3. Notice that
CIM under-performed all algorithms with this metric (max t=-5.05, p=2.02E-6). Precision
however gives algorithms which orient few tails an unfair advantage because the algorithms
do not need to orient any tails to achieve a perfect score. We therefore also summarize the
recall results in Figure 10 (b). Notice that CIM obtained the highest recall (min t = 3.31,
p=1.29E-3). CIM outperformed FCI, RFCI and CCI as well with the F1 score which combines
precision and recall (min t=14.60, p< 2.2E-16; Figure 10 (c)). CIM did not achieve a higher
F1 score than PC, but CIM is theoretically sound under the proposed setup with feedback
loops, latent variables, selection bias and/or non-stationary distributions, whereas PC is not.
We can appreciate this difference experimentally by removing the time information between
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(a) (b)

(c) (d)

Figure 9: Synthetic data results presented in the same format as Figure 8.
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(a) (b)

(c)

Figure 10: (a) Precision, (b) recall and (c) the F1 score for the synthetic data. CIM achieves
the lowest precision but highest recall.

waves 2 and 3. In this case, CIM maintains an average precision of 0.507 (95% CI: [0.457,
0.557]), whereas PC drops around 0.15 points to an average precision of 0.373 (95% CI: [0.327,
0.418]; CIM vs. PC t=5.26, p=8.19E-7); PC’s lower precision occurs because the algorithm
discovers erroneous causal relations without the additional time information. We conclude that
CIM helps users detect tails the most accurately under a mixture of DAGs framework while
maintaining theoretical soundness.

Now simply sampling from a directed graph with latent and selection variables does not
reproduce the real data results as well as the aforementioned setup. To demonstrate this, we
generated 1000 samples each from 100 Gaussian directed graphs with E(N) = 2 and p = 24
vertices again over 3 waves with 8 vertices in each wave. We connected the nth variable in wave
m to the nth variable in wave m+1 to model the self-loops as before. We also included 0-2 latent
and 0-2 selection variables by sampling the variables without replacement. We summarize the
key difference in Figure 11. Notice that CIM no longer orients as many more tails than FCI,
RFCI and CCI (PC oriented 21.07 tails on average, so we do not plot its results). Recall that
this occurs because we in general have more CI relations with a mixture of DAGs than with
a single directed graph. We conclude that sampling according to Equation (6) reproduces the
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Figure 11: Number of tails recovered by the algorithms after simulating data from single di-
rected graphs. Notice that CIM no longer orients as many more tails than the other algorithms.

real data results more accurately than sampling from a probabilistic model following a single
directed graph.

8. Conclusion

We studied the problem of performing causal discovery with mixtures of DAGs. We showed
that the mixture of DAGs framework helps model causal processes even when cycles, non-
stationarity, non-linearity, latent variables and selection bias exist simultaneously. We then
proposed an algorithm called CIM for recovering ancestral causal relations with longitudinal
data under the framework. Experimental results showed that CIM more accurately discovers
causal relations under a mixture of DAGs than previously proposed strategies using both
simulated and real data. We conclude that the proposed ideas improve the accuracy of causal
discovery under more realistic situations.
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Patrick Forré and Joris M. Mooij. Constraint-based causal discovery for non-linear struc-
tural causal models with cycles and latent confounders. In Proceedings of the 34th Annual
Conference on Uncertainty in Artificial Intelligence (UAI-18), 2018.
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9. Appendix

9.1 FCI is Sound and Complete Under Sigma-Separation

Define σ-separation as in Definition 2.8.1 in (Forré and Mooij, 2017). We also say that σ-
separation faithfulness holds when conditional independence implies σ-separation.

28

https://doi.org/10.1007/s41060-018-0158-2
https://doi.org/10.1007/s41060-018-0158-2
http://dl.acm.org/citation.cfm?id=2074094.2074154
http://dl.acm.org/citation.cfm?id=2074094.2074154
http://dl.acm.org/citation.cfm?id=2789272.2886819
https://doi.org/10.1214/12-AOS1080
http://dx.doi.org/10.1016/j.artint.2008.08.001
http://dx.doi.org/10.1016/j.artint.2008.08.001
http://dx.doi.org/10.1093/bjps/axy040
http://dl.acm.org/citation.cfm?id=3171642.3171833


Causal Discovery Using a Mixture of DAGs

Proposition 3. Consider a unique equilibrium distribution P of an SEM-IE with directed
graph G. If σ-separation faithfulness holds w.r.t. G, then FCI is sound and complete for P.

Proof. Suppose there exists a unique equilibrium distribution P of an SEM-IE with G. If Xi

and Xj are σ-separated given W ⊆ X \ {Xi, Xj} in G, then we have Xi ⊥⊥ Xj |W in P (see
Figure 3 in (Forré and Mooij, 2017) where csSEP implies gdGMP).

Now choose an arbitary collapsed graph G1. Note that Xi and Xj are d-separated given
W in G1 if and only if Xi and Xj are σ-separated given W in G (Corollary 2.8.4 in (Forré
and Mooij, 2017)). Thus, if Xi and Xj are d-separated given W in G1, then Xi and Xj are
σ-separated given W in G. We therefore have Xi ⊥⊥ Xj |W in P. In other words, P obeys the
global Markov property w.r.t. G1.

Suppose now that P obeys σ-separation faithfulness w.r.t. G. This implies that, if we have
Xi ⊥⊥ Xj |W in P, then Xi and Xj are σ-separated given W in G. By the equivalence of
d-separation and σ-separation mentioned in the paragraph above, we conclude that Xi and Xj

are d-separated given W in G1. In other words, P also obeys d-separation faithfulness w.r.t.
G1.

From Theorem 4 in (Zhang, 2008), we know that FCI is sound and complete for any
probability distribution obeying the global Markov property w.r.t. a DAG and d-separation
faithfulness w.r.t. that DAG. Hence, FCI is sound and complete for any probability distribution
obeying the global Markov property w.r.t. G1 and d-separation faithfulness w.r.t. G1. It
follows that FCI is sound and complete for P.

9.2 Proofs

Theorem 1. If f(Z) factorizes according to Equation (6), then f(Z) obeys the global Markov
property with respect to M; that is, if A′ ⊥⊥d B′|C ′ in M where A,B,C are disjoint subsets
of Z, then we have A ⊥⊥ B|C.

Proof. Let φ(Zj
i ,PaM(Zj

i )) be a non-negative function equal to f(Zi|PaGj (Zi)) whenever
f(Zi|PaGj (Zi)) = f(Zi|PaGNi (Zi)) and 1 otherwise. Then f(Z) factorizes according to the
DAG M as follows:

f(Z) =

p+s∏
i=1

f(Zi|PaGNi (Zi))

=

p+s∏
i=1

q∏
j=1

φ(Zj
i ,PaM(Zj

i ))

=̈ρ(Z ′).

Note that ρ(A′) also factorizes according to any subgraph ofM for any set of vertices A ⊆ Z
such that A′ contains all its ancestors (i.e. AncM(A′) = ∪qj=1A

j).
Now denote the moral graph ofM asM′. Observe that ρ(Z ′) factorizes according toM′:

ρ(Z ′) =
∏

{Zj
i ∪PaM(Zj

i )}∈D

φ(Zj
i ,PaM(Zj

i )),
(7)

where D denotes the set of cliques in M′. If A′ ⊥⊥d B′|C ′ in M, then A′ and B′ are also
separated by C ′ in M′AncM(A′∪B′∪C′), the moral graph of the ancestral set containing A′ ∪
B′∪C ′ (page 72 in (Cowell et al., 1999)). Let E denote the set of cliques inM′AncM(A′∪B′∪C′).
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We construct the sets Ä′ and B̈′ such that A ⊆ Ä, B ⊆ B̈, Ä ∪ B̈ ∪ C = AncM(A′ ∪
B′ ∪C ′) and Ä, B̈ and C are disjoint. We also require that Ä′ and B̈′ be separated by C ′ in
M′AncM(A′∪B′∪C′); such a partition of AncM(A′ ∪B′ ∪C ′) is possible because A′ and B′ are

already separated by C ′ in M′AncM(A′∪B′∪C′).

Let EÄ denote the set of cliques in E that have non-empty intersection with Ä′. Observe

then that we must have B̈′ ∩ e = ∅ for all e ∈ EÄ. Similarly, Ä′ ∩ e = ∅ for all e ∈ E \ EÄ. We
thus obtain the following similar to Equation (7):

ρ(Ä′ ∪ B̈′ ∪C ′) = f(Ä ∪ B̈ ∪C)

=
∏

{Zj
i ∪PaM(Zj

i )}∈E

φ(Zj
i ,PaM(Zj

i ))

=
∏
e∈EÄ

γ(e)
∏

e∈E\EÄ

γ(e)

= ψ1(Ä ∪C)ψ2(B̈ ∪C),

where γ(·) denotes a non-negative function. We can obtain f(A ∪B ∪ C) by marginalizing
over f(Ä ∪ B̈ ∪C):

f(A ∪B ∪C) =
∑

[Ä∪B̈]\[A∪B]

f(Ä ∪ B̈ ∪C)

=
∑

[Ä\A]∪[B̈\B]

f(Ä ∪ B̈ ∪C)

=
∑

[Ä\A]∪[B̈\B]

ψ1(Ä ∪C)ψ2(B̈ ∪C)

=
[ ∑
[B̈\B]

[ ∑
[Ä\A]

ψ1(Ä ∪C)
]
ψ2(B̈ ∪C)

]
=
∑
[Ä\A]

ψ1(Ä ∪C)
∑

[B̈\B]

ψ2(B̈ ∪C)

= ψ3(A ∪C)ψ4(B ∪C),

where the fifth equality follows because [Ä \A]∩ [B̈ \B] = ∅ by construction. The conclusion
follows by the sixth equality.

Proposition 1. Let A,B,C denote disjoint subsets of X. If A ⊥⊥d B|C in F , then A′ ⊥⊥d

B′|C ′ in M.

Proof. We construct a new graph R over X ′ ∪ T ′ as follows. For each DAG in G′M , introduce
a vertex T and draw directed edges from T to all of the children of M . Then remove all of the
variables in M as well as all the directed edges from M . Finally plot the modified DAGs in
G′M next to each other to form the graph R. Notice that, if we have A′ ⊥⊥d B′|C ′ in R, then
we also have A′ ⊥⊥d B′|C ′ in M by construction.

Now create another new graph S by replacing all of the DAGs in M with F . Notice that
we have A′ ⊥⊥d B′|C ′ in S if and only if A ⊥⊥d B|C in F . Moreover, S contains all of the
edges in R so, if we have A′ ⊥⊥d B′|C ′ in S, then A′ ⊥⊥d B′|C ′ in R. Combining this with
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the aforementioned if and only if relation, we have A ⊥⊥d B|C in F implies A′ ⊥⊥d B′|C ′ in
S which in turn implies A′ ⊥⊥d B′|C ′ in R. Hence, we have A′ ⊥⊥d B′|C ′ inM by the end of
the previous paragraph.

Proposition 2. If we have Oi 6∈ AncF (Oj ∪ S) in a father graph F with a corresponding
mother graph M, then we have Oi ∈ AncF2(Oj) in another father graph F2 such that its
corresponding mother graph M2 lies within the same Markov equivalence class over O as M.

Proof. Set G′2 to G′M , where G′2 refers to the set of DAGs in M2. If |G′M | = 1, then add two
copies of the DAG into G′2. Now add one new latent variable Lm into each DAG in G′2 as
follows. For all but the last DAG, draw the two directed edge Oi → Lm. For the last DAG,
draw Lm → Oj . Next, introduce a new latent common cause Ms+1 for Lm and Oj into every
DAG. Observe that all of the new paths are d-separating among the observed variables in G2,
so no new d-separation or d-connection relations were introduced among the observed variables
in M2. However, we have Oi ∈ AncF2(Oj) with the directed path Oi → Lm → Oj .

The above result implies that it is impossible to infer non-ancestral relations with a CI oracle,
unless we make further assumptions. Traditional methods skirt the above result by restricting
the number of DAGs in G′M and G′2 both to one. The result also elucidates a warning for
the suspiciously high number of non-ancestral relations inferred by past constraint-based algo-
rithms in general; Proposition 2 implies that the arrowheads should not have been inferred in
the first place under a mixture of DAGs framework.

While we cannot infer non-ancestral relations in general, we can infer ancestral ones using
a CI oracle:

Lemma 1. Suppose that we have O′i ⊥⊥d O
′
j |W ′ ∪S′ in M but we have O′i 6⊥⊥d O

′
j |V ′ ∪S′ for

every V ⊂W . If Ok ∈W , then Ok ∈ AncF ({Oi, Oj} ∪ S).

Proof. We first invoke Lemma 15 in (Strobl, 2018) by setting R = ∅, Oi = O′i, Oj = O′j ,
W = W ′ and S = S′ in that paper. We can then conclude that O′k ∈ AncM(O′i ∪ O′j ∪ S′).
If O′k ∈ AncM(O′i ∪ O′j ∪ S′), then there exists at least one DAG G ∈ G′M such that Ok ∈
AncG({Oi, Oj} ∪S) because no paths exist between the DAGs in G′M . The conclusion follows
because every edge in G is also in F .

9.3 Skeleton Discovery

We have summarized the skeleton discovery procedure of CIM in Algorithm 2. Algorithm 2
learns the skeleton as follows. First, the algorithm initializes a fully connected nondirected
graph F̂∗ in Step 1. Algorithm 2 then determines whether Oa i and Ob j are conditionally

dependent given all subsets of AdjF̂∗( O
a

i) \ Ob j and all subsets of AdjF̂∗( O
b

j) \ Oa i in Step
10. If the algorithm finds a CI relation, then Algorithm 2 removes the edge between Oa i and

Ob j in F̂∗ and records the separating set in Sep. The algorithm ultimately outputs both F̂∗
and Sep for later use by Algorithm 1.

9.4 Extra Experimental Results

We have summarized the results for the Mayo Clinic Primary Biliary Cirrhosis and Cognition
and Aging USA datasets in Figures 12 and 13, respectively.
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Data: CI oracle
Result: F̂∗, Sep

1 Form a complete graph F̂∗ over O with edges ◦−◦
2 l← −1
3 repeat
4 Let l = l + 1
5 For each vertex Oa i ∈ O, form the adjacency set AdjF̂∗( O

a
i)

6 repeat

7 Select a new ordered pair of vertices ( Oa i, O
b

j) that are adjacent in F̂∗ and

satisfy |AdjF̂∗( O
a

i) \ Ob j | ≥ l
8 repeat
9 Choose a new set W ⊆ AdjF̂∗( O

a
i) \ Ob j with |W | = l

10 if Oa i ⊥⊥ Ob j |W ∪ S then

11 Delete the edge Oa i◦−◦ Ob j from F̂∗
12 Let Sep( Oa i, O

b
j) = Sep( Ob j , O

a
i) = W

13 end

14 until Oa i and Ob j are no longer adjacent in F̂∗ or all W ⊆ AdjF̂∗( O
a

i) \ Ob j

with |W | = l have been considered ;

15 until all ordered pairs of adjacent vertices ( Oa i, O
b

j) in F̂∗ with

|AdjF̂∗( O
a

i) \ Ob j | ≥ l have been considered ;

16 until all pairs of adjacent vertices ( Oa i, O
b

j) in F̂∗ satisfy |AdjF̂∗( O
a

i) \ Ob j | ≤ l;
Algorithm 2: CIM’s skeleton discovery procedure
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(a) (b)

(c) (d)

Figure 12: Mayo Clinic Primary Biliary Cirrhosis study results presented in the same format
as Figure 8.
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(a) (b)

(c) (d)

Figure 13: Cognition and Aging USA study results presented in the same format as Figure 8.
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