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Abstract

We point out that the traditional notion of test statistic is too narrow, even for the purpose
of conformal prediction. The most natural generalization of the traditional notion happens
to be too wide. We propose another natural generalization which is arguably the widest
reasonable generalization. The study is restricted to simple statistical hypotheses.
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1. Introduction

The traditional definition of the p-value associated with a given test statistic f and outcome
x is

f̂(x) = P[f ≤ f(x)] (1)

where [f ≤ f(x)] = {y : f(y) ≤ f(x)}. The standard textbook convention is that the
test statistic f takes values in the real line. But the definition of f̂ requires only that the
codomain of f be an ordered measurable space and that the initial segments (−∞, f(x)]
be measurable. Should we generalize the notion of test statistics? Would any linearly
ordered measurable space work as the codomain of a test statistic f provided that the
initial segments (−∞, f(x)] are measurable?

Our answer to the first question is “yes”. Generalized test statistics have been, albeit im-
plicitly, used in conformal prediction and applied statistics. For example, to incorporate the
notion of randomized p-values into definition (1), one needs generalized test statistics with
codomains that are richer than the real line, as we discuss later in this article (Section 5).
Our analysis turns up a more radical generalization, which is more natural and arguably
the widest generalization that makes sense.

The answer to the second question is an emphatic “no”. There exist a probability
space (Ω,Σ,P) and a statistic f with values in a linearly ordered set with measurable
initial segments such that every f̂(x) = 0. Intuitively, this makes no sense: we are entitled
to reject the null hypothesis whatever happens. Formally, this contradicts the standard
property

P[f̂ ≤ ε] ≤ ε for every nonnegative ε < 1

of the validity of p-values.
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Example 1 The sample space Ω is the collection (known to set theorists as ω1) of countable
(that is finite or infinite countable) ordinals. In set theory, every ordinal is the set of smaller
ordinals: 0 is the empty set, 1 = {0}, 2 = {0, 1}, 3 = {0, 1, 2}, the first infinite ordinal ω0 is
the set {0, 1, . . . } of natural numbers, ω0 + 1 = ω0 ∪ {ω0}, ω0 + 2 = ω0 ∪ {ω0, ω0 + 1}, . . . ,
ω0 + ω0 = ω0 ∪ {ω0 + n : n ∈ ω0}, and so on. The first uncountable ordinal ω1 is the set of
countable ordinals.

The σ-algebra Σ consists of all countable subsets of Ω and their complements, and

P(X) =

{
0 if X is countable,

1 if Ω−X is countable.

Finally the statistic f is the identity function: f(x) = x. The order on the codomain is
natural:

x < y ⇐⇒ x ∈ y,

so that
0 < 1 < · · · < ω0 < ω0 + 1 < · · · < ω0 + ω0 < · · · .

For every countable ordinal x, the initial segment [0, x] is countable. Accordingly

f̂(x) = P[f ≤ f(x)] = P[0, x] = 0. /

As we already mentioned, a modest but useful generalization of the traditional p-value is
already used in conformal prediction and applied statistics (Section 5). We analyze what can
go wrong with generalized test statistics and arrive (in Subsection 2.3) at a generalization
that is arguably the right one. And we argue that generalized test statistics should be used
more widely.

2. Test statistics

2.1. Nominal test statistics

Definition 1 Let T be a probability space (Ω,Σ,P) and R any ordered measurable space
with all initial segments (−∞, r] measurable. Any measurable function f : Ω → R is a
nominal test statistic for T .

Notation T alludes to “probability trial”. An ordered measurable space is a measura-
ble space endowed with a linear order; in this article, “ordered” always means “linearly
ordered”.

The notion of nominal test statistic is auxiliary. As Example 1 shows, a nominal test
statistic may be unreasonable.

To comply with the traditional definition of p-values, Equation (1) above, we restrict
attention to ordered measurable spaces where every initial segment of the form (−∞, r] is
measurable. Note that if Σ1,Σ2 are σ-algebras on any set R and Σ1 ⊆ Σ2 then every R-
valued function that is measurable with respect to Σ2 is measurable with respect to Σ1. In
other words, the smaller the σ-algebra, the greater the collection of measurable functions.
This motivates the following definition.
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Definition 2 The p-minimal σ-algebra on an ordered set R is the least σ-algebra on R
that contains every initial segment of the form (−∞, r].

If R is an ordered measurable space whose σ-algebra is p-minimal then the measurability
requirement for R-valued nominal test statistics simplifies to this: Every set [f ≤ r] is
measurable.

Definition 3 Let f be a nominal test statistic for a probability trial (Ω,Σ,P) with codo-
main R. The nominal test statistic f induces the probability measure Pf (S) = P(f−1(S))
on the measurable subsets of R.

2.2. Traditional and nearly traditional test statistics

Definition 4 A nominal test statistic is a traditional test statistic if its codomain is the
real line R with the Borel σ-algebra.

The real line is of course the set of real numbers with the standard order. Its Borel σ-
algebra coincides with its p-minimal σ-algebra. In the applications of conformal prediction
and statistics, mostly traditional test statistics are used.

We introduce a slight generalization of traditional test statistics that may be convenient.
(That is not the radical generalization mentioned in the Introduction.) To this end, we recall
a few definitions and facts.

Every ordered set (of size at least 1) is equipped with its order topology. The segments
(x, y), (−∞, x), (y,∞), and (−∞,∞) form a base of the order topology. In this paper, the
order topology is the default topology on ordered sets.

A topology is second-countable if it has a countable base of open sets. A jump in an
ordered set (R,≤) is a pair (x, y) of points of (R,≤) such that x < y and there is no z ∈ R
with x < z < y. A mapping f whose domain and codomain are both ordered sets is order-
preserving (or an embedding) if x < y implies f(x) < f(y) for all x and y in its domain.
The following proposition is proved in, e.g., Cater (1999, Theorem II and Lemma 3) and
(in a somewhat less explicit form) in Birkhoff (1967, Theorem 24 in Section VIII.11).

Proposition 5 A linear order can be embedded into the real line R if and only if its order
topology is second countable. The order topology of a linear order is second countable if and
only if the topology is separable and the order has at most countably many jumps.

Notice that any embedding of a linear order with second-countable topology into the
real line will be measurable: the pre-image of an initial interval (−∞, r] of the real line
can be represented as a countable union of initial intervals of this form and is, therefore,
measurable. Now we are ready to introduce the slight generalization of traditional test
statistics.

Definition 6 A nearly traditional test statistic is a nominal test statistic whose codomain
is second-countable.
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Remark 7 (codomains vs ranges) Consider a nominal test statistic f with a codomain
R, and let R′ be a nonempty subset of R endowed with the order inherited from R. If
R′ includes the range of f , we may view f as a nominal test statistic with codomain R′.
In particular, we may always view f as a nominal test statistic whose codomain coincides
with its range. This is especially relevant in contexts where the range inherits the assumed
properties of the codomain, which is the case in most of our definitions and statements.
(Definition 4 is a major exception. As far as Definition 8 is concerned, the property “long”
may not be inherited but the more relevant property “short” is inherited.)

Traditionalists may argue that the generalization to the nearly traditional test statistics
is vacuous, and in a sense it is. By Proposition 5, any nearly traditional test statistic can be
composed with an order embedding to obtain a traditional test statistic. This implies that
any nearly traditional test statistic f can be replaced by a traditional test statistic f ′; f and
f ′ will be equivalent in the sense of inducing the same order on Ω: f(x) ≤ f(y) if and only
if f ′(x) ≤ f ′(y). However, as the following schematic example shows, the nearly traditional
test statistic f may be more convenient to work with. This example is inspired by the
literature on randomized p-values (but it does not presuppose the knowledge of randomized
p-values, which will be introduced in Section 5).

Example 2 Let f be a traditional test statistic on a discrete measurable space (Ω,Σ) with
Ω countable (in which case randomizing p-values becomes particularly useful). Let R be the
range of f and equip R with its natural order and the p-minimal (i.e., discrete in this case)
σ-algebra. Set Ω′ to the real segment [0, 1] and Σ′ to the p-minimal (i.e., Borel) σ-algebra
on [0, 1]. (In the context of randomized p-values, Ω′ is interpreted as the range of random
numbers generated by a random number generator.) Order R × [0, 1] lexicographically, so
that

(p, r) ≤ (q, s) ⇐⇒ p < q or (p = q and r ≤ s).

It is easy to check that the lexicographic order is second-countable (this uses the countability
of R) and that the function F (p, r) = (f(p), r) is a nearly traditional test statistic on
the product measurable space (Ω × Ω′,Σ ⊗ Σ′). While F is rather natural, an equivalent
traditional test statistic may be rather involved; think, e.g., of the case where R is the set
Q of rationals. /

Radicals may argue that the generalization to the nearly traditional test statistics is too
timid, that there are natural examples of nominal test statistics with more general ordered
codomains. We agree.

2.3. A general notion of test statistic

Definition 8 Let O and R be ordered sets. R is O-long if there is an embedding of (i.e.,
an order-preserving map from) O into R; otherwise R is O-short.

In Example 1 we mentioned that ω1 is the set of all countable ordinals and that ordinals
are naturally ordered by inclusion. Think of any ordinal α as the linear order of the smaller
ordinals, e.g., ω1 as the linear order of countable ordinals.
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We are particularly interested in ω1-short ordered sets. There is a useful positive cha-
racterization of such ordered sets. Recall that sets X,Y of points of an order ≤ are cofinal
if for every x ∈ X there is y ≥ x in Y and if for every y ∈ Y there is x ≥ y in X (and
coinitial is defined symmetrically).

Proposition 9 Let R be an ordered set. The following claims are equivalent.

1. R is ω1-short.

2. Every nonempty subset X of R includes a sequence x1 ≤ x2 ≤ · · · cofinal with X.

3. Any probability measure P on R measuring all initial segments (−∞, x] is continuous
from below in the following sense. For every subset X of R, the initial segment⋃

x∈X(−∞, x] is measured by P and

P

(⋃
x∈X

(−∞, x]

)
= sup

x∈X
P(−∞, x]. (2)

Here and below, presenting a sequence in the form

x1 < x2 < · · · , or x1 ≤ x2 ≤ · · · , or

x1 > x2 > · · · , or x1 ≥ x2 ≥ · · · ,

we presume that the indices range over the positive integers. Also, we use the convention
that the supremum of the empty set of probabilities is zero and the infimum of the empty
set of probabilities is one.

Proof

1 =⇒ 2 We prove the implication 1 =⇒ 2 by contrapositive. Assume that X is a
nonempty subset of R such that no sequence x1 ≤ x2 ≤ · · · in X is cofinal with X.
We construct an embedding of ω1 into R. Choose η(0) arbitrarily in X. Suppose that
β is a countable ordinal and a (possibly transfinite) sequence 〈η(α) : α < β〉 has been
constructed. The sequence contains only countably many elements and thus cannot
be cofinal with X. Choose η(β) in X greater than all η(α) with α < β. This way we
construct the desired embedding 〈η(α) : α < ω1〉.

2 =⇒ 3 Assume 2 and fix an arbitrary subset X of R. If X = ∅ then both sides of
Equation (2) are zero. Suppose that X 6= ∅. By 2, there is a sequence x1 ≤ x2 ≤ · · ·
of points in X cofinal with X. Accordingly, it suffices to prove that P(∪n(−∞, xn]) =
supn P(−∞, xn], which follows from the countable additivity of probability measures.

3 =⇒ 1 Again we prove the desired implication by contrapositive. Assume that there
is an embedding η of ω1 into R and let X = Range η. We construct a probability
measure P for which Equation (2) fails. Without loss of generality, X is cofinal in
R. Let Σ be the p-minimal σ-algebra of R. By Carathéodory’s extension theorem,
to define P on Σ, it suffices to define P on the initial segments (−∞, x] (in such a
way that the conditions of the theorem are satisfied, which we will check carefully
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later). Define P(−∞, x] = 0 if X ∩ (−∞, x] is countable and P(−∞, x] = 1 otherwise.
Then the left side of Equation (2) is P(R) = 1 while the right side is 0. It remains
to check the applicability of Carathéodory’s theorem. To make sure P is defined on
a semi-ring, set P(∅) = 0 and P(x, y] = P(−∞, y] − P(−∞, x] for all x < y. Let
us first check that P(x, y] = 0 if X ∩ (x, y] is countable and P(x, y] = 1 otherwise.
The case where X ∩ (x, y] is countable is trivial, so let us assume that X ∩ (x, y] is
uncountable. In this case we have P(−∞, y] = 1 and, since (x, y] contains η(α) for a
countable ordinal α, P(−∞, x] = 0; by definition, this implies P(x, y] = 1. It remains
to check that P is σ-additive: if (x, y] = ∪∞n=1(xn, yn], where the union is disjoint,
then P(x, y] =

∑∞
n=1 P(xn, yn]. This follows immediately from X ∩ (xn, yn] being

uncountable for at most one n.

Remark 10 The argument in the proof of 1 =⇒ 2 is an instance of definition by transfinite
induction (in our case, over the countable ordinals). For details, see the transfinite recursion
theorem in Halmos (1960, Section 18). It becomes applicable if we fix a choice function
that maps every transfinite sequence 〈η(α) : α < β〉 in X for every countable ordinal β to
η(β) ∈ X satisfying our desideratum (in this particular case, η(β) being greater than all
η(α) with α < β).

The reverse of the ordered set ω1 is known as ω∗1. In other words, ω∗1 is the set of all
countable ordinals with the reverse order α < β ⇐⇒ β ∈ α. By symmetry, Proposition 9
has the following corollary.

Corollary 11 Let R be an ordered set. The following two claims are equivalent.

1. R is ω∗1-short.

2. Every nonempty subset X of R includes a sequence x1 ≥ x2 ≥ · · · coinitial with X.

Proposition 12 Suppose R is ω1-short. Any probability measure P on R measuring all
initial segments (−∞, x] is continuous from above in the following sense. For any subset X
of R,

P

(⋃
x∈X

[x,∞)

)
= sup

x∈X
P[x,∞) (3)

(which includes the existence of all these probabilities).

Proof By Proposition 9, it suffices to check that the measurability of all initial segments
(−∞, x] implies the measurability of all final segments [x,∞), i.e., the measurability of every
initial segment (−∞, x). Suppose that every (−∞, x] is measurable. By Proposition 9, for
any x there exists a sequence x1 ≤ x2 ≤ · · · cofinal with (−∞, x), so that (−∞, x) =⋃

n(−∞, xn]. Hence (−∞, x) is measurable.

Since

1−P

(⋃
x∈X

[x,∞)

)
= P

(⋂
x∈X

(−∞, x)

)
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and
1− sup

x∈X
P[x,∞) = inf

x∈X
P(−∞, x),

(3) is equivalent to

P

(⋂
x∈X

(−∞, x)

)
= inf

x∈X
P(−∞, x).

The definition of p-value is not symmetric with respect to order reversal. Accordingly,
in our context, the symmetry between ω1 and ω∗1 is limited. ω∗1 is less dangerous than ω1.
Replacing the order ω1 in Example 1 by the reverse order ω∗1 leads to a p-value that is
identically equal to 1, which is a valid p-value (and occurs for very simple test statistics,
e.g., whenever the size of f ’s codomain is 1) albeit not useful. ω∗1-short orders have some
desirable properties. Corollary 11 and Proposition 12 indicate some of them. Others will
will be pointed out later. The following definition is borrowed from the literature on linear
orders; see Gurevich and Shelah (1979) and Rosenstein (1982, p. 88).

Definition 13 A linear order is short if it is ω1-short and ω∗1-short.

Now we are ready to introduce our general notion of test statistic.

Definition 14 A test statistic is a nominal test statistic whose codomain is short.

Proposition 15 Any ordered set with second-countable order topology is short. Thus every
nearly traditional test statistic is a test statistic.

In particular, the real line R is short.

Proof Let R be an ordered set with second-countable order topology. By Proposition 5, R
is separable and has at most countably many jumps. Let C be a countable set that is dense
in R and contains all points involved in jumps. Suppose toward a contradiction that η is
an order-preserving or order-reversing map from ω1 to R. We obtain uncountably many
disjoint open nonempty intervals (η(α), η(α+ 2)) where α is a limit ordinal. Each of these
intervals contains a point from C, which is impossible.

3. Induced test statistics, p-functions, and p-values

3.1. Induced test statistics

Definition 16 Any test statistic f for a probability trial (Ω,Σ,P) induces a traditional
test statistic f̂(x) = P[f ≤ f(x)] on (Ω,Σ,P).

Lemma 17 If f is a test statistic then ˆ̂f = f̂ . In other words, any induced test statistic
is self-induced.
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Proof Let f be a test statistic for a probability trial T = (Ω,Σ,P) and R be the codomain
of f . By Definition 3, f induces a probability distribution Pf (X) = P(f−1(X)) on R. To
simplify notation, we omit the subscript f .

Let η(r) = P[f ≤ r], so that η(f(x)) = P[f ≤ f(x)] = f̂(x). If s ≤ r then η(s) ≤ η(r).
On the other hand,

η(s) ≤ η(r) ⇐⇒ either s ≤ r or else (s > r and η(s) = η(r))

⇐⇒ either s ≤ r or else (s > r and P(r, s] = 0).

For any r ∈ R, the set Sr = {s ∈ R : s > r and P(r, s] = 0} is measurable in R and
P(Sr) = 0. Indeed, by the definition of nominal test statistics, the initial segments (−∞, t]
of R are measurable. Since f is a genuine test statistic (rather than just nominal), R is
ω1-short and so there is a sequence s1 ≤ s2 ≤ · · · in Sr cofinal with Sr so that Sr =

⋃
n(r, sn]

and thus is measurable. Further, P(∪n(r, sn]) = limn P(r, sn] = 0. Thus

0 = P(Sr) = P(f−1(Sr)) = P{y : f(y) > r and η(f(y)) = η(r)}.

Now we are ready to prove ˆ̂f(x) = f̂(x).

ˆ̂f(x) = P[f̂ ≤ f̂(x)] = P{y : η(f(y)) ≤ η(f(x))}
= P{y : f(y) ≤ f(x)}+ P{y : f(y) > f(x) and η(f(y)) = η(f(x))}
= P{y : f(y) ≤ f(x)} = P[f ≤ f(x)] = f̂(x).

Theorem 18 Let f be a traditional test statistic with values in the real segment [0, 1]. The
following claims are equivalent.

1. f is induced by some test statistic.

2. f is self-inducing, i.e., f̂ = f .

3. P[f ≤ ε] = ε for every ε ∈ Range f .

Proof Obviously 2 implies 1. By Lemma 17, 1 implies 2. It suffices to prove that 2 and 3
are equivalent.

2 =⇒ 3 Assume 2 and let ε = f(x) for some x. We have

P[f ≤ f(x)] = f̂(x) = f(x) = ε.

3 =⇒ 2 Assume 3. Given a sample point x, let ε = f(x). We have

f̂(x) = P[f ≤ f(x)] = P[f ≤ ε] = ε = f(x).

The definition of the induced test statistic f̂ can be extended to the case where f is
only a nominal test statistic. But the following proposition emphasizes the important role
of the property of being ω1-short.
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Proposition 19 Let R be an ω1-long ordered set. There exists an R-valued nominal test
statistic f such that P[f̂ ≤ 0] = 1 even though 0 ∈ Range f̂ .

Proof Fix an embedding η of ω1 into R, and let

L = {x ∈ R : x ≤ η(α) for some α ∈ ω1}.

Let Σ be the least σ-algebra on R that contains the initial segments (−∞, x] and also
contains L.

For every member X of Σ, either X or R − X contains at most a countable subset of
Range η. Indeed, every initial segment of the form (−∞, x] and L have this property, and
the property is preserved by complementation and countable unions.

Define a probability measure P on Σ as follows: If X contains at most a countable
subset of Range η then P(X) = 0; otherwise P(X) = 1.

The desired nominal test statistic f is the identity function on R. It is easy to see that
x ∈ L if and only if f̂(x) = P[f ≤ f(x)] = 0. So P[f̂ ≤ 0] = P(L) = 1.

3.2. p-functions and p-values

We want to define p-functions and p-values in such a way that p-values are the values of
p-functions. It is tempting to define a p-function as a traditional test statistic f̂ induced
by some test statistic f . By Theorem 18, we have P[f ≤ ε] = ε for any ε ∈ Range f . But
in practice people also use conservative p-values. To accommodate this practice, we give a
more general definition of p-functions.

Definition 20

• A p-function is a traditional test statistic f with values in the real segment [0, 1] such
that P[f ≤ ε] ≤ ε for every ε ∈ [0, 1].

• A p-function f is range-exact if P[f ≤ ε] = ε for every ε ∈ Range f ; otherwise f is
conservative.

• A p-function f is everywhere exact or simply exact if P[f ≤ ε] = ε for every ε ∈ [0, 1].

If f is a p-function then cf is a p-function for every c ≥ 1. Indeed

P[cf ≤ ε] = P[f ≤ ε/c] ≤ ε/c ≤ ε.

If c ∈ (0, 1) then cf may not be a p-function. In particular if P[f ≤ ε] = ε for at least one
ε > 0 then cf is not a p-function because, for that ε, we have

P[cf ≤ cε] = P[f ≤ ε] = ε > cε.

Theorem 21 Let f be a traditional test statistic with values in the real segment [0, 1]. The
following claims are equivalent.
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1. f is an induced test statistic.

2. f is a range exact p-function.

Proof 2 implies 1 by Theorem 18. To prove the other implication, assume 1. By Theo-
rem 18, P[f ≤ ε] = ε for any ε ∈ Range f . It remains to prove that P[f ≤ ε] ≤ ε for every
ε ∈ [0, 1]− Range f .

Let ε ∈ [0, 1] − Range f , S = {s ∈ Range f : s < ε} and ε0 = supS. If S = ∅ then
[f ≤ ε] = ∅ and P[f ≤ ε] = 0 ≤ ε. Otherwise there is a sequence s1 ≤ s2 ≤ · · · of reals in
S converging to ε0. Then

P[f ≤ ε] = P[f ≤ ε0] = P

( ∞⋃
n=1

[f ≤ sn]

)
= lim

n→∞
P ([f ≤ sn]) = lim

n→∞
sn = ε0 ≤ ε.

Definition 22 Let F be a p-function for some probability trial T = (Ω,Σ,P). For any
outcome x ∈ Ω, the number F (x) is the p-value associated with the test statistic F and
the outcome x. If F is an induced test statistic and f is any test statistic for T inducing
F then F (x) is also the p-value associated with f and x. If P[F ≤ F (x)] = F (x) then the
p-value F (x) is exact ; otherwise it is conservative.

4. Diffuse test statistics and exact p-functions

We are particularly interested in exact p-functions f(x), the p-functions with P[f ≤ ε] =
ε for all ε ∈ [0, 1]. Classical parametric statistics is a rich source of exact p-functions;
randomized p-values (discussed in the next section) is another important example.

Recall that an atom in a probability space T is an event (i.e., a measurable set) of
positive probability that cannot be split into a disjoint union of two events of positive
probability. T is diffuse if it has no atoms. Every singleton event of positive probability is
an atom. In Example 1, the complement of every countable set is an atom.

Lemma 23 Let R be a short ordered set as well as a probability space where all initial
segments (−∞, r] are measurable. R is diffuse if and only if it has no singleton atoms.

Proof The “only if” implication is trivial. To prove the “if” implication, suppose toward a
contradiction that R has no singleton atoms and yet it does have an atom A. The subset A
by itself is a short ordered set. If Σ is the σ-algebra of R, and P is the probability measure
on Σ, consider the σ-algebra ΣA = {A ∩X : X ∈ Σ} and restrict P to ΣA. In the rest of
the proof, we work with A. Without loss of generality, we may assume that A is the whole
R. Accordingly R itself is an atom in R.

Obviously P(R) = 1. Since R is an atom, for any X ∈ Σ, the probability P(X) is
either 0 or 1. Notice that every singleton set {r} is measurable in R. Indeed, (−∞, r] is
measurable, so it suffices to prove that (−∞, r) is measurable. By Proposition 9, there is a
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sequence x1 ≤ x2 ≤ · · · converging to r, and so (−∞, r) is a countable union of measurable
sets.

Let I be the set of points x ∈ R with P(−∞, x] = 0 (it is an initial segment, in the
sense of containing any y such that y ≤ x for some x ∈ I). By the continuity from below,
see Equation (2),

P(I) = P

(⋃
x∈I

(−∞, x]

)
= sup

x∈I
P(−∞, x] = 0.

Let F be the final segment R− I. For any y ∈ F , P(−∞, y] = 1 and therefore P(y,∞) = 0.
Since singleton sets are measurable in R and R has no singleton atoms, every P[y,∞) =
P{y}+ P(y,∞) = 0. By the continuity from above, see Equation (3),

P(F ) = P

(⋃
x∈F

[x,∞)

)
= sup

x∈F
P[x,∞) = 0.

Thus P(R) = P(I) + P(F ) = 0, which gives us the desired contradiction.

Call a nominal test statistic f on a probability trial T = (Ω,Σ,P) diffuse if the proba-
bility distribution Pf that f induces on its codomain R is diffuse. If R is short then, by
Lemma 23, the test statistic f is diffuse if and only if P(f−1(r)) = Pf (r) = 0 for every
point r ∈ R.

Proposition 24 Let f be a diffuse test statistic. Then the induced test statistic f̂ is
diffuse.

Proof The codomain [0, 1] of f̂ is short, and every singleton set in [0, 1] is measurable. By
Lemma 23 it suffices to prove that P[f̂ = ε] = 0 for every ε ∈ Range f̂ . Fix such a number
ε. Since ε ∈ Range f̂ , the set X = {x : f̂(x) = ε} 6= ∅. Let R0 = {f(x) : x ∈ X}.

We use the notation and results established in the proof of Lemma 17. If x ∈ X
and r = f(x), we have ε = f̂(x) = P[f ≤ r] = η(r) and so [f̂ = ε] = {y : f̂(y) =
f̂(x)} = {y : η(f(y)) = η(r)}. Let U(r) = {y : f(y) ≥ r and η(f(y)) = η(r)} and
U ′(r) = {y : f(y) > r and η(f(y)) = η(r)}. In the proof of Lemma 17 we established that
P(U ′(r)) = 0. But U(r) = U ′(r) ∪ f−1(r). Since f is diffuse, P(f−1(r)) = Pf (r) = 0 and
so P(U(r)) = 0.

If r = minR0 then P[f̂ = ε] = P[f̂ = η(r)] = P(U(r)) = 0. Suppose that R0 does not
have a minimal element. Since R is short, there exists a sequence r1 > r2 > . . . in R0 that
is coinitial with R0. We have

P[f̂ = ε] = P

(⋃
n

U(rn)

)
= 0.

Theorem 25 Let f be a diffuse test statistic. Then the induced test statistic f̂ is an exact
p-function.

11
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Proof By Theorem 21, f̂ is a range-exact p-function, so that P[f ≤ ε] ≤ ε for ε ∈ [0, 1]
and P[f ≤ ε] = ε for all ε ∈ Range f̂ . It remains to prove that P[f ≤ ε] = ε for every
ε ∈ [0, 1]− Range f̂ . Fix such a number ε.

Let ε0 = sup{δ ∈ Range f̂ : δ < ε} and ε1 = inf{δ ∈ Range f̂ : δ > ε}. Our convention
here is that sup ∅ = 0 and inf ∅ = 1. There exists a sequence δ1 ≤ δ2 ≤ · · · in Range f̂ that
converges to ε0, so that

P[f̂ ≤ ε0] = lim
n

P[f̂ ≤ δn] + P[f̂ = ε0] = lim
n
δn + 0 = ε0.

Similarly, there is a sequence δ1 ≥ δ2 ≥ · · · in Range f̂ that converges to ε1, so that

P[f̂ ≥ ε1] = P[f̂ = ε1] + lim
n

P[f̂ > δn] = lim
n

(1− δn) = 1− ε1.

We have
1 = P[f̂ ≤ ε0] + P[f̂ ≥ ε1] = ε0 + (1− ε1),

so that ε0 = ε1 = ε and P[f̂ ≤ ε] = P[f̂ ≤ ε0] = ε0 = ε.

Proposition 26 If R is an ω∗1-long (and ω1-short) linearly ordered set endowed with the
p-minimal σ-algebra then there is an R-valued diffuse nominal test statistic f such that f̂
is not an exact p-function.

Proof Consider a trial T = (Ω,Σ,P) where Ω,Σ,P are as follows.

• Ω is ω∗1, i.e., the set of countable ordinals with the reverse order α < β ⇐⇒ β ∈ α.

• Σ is the p-minimal σ-algebra on Ω. It consists of the countable subsets of Ω and their
complements.

• P(X) = 0 if X is countable. In particular, every P(−∞, α] = 1.

Since R is ω∗1-long, there is an order isomorphism η from ω∗1 into R; η is an R-valued
nominal test statistic on T . Indeed, since the σ-algebra of R is p-minimal, it suffices to
show that every η−1(−∞, r] ∈ Σ. Since ω1 is well-ordered, every X ⊆ ω1 has a minimal
point in ω1; accordingly every X ⊆ ω∗1 has a maximal point in ω∗1. In particular, let
y = max{α ∈ ω∗1 : η(α) ≤ r}. Accordingly, η−1(−∞, r] = η−1(−∞, η(y)] = (−∞, y] ∈ Σ.

Since P takes only two values, the induced p-function η̂ takes only two values and thus
is not exact.

5. Randomized p-values

In this section we discuss randomized p-values as a natural application of non-traditional
test statistics. Randomized p-values arise naturally in situations where the distribution of
the test statistic is not continuous. They are produced by test statistics whose codomain is
R× [0, 1] with the lexicographic order; intuitively, we add a random number to a traditional

12
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test statistic to break ties if there are any. This makes the distribution of a randomized
p-value uniform over the segment [0, 1] (as shown in Theorem 29 below).

At this time there are at least two (and probably many more) fields of applied statistics
and machine learning where randomized p-values are essential: multiple hypothesis testing
in bioinformatics (see, e.g., Dickhaus et al. 2012) and on-line testing the hypothesis of
exchangeability using conformal martingales (see, e.g., Vovk et al. 2005, Section 7.1, and
Zhang et al. 2019). In both cases p-values are used repeatedly a large number of times,
and any non-uniformity of their distribution quickly accumulates and destroys the power
of the overall procedure. In the theory of conformal prediction, allowing randomized p-
values greatly simplifies and strengthens the main property of validity (cf. Vovk et al. 2005,
Theorem 8.1, which uses randomized p-values, with its predecessor, Vovk 2002, Theorem 1,
which avoids randomization).

We are essentially in the situation of Example 2, except that the assumption that the
codomain of f is countable is dropped.

By Theorem 18, the induced p-function f of a test statistic is only guaranteed to satisfy
the inequality P[f ≤ ε] ≤ ε, and very simple examples show that P[f ≤ ε] < ε is indeed
possible: e.g., take any ε ∈ (0, 1) when the sample space is a singleton. Randomized p-
values are a way of making f exact, i.e., achieving the equality P[f ≤ ε] = ε for all ε ∈ [0, 1].
Informally, we enrich our probability space by adding a random number generator and using
its output for breaking ties in values of the test statistic for different outcomes.

We need a couple of auxiliary results.

Lemma 27 If R and S are short orders, then the product R×S, ordered lexicographically,
is short.

Proof By symmetry it suffices to prove that R × S is ω1-short, i.e., that for every well-
ordered set A, if there exists an order preserving map η : A→ R× S, then A is countable.
Each η(a) has the form (ra, sa), and (ra, sa) < (rb, sb) if and only if either ra < rb or else
both ra = rb and sa < sb.

Since S is short, the set Ar = {a : ra = r} is countable for every r ∈ R. Since A
is well-ordered, the subset {minAr : Ar 6= ∅} of A is well ordered. Since R is short, the
well-ordered subset {η(minAr) : Ar 6= ∅} of R is countable, so that there are only countable
many nonempty sets Ar. Therefore A is a countable union of countable sets, so that A is
countable.

Lemma 28 Let (Ω1,Σ1,P1) and (Ω2,Σ2,P2) be probability spaces where every singleton
set is measurable, and form the product probability space

(Ω1 × Ω2,Σ1 ⊗ Σ2,P1 ×P2).

Every singleton set is measurable in the product space. Furthermore, the product space has
the property that the probability of every singleton event is zero if at least one of the factors
has this property.

Proof By the definition of the product, P(X1 ×X2) = P1(X1) ·P2(X2) for any X1 ∈ Σ1

and X2 ∈ Σ2. A singleton set in Ω has the form {x1} × {x2} and this is measurable. The
second claim follows from the fact that P({x1} × {x2}) = P1{x1} ·P2{x2}.

13



Test statistics and p-values

Now we are ready to address the issue of randomized p-values. We start from our usual
setting of a given traditional test statistic f : Ω→ R on a trial T = (Ω,Σ,P). The output
of a random number generator is modelled as the trial ([0, 1],B,U), where B is the Borel
σ-algebra on [0, 1] and U is the uniform probability measure on ([0, 1],B). The overall trial
is now the product

T̄ = (Ω̄, Σ̄, P̄) = (Ω× [0, 1],Σ⊗ B,P× U)

and the test statistic f on Ω is replaced by a finer test statistic

F (x, r) = (f(x), r) (4)

on Ω̄. The order on the codomain R× [0, 1] of F is lexicographic,

(p, r) ≤ (q, s) ⇐⇒ p < q or (p = q and r ≤ s).

Intuitively, this means that the impugning power of our test statistic is determined by f ,
and the outcome of the random number generator is only used for tie breaking. Let us call
all functions F that can be obtained in this way randomized traditional test statistics. They
have the following useful property.

Theorem 29 The induced p-function F̂ of any randomized traditional test statistic F is
exact, so that P̄[F̂ ≤ ε] = ε for any ε ∈ [0, 1].

Proof By Lemma 27, the codomain R × [0, 1] of F is short. It is easy to see that all
initial segments (−∞, x] of R× [0, 1] are measurable. By Lemma 23, the PF -atoms, if any,
of R × [0, 1] are singletons. By Lemma 28 and PF = Pf × U (cf. (4)), PF does not have
singleton atoms and thus is diffuse. It remains to apply Theorem 25.

It is easy to see that the theorem generalizes to the case where the component f of test
statistic F is any test statistic.

The value F̂ (x, r) is the randomized p-value corresponding to an outcome x and random
number r. But it is easy to see that the topology of the lexicographically ordered R× [0, 1] is
not second-countable (not even separable). According to Definition 6 and Proposition 5, the
function F defined by (4) is not a traditional or even nearly-traditional test statistic. But
R and [0, 1] are short, and so F is a test statistic according to Definition 14, as Lemma 27
shows.

Remark 30 When using randomized p-values, statisticians (and computer scientists in
related areas) do not usually emphasize the use of non-traditional test statistics, which
remain implicit. They prefer to define randomized p-values from scratch rather than using
the traditional definition (1). Namely, the usual definition (as given in, e.g., Dickhaus et al.
2012 and Vovk et al. 2005) is

F̂ (x, r) = P[f < f(x)] + rP[f = f(x)],

where r is a random number in [0, 1]. The only explicit use of the lexicographic order in
connection with randomized p-values that we are aware of is in Coudin (2007, p. 91, (3.4)).
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6. A summary

This paper’s aim has been to investigate advantages and drawbacks of various classes of
nominal test statistics. If forced to choose one class, our recommendation would be to use
the class of test statistics (i.e., nominal test statistics with short codomains). In view of
Theorem 18 and Proposition 19, this will lead to valid p-values (but possibly conservative
p-functions). By Theorem 25, the corresponding p-functions will be exact in the case of
diffuse test statistics. Finally, Theorem 29 is applicable to any test statistic (as we say after
its proof) and allows us to define exact p-functions by using the device of randomization.
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