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Abstract

The problem of how to combine advantageously Conformal Predictors (CP) has attracted
the interest of many researchers in recent years. The challenge is to retain validity, while
improving efficiency. In this article a very generic method is proposed which takes advan-
tage of a well-established result in Classical Statistical Hypothesis Testing, the Neyman-
Pearson Lemma, to combine CP with maximum efficiency. The merits and the limits of the
method are explored on synthetic data sets under different levels of correlation between
NonConformity Measures (NCM). CP Combination via Neyman-Pearson Lemma gener-
ally outperforms other combination methods when an accurate and robust density ratio
estimation method, such as the V-Matrix method, is used.

1. Introduction

Ensembling methods, such as bagging, boosting and their more modern variants, have
proved to be very effective in challenging classification problems. While these methods
aggregate or refine weak predictors generally of the same type (e.g. short trees or stumps),
one can also conceive of combining inherently different ML methods. In such an approach,
one might exploit the possibility that the different methods perform differently in different
regions of the problem domain. For instance, it may be the case that where method X
tends to perform badly, method Y performs well and vice versa. While an ideal combiner
that exploits fully these opportunities might be difficult to achieve, there may be still a lot
of value in pursuing approximate solutions. One difficulty in combining different methods
is that each may output a score which cannot be easily related to those of other methods
because each is expressed on a different scale, each with a different functional relationship
to the label being predicted.

The framework of Conformal Prediction Vovk et al. (2005) can offer a solution to this
problem. Indeed, the notion of p-value that is central to CP provides a natural way to unify
the scores produced by almost any arbitrary choice of ML algorithms.
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2. Basic terminology

We recall very briefly the main concepts related to Conformal Prediction. Assuming that the
training set is made up of ` independent identically distributed examples (iid)1 (xi, yi) ∈
Z = X × Y, if x`+1 is a test example taken from the same distribution as the training
examples, a Conformal Predictor assigns a p-value pȳ to a hypothetical assignment of a
label y`+1 = ȳ to the object x`+1. The CP p-value that has the following property: for any
chosen ε ∈ [0, 1], the p-value of test examples (x, y) drawn iid from the same distribution
as the training examples are (in the long run) smaller than ε with probability at most ε. A
Conformal Predictor computes a p-value on the basis of Non-Conformity Measures (NCM).
The NCM is a real-valued function A(z; *z1, . . . , zk+), A : Z × Z(k) → R that expresses
how dissimilar an example appears to be with respect to a bag (or multi-set) of examples,
assuming they are all iid. A Non-Conformity Measure can be in principle extracted from
any Machine Learning (ML) algorithm. Although there is no universal method to derive it,
a default choice is:

A((x, y), *z1, . . . , z`+1+) := −∆(y, f(x))

where f : X→ Y′ is the prediction rule learned on (z1, . . . , z`+1) and ∆ : Y ×Y′ → R is a
measure of similarity between a label and a prediction.

Once the p-values for every possible choice of the label for a test object are computed,
one can compute a multi-valued prediction (a prediction set) that has the validity property:
given a significance level ε, the actual label of test example is not in the set no more than a
fraction ε of the times. The validity property provides a long term guarantee on the number
of errors (where “error” is defined as “actual label not in the prediction set”) in the long
run. If the prediction set consists of more than one label, the prediction is called uncertain,
whereas if there are no labels in the prediction set, the prediction is empty. A desirable
property of a CP is efficiency, which is loosely defined as the average size of the region set,
when it is not empty.

In this paper we focus only on the Inductive form of CP (ICP). In the Inductive form
(also referred to as split CP) the overall training set is split into a proper training set and
a calibration set. The proper training set is used to train the underlying ML method. The
function A() is therefore learned once only, on the proper training set. The αi are computed
by evaluating the function A() on the examples of the calibration set and on the hypothetical
example. Assuming that the first m examples constitute the proper training set and the
remaining k = `−m examples the calibration set, the αi can be formally expressed as:

αi = A((xi, yi), *z1, . . . , zm+) i = m+ 1, . . . , `+ 1

Once the NCM have been calculated, the p-value for a hypothesis y`+1 = ȳ about the
label of test object x`+1 is defined as follows:

pȳ =
|{i = 1, . . . ,m : αi ≥ α`+1}|

m+ 1

The prediction region Γε for a test object x for a chosen significance level ε ∈ [0, 1] is
the set of labels for which the p-value exceeds the significance level:

Γε(x) := {y | py > ε}

1. in fact, even a weaker requirement of exchangeability is sufficient.
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Finally, the validity property as stated above guarantees an error rate over all possible
label values, not on per-label value basis. The latter can be achieved with a variant of CP,
called label-conditional CP (a variant of Mondrian CP). The only change is in the calculation
of the p-value: we restrict the αi only to those that are associated with examples with the
same label as the hypothetical label that we are assigning at the test object. So, the p-value
for a hypothesis y`+1 = ȳ about the label of test object x`+1 is defined as follows:

p(ȳ) =
|{i = 1, . . . , (`+ 1) : yi = ȳ, αi ≥ α`+1}|

|{i = 1, . . . , (`+ 1) : yi = ȳ}|

The property of label-conditional validity is essential in practice when the CP is applied
to an “imbalanced” data set, i.e. a data set in which the proportions of labels are signif-
icantly different. Empirically, one can observe that with the plain validity property, the
overall error rates tend within statistical fluctuation to the chosen significance level, but
the minority class(es) are disproportionately affected by errors. This property ensures that,
even for the minority class, the long-term error rate will tend to the chosen significance
level.

3. Combination of Conformal Predictors

In this paper the objective of the combination of Conformal Predictors is to increase effi-
ciency, while preserving validity. In other words, we aim at reducing the average size the
prediction sets, while minimising any deviations of the error rate from the chosen signifi-
cance level. We will restrict our scope to binary CPs, although the methods can be extended
to more than two labels. In the context of binary classification, the maximisation of the
efficiency corresponds to the minimisation of the occurrence of uncertain predictions (i.e.
prediction sets that contain more than one label). For clarity, the setting for the CP combi-
nation is as follows: there are d CPs (which we’ll refer to as base CPs) and correspondingly
d p-values p(1), . . . , p(d) for a given label assignment to a test object. We are seeking a
function f(p(1), . . . , p(d)) that computes a p-value that results in a valid and efficient CP.
So, in the present approach the problem of combining CP is effectively one of combining
p-values. This problem, i.e. obtaining a single test for a common hypothesis, has a long
history beginning almost as soon as the modern framework of statistical hypothesis testing
was established Fisher (1932) given its interest for many applications, e.g. meta-analysis. A
survey of the field can be found in Loughin (2004). It should be observed that the context
of CP differs from the more conventional setting of p-value combination. In the latter,
often tens of p-values for a common hypothesis (e.g. does drug X reduce the duration of
a cold?) are to combined to obtain one overall p-value. The scope of the meta-analysis
ends there, when we obtain this single p-value. In the case of CP combination, we have
a data set that can contain thousands examples. It is as if we were conducting thousands
on meta-analyses on the same population. This gives some opportunities to calibrate the
combination methods in an advantageous way.

3.1. Merging functions

The first requirement for the combination method is that validity be preserved. A compre-
hensive analysis of a family of combination methods that ensure validity without requiring
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assumptions on the independence of the p-values can be found in Vovk and Wang (2012).
Table 1 lists some of methods discussed in the study, namely minimum, maximum, arith-
metic average, geometric average. The charts in the left column in Figure 1 illustrate the
cumulative distribution of the p-values arising from the combination functions and the merg-
ing functions (assuming independence of the base CPs). For the combined CP to preserve
the validity property, the distribution of the combined p-values must remain uniform. Con-
sequently, in the charts the traces should follow the dashed diagonal; if the trace is below
the diagonal, the predictors are conservative (i.e. leading fewer to incorrect predictions than
the significance level) and vice versa. The charts in the left column show that the merging
functions would result in conservative CPs when the base CPs are independent. While the
absence of independence requirements bestows a wide applicability to the methods, this
universal validity guarantee appears to come at the expense of efficiency.

Combination function Merging function

Arithmetic average parith avg =
1

d

d∑
i=1

p(i) 2 · parith avg

Geometric average pgeom avg =

(
d∏
i=1

p(i)

) 1
d

e · pgeom avg

Min pmin = min(p(1), . . . , p(d)) d · pmin

Max pmax = max(p(1), . . . , p(d)) pmax

Table 1: Some merging functions. These are special cases of the more general merging
functions listed in Table 1 of Vovk and Wang (2012). The merging function for
the Minimum is also known as Bonferroni method.

4. Combining independent base CP

After the considerations of the previous section, it seems only natural to turn one’s attention
to the case of independent p-values. Of course, a degree of correlation is to be expected
in any practical scenario, but it may be that the methods result only in a deviation from
validity that is acceptable in practical applications.

One approach to recover validity is to rely on a well-known property of univariate cumu-
lative distributions. The methods that exploit this property are often referred to as quantile
methods. If we denote by FX(x) the cumulative distribution of a random variable X, the
random variable FX(X) is uniformly distributed.

FX(x) = P {X ≤ x} ⇒ FX(X) ∼ U [0, 1] (1)

We can exploit this fact to obtain a uniformly distributed random variable out of an ar-
bitrary function f() of d p-values if we know the distribution of that function of uniformly
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distributed RVs. In fact, the distributions of minimum, maximum, arithmetic average and
geometric average of d independent uniformly distributed RVs are known. Their CDFs are
either expressed in closed form or are available in popular mathematical software (this is
the case for the CDF of the Beta distribution, also known as the regularized beta function).
The CDF are presented in Table 2. Assuming that the p-values from the base CPs are uni-
formly distributed and independent, we can obtain a valid CP combination by combining
the p-values and then applying the distribution function. We refer to this class of meth-
ods as CDF-calibrated. Figure 1 shows the actual error rate vs. significance level for the
four methods. The plots confirm that the p-values combined as prescribed above result in
valid CPs (within statistical fluctuation). The effect of dependence between p-values will
be discussed in section 10.1

Combination function CDF Comment

Arithmetic average (sum)
1

n!

btc∑
k=0

(−1)k
(
d

k

)
(t− k)d Irwin-Hall distribution

Geometric average (product) t
d−1∑
i=0

(− log t)i

i!
Fisher formulaFisher (1948)

Min betainc() Beta(d, 1)

Max betainc() Beta(1,d)

Table 2: Some combination functions with known CDFs

5. Adaptive methods

The methods in the previous sections are all a priori methods, in the sense that the law
with which the p-values are combined does not depend on the observed data. In this section
we discuss a class of methods that adapt to the statistics of the observed data, albeit at the
cost of having to set aside a fraction of the available observations for this purpose, thereby
reducing the size of the training set for the underlying ML algorithms.

5.1. ECDF calibration

The method of ECDF calibration has been described in Toccaceli and Gammerman (2018)
and before in Balasubramanian et al. (2015). It is an adaptive version of the idea put
forward in section 4. Whereas in that context the distribution FX(x) was determined
on the basis of the known law f(p1, . . . , pd), here the FX(x) is estimated as Empirical
Cumulative Distribution Function on a calibration set. The calibration set on which the
ECDF is estimated contains only the examples consistent with the Null Hypothesis, i.e.
examples with label 0 when we are combining p0 and examples with label 1 when we are
combining p1.
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Figure 1: Comparison of validity of combination methods. Each plot shows the CDF of
the combined p-value, when the base p-values are independent and uniformly
distributed on [0, 1]. For the combined CP to be exactly valid, the trace should
be the (0, 0)-(1, 1) diagonal, indicated here with a dashed line. The left column
shows the straightforward methods along with the merging variant that ensures
(conservative) validity. The right column shows the CDF-calibrated versions.
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Note that this method has two advantages: (a) it allows complete freedom in the choice
of the law used to combine p-values, (b) it can account for the dependence in the base
p-values.

5.2. Multivariate ECDF

As stated in point (b) in the previous section, the ECDF calibration allows to recover
validity after combining p-values with an arbitrary law. We illustrate this point further
with an adaptive combination method, i.e. one in which the combination law varies with
the observed data. The method we propose here combines p-values by computing the value
of multivariate joint distribution of the p-values and then calibrates it to a U [0, 1] with the
ECDF calibration discussed in section 5.1.
More formally, given RVs X1, . . . , Xd, the joint CDF is:

FX1,...,Xd(x1, . . . , xd) = P {X1 ≤ x1, . . . , Xd ≤ xd}

The combination method discussed in this section can be expressed as:

pmecdf = FP (1), ... P (d)(p(1), . . . p(d)) (2)

To perform the ECDF calibration, one must fist pmecdf on a calibration set so that an ECDF
of the pmecdf can be computed. Then, the combined p-value is

pcomb = FPmecdf (pmecdf ) (3)

Note that calibration step above is needed to recover validity because the CDF property
stated in eq. 1 for the univariate case does not hold in the multivariate case. That is,
if X(1), . . . X(d) are independent uniformly distributed RVs, FX(1), ... X(d)(X(1), . . . X(d)) is

not distributed according to U [0, 1] 2

Such CDF is unknown, but we can estimate it by computing the Multivariate ECDF on
calibration data.

F`cal(x
(1), . . . , x(d)) =

1

`cal

`cal∑
i=1

d∏
k=1

θ(x(k) − x(k)
i )

6. Combination via Neyman-Pearson Lemma

The Neyman-Pearson Lemma is a result in Statistic Hypothesis Testing on which basis it
is possible to define a test statistic and a threshold so that the resulting significance test
has Uniform Maximum Power (UMP). Here, power is defined as the probability to reject
correctly the Null Hypothesis H0.

This can be applied to CP by noticing that when we calculate, say, p0, we assume as
Null Hypothesis that the label is 0 and compute a p-value for the test object under this
assumption. The p0 can be interpreted as the probability of drawing from the same set as
the calibration set an example that is as or more contrary to the hypothesis of randomness
as the hypothetical test example.

2. The distribution of FX(1), ... X(d)(X(1), . . . X(d)) is referred to as Kendall distribution function Genest
and Rivest (2001).

7



Conformal Predictor Combination using Neyman-Pearson Lemma

The Neyman-Pearson Lemma is particularly relevant to CP combination because it can
optimise efficiency (i.e. results smaller prediction sets). To see this, consider that with
higher power one rejects more often H0 when indeed it should be rejected. Consider also
that the prediction set contains all the hypothetical label assignments that could not be
rejected at the chosen significance level (as it contains all the labels y for which py > ε).
This means that the higher the power of a test, the less likely it will be that the prediction
set will contain incorrect labels. Note also that, in so for as validity is satisfied, the rate at
which the correct label is in the prediction set is equal to the significance level.

6.1. Statement of the Neyman-Pearson Lemma

The most powerful test between two simple hypothesis H0 : θ = θ0 and H1 : θ = θ1 is the
one that uses as test statistic the likelihood ratio:

Λ(x) :=
L(θ0|x)

L(θ1|x)
(4)

and as threshold the value η that satisfies

ε = P [Λ(X) ≤ η | H0] (5)

where ε is the significance level.

6.2. Application to Combination of Conformal Predictors

Let’s assume that we have k separate CPs, each using some different underlying ML al-

gorithm, producing for a test object the k p-values p
(1)
ȳ , . . . , p

(k)
ȳ for the hypothetical label

assignment y = ȳ. The likelihood ratio Λ(p
(1)
ȳ , . . . , p

(k)
ȳ ) can be computed as:

Λ0(p
(1)
ȳ , . . . , p

(k)
ȳ ) =

P
[
p

(1)
ȳ , . . . , p

(k)
ȳ

∣∣∣ y = ȳ
]

P
[
p

(1)
ȳ , . . . , p

(k)
ȳ

∣∣∣ y 6= ȳ
] (6)

If we denote by FΛ0(λ) the (cumulative) distribution function of Λ(p
(1)
ȳ , . . . , p

(k)
ȳ ) given H0,

the p-value for the combination is then obtained as:

p
(NP)
ȳ = FΛ(Λ(p

(1)
ȳ , . . . , p

(k)
ȳ )) (7)

To justify the last equation, consider that eq. 5 can be expressed also as ε = FΛ0(η) In
principle, there is no need to compute explicitly η. An alternative way of interpreting eq. 5
is saying that the hypothesis should be rejected when the value of cumulative distribution

function for the hypothetical example is less than or equal to ε. By computing p
(NP)
ȳ

according to eq. 7 we achieve precisely that.
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7. Implementation of Neyman-Pearson Combination

The method just described promises optimal efficiency, with no assumptions on the absence
of correlation or even dependence among CPs. In principle, this method should outperform
any other combination method, at least in terms of efficiency. However, the method revolves
around the ratio of the likelihoods under the null and under the alternative hypothesis.
The estimation of a density, let alone a density ratio, is an ill-posed problem as pointed
out as early as Vapnik (1995). The difficulty of this estimation is further compounded
by its multivariate nature. It is therefore important to investigate the question of how the
method actually performs in practice, especially when only limited amounts of noisy data
are available. The performance of the methods chosen for the estimation of the density
ratio is critical for this method to realise its full potential.

Three approaches are described: Näıve Neyman-Pearson, Multivariate Histogram, and
V-Matrix.

7.1. Näıve Neyman-Pearson

To apply the method described in section 6.2, one needs to compute the likelihood L(θ1|x),
that is, the density P [X|θ1] evaluated at x. In particular, we are looking for the likelihood
for the joint event of p1, p2, . . . , pk.

To make the estimation more tractable, one approach is to make the näıve assumption
that the p-values are independent (this is analogous to the independence assumption made
in Näıve Bayes). So the density of the joint event can be calculated as the product of the
densities of each of the simple events.

Consequently, a method that we refer to here as Näıve Neyman-Pearson obtains first an
estimate of the (marginal) density of each of the p-values and then simply calculates the
likelihood for the joint event as product of those densities. The likelihood L(θ0|p) for each
p-value is 1 by construction. So, the NPL statistic can be expressed as:

Λ(X) =
1∏k

i=1 f1(pi)
where X = (P1, P2, . . . , Pk)

To obtain the combined p-value, we start from recalling that the threshold η is chosen
so that the significance level ε is:

ε = P [Λ(X) ≤ η|H0]

We can therefore transform the statistic value λ into a p-value by applying to it the CDF
of the NPL statistic evaluated on the H0 cluster.

pcomb = CDFH0(λ)

where
CDFH0(λ) = P [Λ(X) ≥ λ |H0]

Note that this ensures that the p-value for the Null Hypothesis be uniformly distributed.
One obvious limit of this approach is that it is hardly ever the case that the p-values of

the base CPs are independent.
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7.2. V-Matrix

To account fully for an arbitrary dependence between p-values one has to attempt to esti-
mate the multivariate joint density ratio. Density estimation is central to statistical infer-
ence and the problem has been studied for decades, resulting in a variety of methods. A
rigorous approach was proposed by Vapnik first inVapnik (1995), and then in Vapnik et al.
(2015) and Vapnik and Izmailov (2015). The method is referred to as V-Matrix method.
We’ll recap just the key points here and refer the reader to papers just cited for the full
derivation and all the attendant details.

7.2.1. Direct Constructive Setting

Let’s consider first the problem of density estimation. Let’s assume that we are given `

d-dimensional samples xi = (x
(1)
i , . . . , x

(d)
i ) from a (cumulative) distribution F (x). We are

seeking a density f(x) such that: ∫ x

−∞
f(t)dt = F (x)

The distribution F(x) is unknown, but from the samples we can compute the empirical
cumulative distribution

F`(x
(1), . . . , x(d)) =

1

`

∑̀
i=1

d∏
k=1

θ(x(k) − x(k)
i )

where θ() is the step function defined as:

θ(x) =

{
1 x ≥ 0

0 x < 0

A key result in Vapnik-Chervonenkis theory guarantees that the uniform convergence of
F`(x) to F (x) as `→∞ is fast:

P
[
sup
x
|F`(x)− F (x)| > ε

]
≤ 2 exp(−c∗ε2`)]

where c∗ = 1− (d−1) log `
ε2`

.
In other words, the cumulative distribution function can be estimated from a limited amount
of samples with a relatively small error. The direct constructive setting consists in estimat-
ing the density f() as solution of the integral equation using the approximation given by
empirical distribution function F`(x) in place of the actual but unknown F (x).

7.2.2. Density Ratio

In the case of the density ratio estimation, we are given `num d-dimensional samples xi =

(x
(1)
i , . . . , x

(d)
i ) from a (cumulative) distribution Fnum(x) and `den d-dimensional samples

xi = (x
(1)
i , . . . , x

(d)
i ) from a (cumulative) distribution Fden(x). We are seeking a density

r(x) such that: ∫ x

−∞
r(t)dFden(t) = Fnum(x) (8)
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Analogously to the density estimation case above, we estimate r(x) by solving the integral
equation after replacing Fnum(x) and Fden(x) with their empirical counterparts, F`num(x)
and F`den(x)

7.2.3. Solution via regularization method

The integral equations arising from the direct constructive setting are ill-posed, in the sense
that their solutions are not stable: informally stated, small changes to the right-hand side
can result in significant changes to the solution. In the case of the density ratio problem,
the difficulty is compounded by the fact that not only the right-side, but the left side are
approximately defined. Problems of this nature are called stochastic ill-posed problems.

The method proposed in Vapnik et al. (2015) is to seek the function r(x) that minimizes
the sum of the L2 distance (in a chosen metric space E) between F`num() and the left-hand
side of eq. 8 and a regularization term. The solution is sought in a Reproducing Kernel
Hilbert Space of kernel K(·, ·) and has the form:

f(x) =
∑̀
i=1

αiK(Xi, x) = ATK(x) (9)

where A = (α1, . . . , α`den)T and K(x) is a vector of K(Xi, x), i = 1, . . . , `den.
The functional to minimize is expressed as:

ATKVKA− 2

(
`den
`num

)
ATKV ∗1`num + γATKA (10)

where K is the (`den×`den) matrix with elements K(Xi, Xj), i, j = 1, . . . , `den and V and V ∗

are matrices that reflect the geometry of the observed data. In addition, the solution should
take non-negative values and should integrate to 1. These two constraints are expressed in
terms of the observed data as:

KA ≥ 0`den (11)

1

`den
ATKV ∗1`num = 1 (12)

7.2.4. V-Matrix

The (`den× `den) V matrix and (`num× `den) V ∗ matrix mentioned in eq. 10 have elements

Vi,j =

∫
θ(x−Xi)θ(x−Xj)σ(x)dµ(x). (13)

where σ(x) and µ(x) are respectively a weighting function and a measure that arise in the
definition of distance in the metric space E. σ(x) and µ(x) allow to craft the definition of
distance to suit the specific statistical inference problem. With the choice of σ(x) = 1 and
µ the uniform measure, assuming that data belongs to the upper-bounded interval [−∞, u],

Vi,j =
d∏

k=1

(
u−max

{
X

(k)
i , X

(k)
j

})
(14)
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8. Experiments with synthetic data

In Heard and Rubin-Delanchy (2018), the Neyman-Pearson Lemma is used in combination
with the common assumption that the distribution of p-value under the alternative hypoth-
esis is of the form Beta(a, b) with a ∈ (0, 1] and b ∈ [1,+∞). In particular, the paper claims
that Fisher’s method is the most powerful when the alternative hypothesis p ∼ Beta(0.5, 1).
One wonders how warranted this common Beta(a, b) assumption is (see also Sellke et al.
(2001)), in particular in the specific context of Conformal Predictors. On a purely intuitive
basis, it is not outside the realm of possibility that there may be some deeper relationship
between the distribution of CP p-values, which can be seen as rank transformed scores, and
the order statistics of the uniform distribution which indeed happen to be Beta-distributed
random variables. However, in the present study it was felt that it would be more realistic
to generate p-values from appropriate distributions of NCMs, rather than directly.

8.1. A realistic model of NCMs

The NCMs can in principle be obtained from a very wide variety of ML algorithms. One
can model the distribution of NCMs as a mixture of two distributions, one for NCMs for
examples of one class and the other for the NCMs of the other class. Figure 2 shows
an example of the histogram of the distribution that arise in a real-life case. Of course,
markedly different distributions can arise from different methods, but the example suggests
that it might be relevant to study the case in which the scores for the two classes are
distributed as two Gaussians.

Throughout the rest of the paper, we assume that the NCMs are derived from the scores
simply by a monotone transformation, e.g. changing the sign, as needed.

In Figure 3 four main cases are identified. In all four cases, the Gaussian distributions
have mean -1 and +1. What differs is variance, which reflects the relative uncertainty of
the prediction for each class. The four cases allow us to study the effect of larger and
asymmetric overlaps.

9. The distribution of p-values under the Alternative Hypothesis

The distribution of p-values under the Null Hypothesis is uniform by construction. The
distribution of p-values under the Alternative Hypothesis is determined by the distribution
of the Nonconformity Measure. If we denote as P0(α) the CDF of alphas under H0 and
p1(α) the PDF for the NCM under H1, the p-values can be viewed as Random Variables
obtained as:

P [α0 ≥ α1] = 1− P0(A1)

where A1 is a random variable whose realisations are the NCM α1 under the Alternative
Hypothesis H1.

For the four cases shown in Figure 3 it is possible to express in closed form the PDF
of the p-values under the Alternative Hypothesis. The equations are given in the table in
Figure 43.

3. The symbolic expressions were computed using MathematicaR©.
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Figure 2: Example of score distribution from a real-life dataset. These scores were obtained
as SVC decision function values. The SVC was trained to classify a dataset
containing 28x28 images of handwritten “5” and “8” digits from the well-known
MNIST dataset.
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Figure 3: Cases of NCM distributions. The dashed lines correspond to H0 and the solid
lines to H1. The cases at the extreme left and extreme right assume that the
underlying method had the same uncertainty in classifying test examples of either
label. The cases differ in the amount of “overlap”. The plots in the middle refer
to cases in which the classifier had more uncertainty for the Null Hypothesis label
(blue) and less uncertainty for the Null Hypothesis label (red)

case σ0 σ1 PDF of p-values under H1

green 1 1 exp
(
−2
√

2 InvErfc(2− 2x)− 2
)

blue 2 1 2 exp
(
−3 InvErfc2(2− 2x)− 4

√
2 InvErfc(2− 2x)− 2

)
red 1 2 1

2 exp
(

1
4

(
3 InvErfc2(2− 2x)− 2

√
2 InvErfc(2− 2x)− 2

))
black 2 2 exp

(√
2 (− InvErfc(2− 2x))− 1

2

)
Figure 4: The PDF of the p-values under H1.
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It is interesting to observe that while the black and green traces could be in qualitative
agreement with the common assumption mentioned earlier in section that the Alternative
Hypothesis p-values follow some form of Beta distribution, the blue and the red traces show
a different behaviour. But it could be argued that the vertical asymptote at p = 1 for
the red trace and the behaviour near p = 0 for the blue line have to do with the possibly
unrealistic long tails of the wider Gaussian. Both occurrences can be explained by the fact
that for sufficiently small and sufficiently large the PDF of the Gaussian of larger variance
has larger values than that of the Gaussian of lower variance.

10. Experimental results

The CP combination methods discussed in the previous sections were applied to two base
CPs, denoted here with CPa and CPb. Calibration sets and test sets had both 5,000
examples, with the two classes being represented in equal proportions. (Obviously, there is
no proper training set as the NCMs are “simulated”).

The code was entirely written in Python with the help of Jupyter Notebooks, using
numpy, scipy, numba and scikit-learn. The V-Matrix implementation used the cvxopt

package for the solution of the Quadratic Programmming problem.
We assumed that in each CP the NCMs for examples of the two labels could be dis-

tributed in the one of four possible cases discussed in the previous section, namely:

• σ2
0 = 1, σ2

1 = 1

• σ2
0 = 1, σ2

1 = 4

• σ2
0 = 4, σ2

1 = 1

• σ2
0 = 4, σ2

1 = 4

The total number of pairings of cases, discounting symmetries, is (n+1)n
2 = 5·4

2 = 10. For
each of these pairings, we then used 3 different settings of correlation between the NCMs
of CPa and CPb. We generated NCM sets with covariance 0 (in fact, they were not only
uncorrelated, but independent), covariance 0.8, and covariance -0.8. Figure 5 illustrates
the NCMs and the resulting p-values for the 3 different covariance values in the case with
σ0 = 2, σ1 = 2. From the NCMs, p-values for the test objects were computed according to
the MICP framework. The p-values were then used to compute the prediction sets and the
results, in turn, were summarised into confusion matrices, which provide counts of correct,
incorrect, empty, and uncertain predictions. To assess validity, the confusion matrices were
computed for different significance levels, namely 0.01, 0.05, 0.1, 0.2.

As stated in section 3, the objective considered in this paper is to improve efficiency,
while preserving validity. So, the analysis that follows will focus on these two properties.

The results for the 10× 3× 4 = 120 cases (each repeated 25 times) are summarized in
Tables 3, 4, 5, 6. In Figure 6 we show one representative case out of the 120.
In the charts, the entries are grouped as follows:

base predictors: The base CPs, identified as “a” and “b”

reference: the theoretical optimal methods under the assumption of independence,
listed as “Naive Neyman-Pearson Ideal”
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Figure 5: Example of NCM sets with same variance, but different covariance. The red
crosses correspond to the data points with label 1 and the green dots to the data
points with label 0. Note the variance and covariance referred to here are those
of each component of the Gaussian mixture, i.e. between the NCMs for set a and
set b for label 0 and the NCMs for set a and set b for label 1. The top row shows
the NCMs, the bottom row the resulting MICP p-values.
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basic methods: arithmetic average, geometric average, maximum, minimum

merging functions: methods discussed in sec. 3.1 which guarantee (conservative) va-
lidity

CDF calibrated methods: arithmetic average (CDF), geometric average (CDF), max-
imum (CDF), minimum (CDF)

ECDF calibrated methods: arithmetic average (ECDF), geometric average (ECDF),
maximum (ECDF), minimum (ECDF)

adaptive methods: Multivariate ECDF, Naive Neyman-Pearson (histogram), V-Matrix

An orange background is applied to the groups as a visual reminder of their significant devi-
ations from validity. Table 3 reports the average fraction of uncertain predictions (inversely
related to efficiency) for one value of significance level, namely ε = 0.05. In Tables 4,5,6, we
present the rankings in terms of efficiency, averaged over the 25 repetitions, and disaggre-
gated by significance level, correlation, and variances, respectively. Also, in these tables we
removed the methods that deviate significantly from validity so that the ranking is fairer.

10.1. Findings

The analysis of the results confirms the observations made earlier while describing the
methods. More specifically, taking Figure 6 as a representative case, we can in fact observe
that:

1. all the basic methods (arithmetic average, geometric average, maximum, minimum)
exhibit deviation from validity

2. the merging functions are extremely conservative, perhaps with the exception of Bon-
ferroni for low value of significance level.

3. The CDF calibrated methods are indeed valid when the base predictors are indepen-
dent, but exhibit different forms of deviation in the presence of correlation.

4. ECDF calibrated methods exhibit small deviation form validity also in the presence
of correlation.

The basic methods and the merging functions will not be discussed further as their deviation
from exact validity defeats the purpose of CP combination considered in this study.

Turning now our attention to efficiency, the results shown in Tables 3,4,5,6 support the
following findings:

1. In the case of positive correlation, there is not much efficiency improvement in combin-
ing (refer to Table 3) This may be intuitively justified by observing that if the p-value
are strongly correlated, they convey the same information. Bringing this to an ex-
treme, we would not expect to see any improvement by combining a CP with itself.
Conversely, negative correlation offers the best opportunities for efficiency gains.
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2. The accuracy and robustness of density ratio estimation is critical to the success of the
application of the Neyman-Pearson method. When a simple method such as histogram
is used, the N-P method often fails to improve CP efficiency. The improvements
require the use of a more accurate and robust method such V-Matrix.

3. The superiority of V-Matrix method fails to manifest itself fully for very low values
of the significance level (refer to Figure 4). This is indicative of inaccuracy in the
low end of the prediction range (i.e. for values close to 0). This may be overcome
with a better choice of kernel. In this study, the Gaussian RBF kernel was chosen
after some experiments with Polynomial and INK-Spline Kernel failed to provide
encouraging results. It is possible that a kernel on a [0,1] support and with a better
suited functional form might perform better.

4. The Multivariate ECDF method performs well and it is competitive with respect to
V-Matrix. This is particularly interesting given the simplicity of the method and
the absence of any parameters that need optimisation (the V-Matrix method has a
regularisation parameter and, possibly, also a kernel parameter).

11. Future directions

This study focused on the combination of just 2 CPs. It would be worthwhile to investigate
how the performance varies when more than 2 CPs are combined. The curse of dimensional-
ity might affect density ratio estimation to an extent that would limit the advantages of the
N-P method. Also, imbalance, i.e. the different proportion of examples of the two classes,
might affect negatively the adaptive methods. A natural application to study is in Cross-
Conformal Predictors Vovk (2015). More in general, a comparison should carried out on
real-world data sets and a variety of underlying ML methods to gain a better understanding
of their merits and limitations.

12. Conclusions

When the objective of CP combination is efficiency improvement while preserving exact
validity, the Neyman-Pearson Lemma can be used to obtain a combination method that
offers the best efficiency at the cost of using part of the training set for calibration purposes.
The critical component of the method is density ratio estimation and we showed on a
realistic synthetic data set that an accurate and robust method such V-Matrix can be used
successfully. We also showed that other approximate methods exist that provide, with much
less complexity, only slightly inferior results.
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Figure 6: Boxplots for the error rate and for the fraction of uncertain predictions for one
“representative” scenario. In top chart, which refers to error rate, the methods in
the shaded areas show significant validity deviations (compare with dashed green
line, which corresponds to the significance level). In the bottom chart, which
refers to the fraction of uncertain predictions, we can see that NP V-Matrix
outperform all the other methods. (The green line is the median rate for “Näıve
NP” which we take here as reference.)
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σ2
a=(1.0,1.0),

σ2
b=(1.0,1.0)

σ2
a=(1.0,1.0),

σ2
b=(1.0,4.0)

σ2
a=(1.0,1.0),

σ2
b=(4.0,1.0)

σ2
a=(1.0,1.0),

σ2
b=(4.0,4.0)

σ2
a=(1.0,4.0),

σ2
b=(1.0,4.0)

-0.800 0.000 0.800 -0.800 0.000 0.800 -0.800 0.000 0.800 -0.800 0.000 0.800 -0.800 0.000 0.800

a 0.313 0.310 0.313 0.313 0.309 0.312 0.310 0.312 0.309 0.303 0.315 0.316 0.617 0.617 0.611
b 0.312 0.315 0.313 0.615 0.616 0.613 0.616 0.617 0.611 0.690 0.692 0.692 0.618 0.615 0.617
Naive NP Ideal 0.000 0.067 0.271 0.026 0.148 0.264 0.025 0.149 0.269 0.091 0.230 0.332 0.227 0.301 0.339
Arithmetic Mean 0.521 0.463 0.351 0.779 0.685 0.599 0.776 0.688 0.599 0.805 0.744 0.687 0.818 0.787 0.725
Geometric Mean 0.080 0.248 0.303 0.405 0.407 0.418 0.407 0.406 0.415 0.470 0.482 0.490 0.633 0.617 0.593
Maximum 0.704 0.591 0.433 0.846 0.783 0.720 0.845 0.784 0.719 0.886 0.831 0.780 0.853 0.830 0.779
Minimum 0.018 0.094 0.192 0.168 0.193 0.224 0.168 0.194 0.219 0.188 0.216 0.244 0.451 0.436 0.471
Arithmetic Merge 0.777 0.638 0.507 0.861 0.809 0.745 0.861 0.810 0.743 0.918 0.865 0.812 0.860 0.841 0.809
Geometric Merge 0.502 0.506 0.522 0.680 0.641 0.623 0.680 0.640 0.623 0.786 0.746 0.721 0.735 0.735 0.728
Bonferroni 0.092 0.214 0.344 0.306 0.328 0.363 0.303 0.328 0.357 0.347 0.371 0.409 0.558 0.560 0.583
Arithmetic (CDF) 0.131 0.112 0.024 0.277 0.257 0.175 0.280 0.257 0.176 0.407 0.362 0.303 0.544 0.445 0.354
Geometric (CDF) 0.007 0.095 0.147 0.184 0.226 0.241 0.183 0.226 0.242 0.244 0.276 0.297 0.547 0.467 0.435
Max (CDF) 0.215 0.170 0.038 0.385 0.320 0.199 0.390 0.320 0.206 0.479 0.424 0.351 0.535 0.451 0.313
Min (CDF) 0.090 0.210 0.338 0.301 0.323 0.359 0.300 0.324 0.355 0.338 0.368 0.404 0.557 0.559 0.580
Arithmetic (ECDF) 0.014 0.110 0.269 0.087 0.255 0.391 0.086 0.252 0.401 0.205 0.357 0.464 0.271 0.443 0.525
Geometric (ECDF) 0.000 0.095 0.270 0.082 0.222 0.334 0.081 0.225 0.345 0.158 0.273 0.374 0.469 0.465 0.504
Max (ECDF) 0.065 0.169 0.282 0.202 0.314 0.451 0.201 0.317 0.460 0.316 0.422 0.504 0.361 0.443 0.494
Min (ECDF) 0.090 0.208 0.288 0.305 0.322 0.322 0.303 0.324 0.327 0.344 0.369 0.390 0.558 0.555 0.559
Multivariate ECDF 0.000 0.090 0.267 0.024 0.216 0.314 0.025 0.221 0.325 0.109 0.266 0.368 0.409 0.456 0.493
Naive NP (histo) 0.479 0.533 0.630 0.533 0.576 0.675 0.528 0.574 0.684 0.133 0.453 0.361 0.665 0.613 0.499
NP V-Matrix 0.004 0.078 0.267 0.014 0.170 0.281 0.012 0.174 0.283 0.109 0.239 0.312 0.230 0.380 0.341

σ2
a=(1.0,4.0),

σ2
b=(4.0,1.0)

σ2
a=(1.0,4.0),

σ2
b=(4.0,4.0)

σ2
a=(4.0,1.0),

σ2
b=(4.0,1.0)

σ2
a=(4.0,1.0),

σ2
b=(4.0,4.0)

σ2
a=(4.0,4.0),

σ2
b=(4.0,4.0)

-0.800 0.000 0.800 -0.800 0.000 0.800 -0.800 0.000 0.800 -0.800 0.000 0.800 -0.800 0.000 0.800

a 0.612 0.616 0.615 0.612 0.616 0.616 0.615 0.615 0.616 0.617 0.617 0.615 0.691 0.692 0.689
b 0.618 0.617 0.616 0.694 0.694 0.689 0.618 0.613 0.615 0.692 0.690 0.691 0.690 0.693 0.691
Naive NP Ideal 0.196 0.283 0.343 0.333 0.404 0.456 0.227 0.296 0.340 0.329 0.405 0.455 0.471 0.544 0.587
Arithmetic Mean 0.905 0.846 0.779 0.892 0.854 0.809 0.814 0.789 0.725 0.890 0.853 0.811 0.915 0.887 0.853
Geometric Mean 0.518 0.502 0.493 0.673 0.650 0.632 0.634 0.619 0.592 0.671 0.651 0.634 0.780 0.759 0.739
Maximum 0.971 0.941 0.907 0.935 0.911 0.880 0.850 0.831 0.781 0.934 0.911 0.881 0.952 0.931 0.906
Minimum 0.318 0.324 0.334 0.420 0.429 0.441 0.452 0.436 0.472 0.426 0.427 0.443 0.470 0.480 0.487
Arithmetic Merge 0.981 0.954 0.922 0.946 0.927 0.902 0.858 0.842 0.809 0.946 0.927 0.903 0.969 0.952 0.930
Geometric Merge 0.681 0.664 0.649 0.817 0.801 0.790 0.736 0.735 0.726 0.816 0.801 0.786 0.941 0.919 0.902
Bonferroni 0.446 0.445 0.446 0.571 0.574 0.583 0.559 0.560 0.580 0.573 0.574 0.586 0.650 0.655 0.662
Arithmetic (CDF) 0.427 0.373 0.305 0.554 0.495 0.438 0.554 0.449 0.357 0.551 0.495 0.438 0.612 0.570 0.524
Geometric (CDF) 0.376 0.365 0.353 0.503 0.482 0.470 0.553 0.471 0.434 0.508 0.484 0.472 0.577 0.565 0.554
Max (CDF) 0.530 0.452 0.362 0.596 0.533 0.460 0.539 0.452 0.313 0.591 0.534 0.457 0.642 0.601 0.548
Min (CDF) 0.444 0.442 0.445 0.566 0.570 0.579 0.557 0.555 0.579 0.566 0.571 0.583 0.647 0.651 0.659
Arithmetic (ECDF) 0.218 0.369 0.484 0.392 0.492 0.557 0.272 0.445 0.522 0.392 0.490 0.556 0.508 0.568 0.602
Geometric (ECDF) 0.299 0.361 0.410 0.437 0.484 0.524 0.477 0.469 0.510 0.437 0.480 0.517 0.517 0.562 0.598
Max (ECDF) 0.323 0.449 0.562 0.452 0.526 0.580 0.358 0.452 0.495 0.457 0.529 0.575 0.560 0.596 0.622
Min (ECDF) 0.442 0.442 0.433 0.569 0.565 0.574 0.560 0.556 0.560 0.570 0.572 0.572 0.647 0.649 0.655
Multivariate ECDF 0.257 0.358 0.414 0.400 0.473 0.522 0.409 0.467 0.487 0.400 0.481 0.517 0.493 0.556 0.598
Naive NP (histo) 0.252 0.644 0.671 0.640 0.452 0.494 0.667 0.612 0.724 0.373 0.438 0.493 0.488 0.552 0.595
NP V-Matrix 0.249 0.320 0.346 0.396 0.442 0.453 0.203 0.376 0.330 0.399 0.434 0.451 0.484 0.547 0.592

Table 3: Fraction of uncertain predictions for significance level ε = 0.05. There are 10
scenarios in terms of the variances of the NCMs for the two labels and the 2 CPs.
In the headings the two number for σ2 are the variances for the NCMs for examples
with label “0” and for examples with label “1”. In each such scenario, different
levels of correlations (-0.8, 0, +0.8) were injected between corresponding NCMs.
The reported values are averages over 25 runs. The lower the fraction, the higher
the CP efficiency.
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0.010 0.050 0.100 0.150 0.200

Naive NP Ideal 1.433 1.400 1.400 1.167 1.000
Arithmetic (ECDF) 5.467 4.900 4.600 4.567 5.167
Geometric (ECDF) 4.100 4.733 4.767 4.500 3.700
Max (ECDF) 6.933 6.233 6.400 6.833 7.200
Min (ECDF) 5.800 6.933 7.200 7.300 7.233
Multivariate ECDF 2.100 3.733 4.000 4.267 4.000
Naive NP (histo) 6.733 6.100 5.600 5.033 4.500
NP V-Matrix 3.433 1.967 2.033 2.333 3.200

Table 4: Average rank of the method when sorted by efficiency, as a function of significance
level. Apart from the ε = 0.01 case at the left, NP V-Matrix is consistently the
best after the Näıve NP Ideal.

-0.800 0.000 0.800

Naive NP Ideal 1.280 1.020 1.540
Arithmetic (ECDF) 4.660 4.880 5.280
Geometric (ECDF) 4.440 4.340 4.300
Max (ECDF) 6.740 6.760 6.660
Min (ECDF) 7.320 7.000 6.360
Multivariate ECDF 3.160 3.520 4.180
Naive NP (histo) 5.320 5.780 5.680
NP V-Matrix 3.080 2.700 2.000

Table 5: Average rank of the method when sorted by efficiency, as a function of correlation.
NP V-Matrix is consistently the best after the Näıve NP Ideal.

(1.0,1.0),
(1.0,1.0)

(1.0,1.0),
(1.0,4.0)

(1.0,1.0),
(4.0,1.0)

(1.0,1.0),
(4.0,4.0)

(1.0,4.0),
(1.0,4.0)

(1.0,4.0),
(4.0,1.0)

(1.0,4.0),
(4.0,4.0)

(4.0,1.0),
(4.0,1.0)

(4.0,1.0),
(4.0,4.0)

(4.0,4.0),
(4.0,4.0)

Naive NP Ideal 1.467 1.333 1.200 1.333 1.400 1.000 1.200 1.533 1.200 1.133
Arithmetic (ECDF) 5.067 5.467 5.400 6.000 4.533 4.400 4.667 4.400 5.000 4.467
Geometric (ECDF) 2.667 3.533 3.533 3.933 5.267 4.533 4.933 4.867 5.067 5.267
Max (ECDF) 6.867 7.000 7.000 7.600 5.400 6.800 7.133 5.200 7.200 7.000
Min (ECDF) 7.000 6.067 6.067 6.667 6.867 6.467 7.400 6.800 7.600 8.000
Multivariate ECDF 2.867 2.667 2.800 3.133 4.000 3.933 4.200 3.800 4.600 4.200
Naive NP (histo) 6.333 7.000 7.133 4.267 6.800 6.133 4.400 7.800 3.067 3.000
NP V-Matrix 3.733 2.933 2.867 3.067 1.733 2.733 2.067 1.600 2.267 2.933

Table 6: Average rank of the method when sorted by efficiency, for the various scenarios
of σa and σb. With the exception of the two case at the left, NP V-Matrix is
consistently the best after the Näıve NP Ideal.
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