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Abstract
When training clinical prediction models from electronic health records (EHRs), a key
concern should be a model’s ability to sustain performance over time when deployed,
even as care practices, database systems, and population demographics evolve. Due to
de-identification requirements, however, current experimental practices for public EHR
benchmarks (such as the MIMIC-III critical care dataset) are time agnostic, assigning care
records to train or test sets without regard for the actual dates of care. As a result, current
benchmarks cannot assess how well models trained on one year generalise to another. In
this work, we obtain a Limited Data Use Agreement to access year of care for each record
in MIMIC and show that all tested state-of-the-art models decay in prediction quality
when trained on historical data and tested on future data, particularly in response to a
system-wide record-keeping change in 2008 (0.29 drop in AUROC for mortality prediction,
0.10 drop in AUROC for length-of-stay prediction with a random forest classifier). We
further develop a simple yet effective mitigation strategy: by aggregating raw features
into expert-defined clinical concepts, we see only a 0.06 drop in AUROC for mortality
prediction and a 0.03 drop in AUROC for length-of-stay prediction. We demonstrate that
this aggregation strategy outperforms other automatic feature preprocessing techniques
aimed at increasing robustness to data drift. We release our aggregated representations and
code1 to encourage more deployable clinical prediction models.

∗ These authors contributed equally, and should be considered co-first authors.
1. Code can be accessed at https://github.com/MLforHealth/MIMIC_Generalisation
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1. Introduction

The wide-spread adoption of electronic health records (EHRs) in modern healthcare systems
has enabled the secondary use of these records to develop machine learning models for
mortality risk (Harutyunyan et al., 2017), sepsis treatment (Raghu et al., 2017), and many
other promising applications (Lim and van der Schaar, 2018; Rajkomar et al., 2018). Due to
the sensitive nature of patient information, EHR data is typically de-identified in order to
reduce risk to patients prior to its use in research. A well-known example of publicly-available,
de-identified EHR data is the MIMIC-III database (Johnson et al., 2016), which contains
information about intensive care unit (ICU) patients from the Beth Israel Deaconess Medical
Center (BIDMC).

A crucial step of de-identification is obscuring calendar dates related to care. In the
MIMIC-III dataset, dates are shifted into the future between the years “2100 and 2200” by a
consistent random offset for each patient (Johnson et al., 2016). While this preserves privacy,
these practices yield a dataset which cannot be analysed in a temporally consistent way—e.g.,
training a model on historical data, then evaluating on future data. As a result, the wide
literature of prior work on MIMIC-III (Harutyunyan et al., 2017; Purushotham et al., 2018;
Choi et al., 2017) all use time-agnostic evaluation protocols, which do not account for a
significant source of error that would affect models during true deployment: namely, the
evolution of care practices over time and the resultant concept drift (Žliobaitė, 2010), which
are known to induce significant differences in clinical data (Rajkomar et al., 2018; Lazer
et al., 2014). These changes can range from mild, gradual drift, such as the typical evolution
of care practices and population demographics, to near-instantaneous dramatic shifts such as
when the underlying EHR data management system at BIDMC was changed from Philips
CareVue2 to MetaVision3 in 2008 (Johnson et al., 2016). This shift caused fundamental
changes in the way every clinical measurement was recorded in the EHR (yielding entirely
new database tables with new variable names).

To the best of our knowledge, researchers have not yet assessed how robust state-of-the-art
models trained on MIMIC-III are to temporal drift. In this work, we use a Limited Data Use
Agreement allowing restricted access to the underlying calendar year of each event within
MIMIC-III to perform such an assessment, examining how well a variety of models generalise
to unseen future-only data across a battery of input representations and time-aware training
regimes.

We find that the choice of input representation substantially impacts how robust a model
is to changing care practices. Models using raw, non-featurised data representations, as
advocated by recent deep learning ICU prediction systems such as Purushotham et al. (2018),
are universally unable to generalise well across large dataset shifts as exemplified by the 2008
system switch within MIMIC-III. Neither dimensionality reduction techniques such as PCA
nor automated feature aggregations based on natural language processing are entirely able
to circumvent this problem. Across these representations, models trained on only historic
data report dramatic drops of area under the receiver-operator curve (AUROC) performance
for both a mortality prediction task (worst-case drop of 0.29 AUROC on RF) and a long

2. https://mimic.physionet.org/mimicdata/carevue/
3. https://mimic.physionet.org/mimicdata/metavision/
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length-of-stay prediction task (drop of 0.10 AUROC on RF). Such performance problems
make the prospective deployment of prediction systems untenable.

To avoid problems when generalising across shifts in feature representations, we introduce
a novel clinically-motivated feature representation, grouping raw features into underlying
concepts, which reduces EHR-shift AUROC drop to 0.06 for mortality, and 0.03 for long
length-of-stay. Additionally, by profiling the changes in model performance over time, we
find evidence to suggest that both mortality prediction and length-of-stay prediction (each
of which are commonly studied tasks) saturate in prediction quality very quickly from little
data, suggesting that as a field we should likely focus on more difficult tasks moving forward.

Clinical Relevance Clinical data is highly dependent on the landscape of clinical practice
as well as underlying population demographics and comorbidities, all of which vary over time.
The complete utility of a healthcare model can be nearly impossible to ascertain unless one
accounts for the inevitable effect of temporal dataset drift. However, due to the sensitivity
of year-of-care information, this effect has not yet been quantified on MIMIC-III. This lack
of consideration to the data generating process jeopardises the utility of advancements in
clinical machine learning by producing models which are unfit to translate into clinical
practice. In this work, we establish how serious this problem is and suggest a mediation of it
which should help future models have a better chance of showing robust performance in a
real-world clinical setting.

Technical Significance In this work, we profile a large number of models across a battery
of input representations and several temporal training regimes to assess the robustness of
various paradigms to clinical concept drift. We also establish a new, robust representation
based on a expert mapping of raw MIMIC-III features into clinical buckets which will be a
valuable resource to the machine learning for health community.

2. Outline

We focus on two binary prediction tasks, mortality and long length-of-stay, which are
commonly studied for applying machine learning to the MIMIC-III critical care setting. The
cohort selection and task setup are described in Section 3. For each task, we evaluate a
thorough set of permutations of feature representations, prediction models, and training
paradigms (as described in Section 4). Our full prediction pipeline is illustrated in Figure 1.
We consider four possible representations that span a range from little manual involvement
(raw features only) to moderate automatic pre-processing to in-depth expert-selection of
high-level features (Clinical Aggregate). We further examine four possible models and three
possible training regimes that vary how much historical data is included in training. Results
are reported in Section 5. Finally, we review related work in generalising across time and
clinical sites in Section 6.

3. Data Cohort and Prediction Tasks

3.1. Data Cohort

Within the MIMIC-III dataset, each individual patient may be admitted to the hospital
on multiple different occasions, and during each hospital admission may be transferred to
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Figure 1: The full experimental pipeline, spanning four data representations, four model
types, and two independent prediction tasks. We provide code for reproduction of these
results, with the assumption that researchers have obtained the limited-use years data
mapping for patient identifiers.

and from the intensive care unit (ICU) multiple times. We choose to focus on a patient’s
first exposure to the ICU (by far the most common case), avoiding the complications of
those that transfer multiple times. We thus extract a targeted cohort of patient EHR data
corresponding to the first ICU visit. We include only ICU stays that lasted at least 36
hours. We also focus on non-paediatric case by requiring all patients to be over 15 years old.
These criteria, which broadly follow prior work (Ghassemi et al., 2017; Suresh et al., 2017;
McDermott et al., 2018), result in a cohort of 21, 877 unique ICU stays.

3.2. Features: Demographics and Hourly Labs and Vitals.

For each patient stay, we capture 7 static demographic features and 181 lab and vital
measurements that vary over time. The 7 demographic features consist of one-hot encoded
gender and race attributes, which are fully observed. The 181 lab results and vital signs
have a high-rate of missingness (> 90.6%), as each patient may only have a few tests ordered
depending on medical needs, and these tests occur infrequently over time. We used an early
version of the MIMIC-III data extraction code made available by Wang et al. (2019).

Transformation to 24-hour time-series. All time-varying measurements from one ICU
stay are aggregated into regularly-spaced hourly buckets (0–1 hr, 1–2 hr, etc.). Each recorded
hourly value is the mean of any measurements captured in that hour. We normalised
each numerical feature to have a mean of zero and a standard deviation of one using a
transformation fit on the training dataset. We store this transformation and apply it to the
held-out data.

The input to each prediction model contains two parts: the 7 demographic features and
an hourly multivariate time-series of labs and vitals, where the feature vector at each hour is
determined by the chosen data representation (Section 4). We censor the time series to a
fixed-duration of 24 hours, representing the first day of a subject’s stay in the ICU.
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Imputation of missing values. To account for the high rate of missingness within
MIMIC-III, we impute our data Janssen et al. (2010) via a strategy known as “simple
imputation,” which was introduced and validated by Che et al. (2018) for MIMIC time-series
prediction tasks. Given a chosen representation’s observed multivariate time-series, each
separate univariate measurement is forward filled, concatenated with a binary indicator if
the value was measured within that hour, and concatenated with the time since the last
measurement of this value.

3.3. Binary Prediction Tasks

We select two representative binary classification tasks for this investigation. First, the
mortality task: given the first 24 hours of data for a patient’s ICU stay, predict if the patient
will die in the ICU. Second, the long length of stay (LOS) task: given the first 24 hours of
data, predict if the patient will stay in the ICU longer than 3 days. These tasks are further
described in Appendix C, including previous modelling work and clinical significance. To
prevent label leakage we ensured that all included ICU stays lasted for a minimum duration
of 36 hours, which yields a gap of at least 12 hours between when the prediction is made
(after the first day) and when the predicted event happens (patient dies or is discharged).

4. Methods

In this section, we outline the various data representations we consider, which prediction
methods we assess, and 3 different ways to divide data into training and test sets in
chronologically consistent ways to assess how trained models might fare when prospectively
deployed. This pipeline is shown in Figure 1.

4.1. Representations

Data representation is important for robust model learning (Bengio et al., 2013); however,
many of the structures that make learning effective in popular ML benchmarks (e.g., Gabor
filters for computer vision given natural images) do not map over to clinical equivalents (Raghu
et al., 2019). While others have considered the automated mapping of clinical data elements
with mapping tools (Gong et al., 2017) or learned vector space embeddings (Rajkomar et al.,
2018), it is unknown whether these methods can withstand time-varying changes in EHR.

We consider four possible data representations in this work: Raw, PCA, CUI Code
Spanning, and Clinical Aggregations. These are described in detail below and diagrammed
visually in Figure 1. Each representation is strictly a way of transforming the feature vector
observed at each hour of the observed time-series of labs and vitals (demographics are not
affected by the representation).

Raw The “Raw” representation is the simplest; we include all selected 181 labs and vitals
described above in Section 3.1, each identified via a unique ItemID code in the MIMIC
database. This representation suffers from the significant flaw that the ItemIDs are explicitly
connected to the underlying EHR software, and thus reflect when logistical practice changes
dramatically. This means any raw features used in the CareVue system before 2008 are not
used by later MetaVision records, and vice versa. For example, the measurement of “Heart
Rate” went from ItemID 211 in CareVue to 220045 under MetaVision. In addition to the
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EHR system shift, there are vitals such as ”Mean Arterial Blood Pressure” (ItemID 6702)
that spontaneously increase their frequency of recording in 2004 (Figure 4). As a result, the
“raw” hourly time-series are extremely sparse with many missing values before imputation.

PCA We use principal component analysis (Hotelling, 1933; Jolliffe, 2002) to reduce
dimensionality of per-hour raw features. To train this representation, we provide as input
the full simple imputation of the 181 raw features, where each of the 181 features has a value,
a binary indicator, and a time since last measurement. Given this 543-dimensional feature
vector for each hour of every ICU stay in the training set, we select the first 68 principle
components, where 68 was chosen to match the dimensionality of the clinical aggregate
features. This yields a dense per-hour feature vector with no missingness.

CUI Code Spanning In a manner similar to that of Gong et al. (2017), we use the
human-readable descriptions of the original 181 raw ItemIDs to automatically aggregate
features into groups associated with Concept Unique Identifiers (CUIs) from the Unified
Medical Language System (UMLS) (Bodenreider, 2004). In doing so, a single raw ItemID may
be mapped to multiple CUIs, and various raw ItemIDs may be mapped to the same CUI; thus,
the resulting feature representation reflects an abstraction into a space of shared semantic
concepts. This representation yields reduced rates of missingness—though missingness is still
present—and has been demonstrated to be more robust across EHR transitions (i.e., when
ItemIDs change abruptly due to a new EHR) (Gong et al., 2017). While this representation
requires no manual expertise to define the groupings, it relies on the existence of an ontology,
UMLS, to provide this CUI to free-text mapping. Note that because multiple CUIs may be
identified in the human-readable description of a raw ItemID, we use the Spanning pruning
technique identified in Gong et al. (2017), which has been shown to identify the most specific
CUIs in a given description (Divita et al., 2014).

Clinical Aggregations For this representation, we use expert knowledge to manually
define groupings of ItemIDs which are converted to a canonical unit space then averaged
together. These groupings span the discrepancies between CareVue and MetaVision, such
as by grouping ItemID values “Heart Rate” under CareVue (211) and MetaVision (220045).
The groupings also gather together ItemIDs which measure the same biophysical quantity
merely through different means, such as aggregating MetaVision ItemIDs 225664 (“Glucose
finger stick”), 220621 (“Glucose (serum)”), and 226537 (“Glucose (whole blood)”) into one
unified category for glucose blood sugar. The resulting representation groups all 181 raw
ItemIDs into 68 clinically meaningful categories, and yields a dataset with a rate of 78.25%
missingness before imputation.

4.2. Models

To illustrate the effects of non-stationarity, we benchmark four commonly used models
in the machine learning literature for clinical prediction from time series data: logistic
regression (LR), random forests (RF), long short-term memory (LSTM) network (Hochreiter
and Schmidhuber, 1997) and a gated recurrent unit with decay (GRU-D) network (Che et al.,
2018). While LSTM and GRU-D can process time series input directly to make a binary
prediction for each ICU stay, both LR and RF make predictions using a flattened vector of
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the 24-hour time-series data. More details about model implementation can be found in
appendix A.

4.3. Training Regimes

In addition to measuring the performance of our models when trained in a year-agnostic
manner (i.e., the way models are typically run, with no knowledge of the admission year),
we use three temporal training paradigms. These training paradigms are designed to capture
distinct mechanisms in which practitioners aiming to deploy a clinical model could do so using
historical data. We detail these approaches below, and describe them visually in Figure 2.

Figure 2: Training paradigms. The available training data for each year is shown in grey. In
2001–2002 data from 2001–2002 is used to build representations and train models that are
tested on data from years 2003–2012. In Prior Year the data from the year immediately
chronologically prior to a given test year is used to train. In Full History, all of the available
data from 2001 until the year immediately chronologically prior to a given test year is used
to train.

Year-Agnostic Models are trained and tested on randomly shuffled data, with no knowl-
edge of the year of care. This reflects the performance of works reported on publicly available
MIMIC data where the true year is not known.

2001–2002 Models are trained on data from 2001–2002 only, and then tested on all future
years. This reflects the performance a practitioner can expect when they to train a model on
historical data, then deploy it over many years without updating it to reflect more recent
data.

Prior Year For each testing year (from 2003 onward), models are trained on the data
from the prior year only—e.g., data from 2005 will be used to train a model that is tested
on data from 2006. This reflects the performance one can expect if a model were deployed
and updated with yearly frequency by re-training from scratch on only the prior year’s data.
This approach provides the model with the most temporally relevant training data at the
expense of training dataset size.

Full History For each testing year (from 2003 onward), models are trained on all prior
data—e.g., data from 2001–2005 will be used to train a model that is tested on data from
2006. This reflects the performance one can expect if they deployed a model, updating it
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yearly by retraining it on all data ever observed. This provides the most available training
data, at the expense of temporal significance.

5. Results

We present the average AUROC per model and representation across all years for the task of
early mortality classification in Figure 3. In Table 1, we compare the average (± standard
deviation) AUROCs and maximum drop in AUROC observed when comparing the first
year of evaluation to each subsequent unseen year from 2003 onward using the Full History
training regime between the Raw and Clinical Aggregation representations. We summarise
the main points of our results below for the task of mortality prediction, and include results
for length-of-stay (LOS) in Appendix E, Figure 6, and Table 4

5.1. Clinical Aggregate Representations are Most Robust to Non-stationarity

Models trained on the Raw representation suffer a rapid performance decrease in 2008, after
the EHR change. We also note that most models do not recover quickly, even those with
high capacity (e.g., LSTMs and GRU-D); this is perhaps unexpected under the Full History
training paradigm. The exception is that the GRU-D begins to recover after receiving
approximately 2 years of data. This may suggest GRU-D’s explicit handling of missingness
offers benefits in response to concept drift. The clinically aggregated representation maintains
much more consistent performance across years for all of the models regardless of model
complexity. This is demonstrated quantitatively in Table 1 as well. It is important to note
that clinical aggregation confers much lower standard deviation across all models, which in
addition to performance offers more clinically trustworthy models.

PCA performed consistently lower than the Raw representation, and struggled to gen-
eralise throughout time. Note that we also tested non-linear dimensional reduction with
UMAP (McInnes and Healy, 2018), but found similar results: minor perturbations in data
distributions from year-to-year renders the model obsolete at test time. Representations
that attempt to automatically detect similarities in data elements for grouping managed to
sustain both the GRU-D and the logistic regression model to some extent, however failed
to help the random forest and LSTM models to recover when trained on the full history of
available data.

Overall, the Clinical Aggregate representation is most robust to the performance dete-
rioration which is observed for the other representations, surpassing prior work by Gong
et al. (2017) with learned representations. This suggests that there is room for future
research towards automatically generating mappings between multiple EHR systems. We
also analyse these trends broken out by protected subgroup information, to determine if
different subgroups are susceptible to data drift. We find that, in general, smaller subgroups
have (not unexpectedly) higher variance and worse generalisation (see Appendix F for more
information).

5.2. Date-Agnostic Training Overstates Performance, Especially in Raw Data

We replicate the year-agnostic training and test practice common to most reporting in
machine learning papers, and found that this method creates an unrealistic upper bound to
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Table 1: Mortality prediction task: A comparison of the a) average (± standard deviation)
AUROC over each unseen year from 2003 onward, and b) max loss observed between the first
year of evaluation and subsequent years’ performance from 2003 onward. All numbers were
computed between the clinical and raw representations under the Full History training regime
across various models. Bold indicates best performance across all models and representations.
Bigger is better for averages, while smaller is better for maximum loss and standard deviation.
This table shows that the clinical representation tends to improve the overall performance
and decreases the magnitude of performance deterioration during non-stationary healthcare
practice.

Model Average AUROC Max AUROC Drop
Raw Clinical Raw Clinical

LR 0.64± 0.07 0.81 ± 0.03 0.13 0.01
RF 0.76± 0.13 0.85 ± 0.02 0.29 0.06
LSTM 0.68± 0.13 0.77 ± 0.07 0.22 0.13
GRUD 0.75± 0.06 0.79 ± 0.03 0.18 0.07

model performance, especially on the raw representation. For example, RF models report a
year-agnostic mortality AUROC of 0.82± 0.02 (5 x 2 fold CV splits (Dietterich, 1998)), as
compared to their true year-averaged AUROC under the raw representation of 0.76± 0.13.
Under the Clinical Aggregate representation, in contrast, RF reports a year-agnostic mortality
AUROC of 0.86 ± 0.02, in comparison to the true year-averaged AUROC of 0.85 ± 0.02.
A full comparison of static models can be found in Appendix D. The overestimate in
performance in the clinical representation is thus only 0.017, as compared to 0.054 under the
raw representation.

This problem is also especially challenging as increasingly high capacity models are
developed and evaluated in a date-agnostic fashion. Prior work in longitudinal EHR data on
wound healing noted that the most complex models achieved significantly higher AUROC
than all other models only under conditions approximating stationarity (Jung and Shah,
2015). In a non-stationary setting, model complexity had no advantage, and the gap between
the best model and the simplest model was substantially reduced. We see similar impacts in
this work where lower capacity models (RF, LR) are preferred on both our tasks.

5.3. Performance Saturation and Task Importance

By profiling the changes in model performance over time, we find evidence to suggest that
both of the tasks considered (each of which are commonly studied) require relatively few years
of aggregated data to saturate in prediction quality. In particular, in Figure 3, under the
Full History training regime and the Clinical Aggregates representation, model performance
is very steady from the beginning of the training period where only one year of data is
used. Even as the training dataset grows significantly (increasing tenfold in size from test
year 2003 to 2012), performance on unseen future data does not dramatically change. This
suggests that as a field we should likely focus on more difficult tasks moving forward, or find
alternative signals not already in the measured 181 labs and vitals to improve performance.
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Figure 3: Impact of representation (columns) and training style (rows) on the chronological
performance of classifiers for the task of early mortality classification. Error bars indicate
± standard error. Grey shaded vertical selection indicates transition from CareVue to
MetaVision. Note that our Clinical Aggregate representation trained on the full history is the
least deviant and highest performing representation has been attained for most of the models.
In contrast, models trained with the raw representation tend to have high performance
variance before the policy shift and rapidly deteriorate during the EHR change from CareVue
to MetaVision even when trained on the full history of data.
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6. Related Work

Machine Learning for Health on MIMIC Much of the prior work in machine learning
for healthcare focuses on the MIMIC-III dataset, which contains electronic health record
(EHR) data from 38, 600 adults spanning 58, 900 hospital admissions at Beth Israel Deaconess
Medical Center from 2001 to 2012 (Johnson et al., 2016). Researchers have predicted
mortality, billing codes, length-of-stay prediction, intervention onset and offset prediction,
among other targets (Ghassemi et al., 2018; Suresh et al., 2017; Raghu et al., 2017; Choi
et al., 2017; Ghassemi et al., 2017; Che et al., 2018). Harutyunyan et al. and Purushotham
et al. have also defined specific cohorts and benchmarking tasks for MIMIC-III, primarily
aiming to enable comparisons of models of varying capacity across meaningful classification
tasks. In all cases, authors report aggregate performance on date-agnostic splits into train
and test.

Robust Machine Learning over Time Works have explored concept drift and proposed
specialised methods to account for the resulting data distribution changes in machine learning
systems, but predominantly in isolated contexts and typically far from the traditional machine
learning for health literature. Davis et al., for example, studies performance and calibration
drift in machine learning models trained to predict hospital acquired acute kidney over nine
years of care practice evolution. Interestingly, they found that models largely maintained
performance, though calibration suffered over a number of model types (Davis et al., 2017).
Beyene et al. examines concept drift in the task of predicting surgeries, and proposes a novel
algorithm to detect significant clinical practice changes and adjust accordingly (Beyene et al.,
2015). Subbaswamy and Saria (2018) address dataset shift by estimating causal features and
creating a latent space on which to build classification models. Another approach estimates a
relationship between source and target domains that incorporates prior knowledge of how the
data generating process might differ (or stay the same) between domains (Subbaswamy et al.,
2019). The prior two methods do not handle the mapping between multiple EHR systems,
hence can be seen as complimentary to the work presented here. Work by Jung and Shah
(2015) examines predictive models of wound healing in outpatient care centers over multiple
years of data. Jung and Shah show that gains from non-linear models that capture feature
interactions are visible in stationary settings (what we call year-agnostic), but disappear when
models are evaluated in non-stationary prospective fashion due to covariate shift. Outside the
healthcare domain, Becker and Arias (2007) evaluate the use of weighted majority techniques
for dealing with concept drift; while their approach considers applications to ranking, the
underlying use of ensembles could be adapted to the classification tasks considered here.

Overall, the issue of distributional shift is still considered to be a major barrier in the
safety and robustness of ML/AI systems, especially in healthcare (Challen et al., 2019).

Multi-site Generalisability Though examinations of model robustness over time are
rare in machine learning for healthcare, a number of prior works have focused on the notion
of generalisability across healthcare institutions. Gong et al., for example, uses the clinical
Text Analysis Knowledge Extraction System (cTAKES) (Savova et al., 2010) to identify
UMLS concept unique identifiers (CUIs) (Bodenreider, 2004) from human-readable feature
descriptions, and aggregates features into higher level buckets based on this CUI overlap. The
resulting representation improves model transfer between the CareVue portion of MIMIC-III
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(pre-2008) and the Metavision portion of MIMIC-III (post-2008) (Gong et al., 2017). 4 They
frame the CareVue-to-MetaVision transition as a proxy for multiple institution data, not for
temporal drift.

Using the recently released multi-source eICU dataset (Pollard et al., 2018), other work
has additionally investigated the use of multi-source training data to create models with
robust transferability to novel institutions (Johnson et al., 2018). Similarly, Rajkomar et al.
trains models using a site-agnostic representation which shows strong predictive performance
when transferring between two distinct institutions (Rajkomar et al., 2018). Both Johnson
et al. (2018) and Rajkomar et al. (2018) assume strong overlap in feature representations,
because the underlying EHR systems are the same or there are a sufficiently large number of
samples to capture correlations even in the presence of underlying measure sparsity. In this
work, we emphasise evaluating how prediction systems are vulnerable to abrupt changes in
the EHR system when little overlap exists between representations.

7. Conclusion

By augmenting the popular de-identified MIMIC dataset with non-public year-of-care in-
formation obtained via a Limited Data Use Agreement, our experiments have quantified
the robustness of state-of-the-art machine learning pipelines to real-world non-stationarity
over two common critical care tasks: mortality prediction and length-of-stay prediction.
We have established that ignoring time during evaluation, as is common to MIMIC and
other public datasets, will consistently overestimate prediction quality and should be re-
garded sceptically when assessing future deployment potential. Further, we exposed key
problems with the robustness of raw feature representations regardless of model type, even in
time-aware evaluation scenarios. Finally, we have developed novel aggregate representations
that are demonstrably more effective at generalising to future years than several automated
preprocessing methods. The maximum AUROC performance loss throughout the 2002-2012
in MIMIC-III is reduced from 0.29 to just 0.06 for ICU mortality prediction and from 0.10
to 0.03 for length of stay prediction.

This work is intended to serve as a first step towards identifying and overcoming obstacles
to effective model deployment. As such, it has several limitations. First and foremost, our
present study would not have been possible without the dated events acquired via a Limited
Use agreement which others may not have access to immediately. Second, our suggested
aggregate representations required manual definition specific to the MIMIC database, so
transfer to other EHR systems would require new taxonomies to be developed with input
from clinical experts. While several existing automated approaches did help, we expect
further research could alleviate more of the burden of manual concept definition. Finally,
we only consider two of the most common tasks used in the MIMIC-III dataset, and more
work is needed to understand the impact of non-stationarity in other tasks that may not
have such rapid performance saturation.

We conclude by cautioning researchers in machine learning for healthcare to consider the
deployability limits of their models. To benchmark progress in clinical machine learning it

4. This split can be re-identified from the differences in the data directly, though further granularity over
time is not generally accessible.
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is essential to use standardised datasets and tasks, however, we should not expect models
trained on date-agnostic, de-identified data to translate into clinical practice.
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Appendix A. Model Training Details

Models which do not implicitly handle missingness (LR, RF and LSTM) require data to be
imputed. Che et al. (2018) detail a thorough list of imputation schemes in their experiments
where the simple imputation scheme tends to perform well. Alternatively, Gaussian processes
have been used to impute missing values in a clinical setting successfully(Lasko et al., 2013).
Other works have shown that parameterising features by sequence time produces stationary
and invariant sets of features(Hripcsak et al., 2015). To isolate the effect of representation
on generalisability we do not explicitly test the effects of imputation schemes on the model
performance in this work.

All models have hyperparameters selected via random search (Bergstra and Bengio, 2012),
with parameters detailed below. Additional implementation details can be found in the code
base: https://github.com/MLforHealth/MIMIC_Generalisation.

Logistic Regression (LR) LR models are linear classification models of low capacity
and moderate interpretability. Because LR does not naturally handle temporal data, 24
one-hour buckets of patient history are concatenated into one vector along with the static
demographic vector. We use the LR implementation in SciKit Learn’s LogisticRegression
class (Pedregosa et al., 2011). A model was selected from a random search of regularisation
strength (C), regularisation type (L1 or L2), solvers (“liblinear” or “saga”), and maximum
number of iterations.

Random Forest (RF) RF models are nonlinear classification models defined using bagged
decision trees which are often competitive non-neural, non-linear baseline methods. The data
is prepared in the same way as the logistic regression model and the RF implementation in
SciKit Learn’s RandomForestClassifier class is used. A model was selected from a random
search of minimum number of samples to split a node, the minimum number of samples per
leaf node, maximum depth of the tree, number of estimators in the ensemble.

Long Short-TermMemory (LSTM) LSTMmodels (Hochreiter and Schmidhuber, 1997)
are a popular variant of recurrent neural networks (RNNs) capable of processing arbitrary
length sequences in a non-linear, high-capacity fashion. We implement a bidirectional LSTM
using TensorFlow (Martín Abadi et al., 2015). We used a bidirectional LSTM model selected
via a random search of dropout (0.1 0.2, 0.3, 0.4, 0.5), number of epochs (1 to 5), hidden layer
size (16, 32, 64, or 128 units), activation function (tanh, ReLU), and optimizer (rmsprop,
adam, adagrad).

Gated Recurrent Unit with Decay (GRU-D) GRU-D models (Che et al., 2018) are a
recent variant of recurrent neural networks (RNNs) designed to specifically model irregularly
sampled timeseries by inducing learned exponential regressions to the mean for unobserved
values. Note that as GRU-D is intentionally designed to account for irregularly sampled
timeseries (or equivalently timeseries with missingness), evaluating it on representations that
internally absorb missingness does not make sense. As such, we do not evaluate GRU-D on
the PCA representation. We implemented the model in PyTorch (Paszke et al., 2017) based
on (Han-JD, 2019; Cui , UW). We use a hidden layer size of 67 units, batch normalisation(Ioffe
and Szegedy, 2015), and dropout with a probability of 0.5 on the classification layer like in
the original work (Che et al., 2018). The Adam optimizer (Kingma and Ba, 2014) is applied
with the early stopping criteria(Che et al., 2018).
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Tuning Procedure For the RF, LR and LSTM classifiers, 5-fold cross validation was
applied to the training data, using a random search to find best parameters for maximum area
under the receiver-operator curve (AUROC) on the validation split. For the GRU-D model,
we use the early stopping criteria on the validation during training to find the best model for
the specified hyper-parameters (variance shown is only attributable to the train/validation
split).

Appendix B. Feature aggregation description

In MIMIC-III, CHARTEVENTS with ItemIDs 861, 1127, 1542, and 220546 are averaged into
one feature in the Clinically Aggregated feature vector called White blood cell count. Note
that ItemIDs 861, 1127, and 1542 were recorded in the 2001–2008 system and ItfemID
220546 was recorded in the 2008–2012 system.

A full description of the clinical aggregations can be found in Wang et al. (2019).

Figure 4: The frequency of data collection can change in clinical practice. Shown is an
example of the collection frequency for Mean Arterial Blood Pressure.

Figure 5: The measured values of data can shift in clinical practice

Appendix C. Task Descriptions

In-ICU Mortality Task. In-ICU Mortality is defined by patient death within the ICU.
Mortality prediction in general is a common prediction target (Harutyunyan et al., 2017;
Purushotham et al., 2018) as it is a direct signal of acuity strongly associated with EHR
signals. The ICU mortality rate of patients in our subset is 7.4%. We also know that policy
changes from the Affordable Care Act led to a changes in clinical practice regarding mortality
prevention (Kocher et al., 2010).
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Long LOS Task. Predicting long LOS has significant utility in clinical operations man-
agement, and has been predicted repeatedly in prior work (Harutyunyan et al., 2017; Pu-
rushotham et al., 2018). In this work, we define a “long LOS” to be a LOS greater than
the median LOS we observe in our cohort (3 days). We use the same data as described
previously to predict if a patient will need to be in the ICU for greater than or less than 3
days, e.g., a binary label of 0 if length-of-stay is less than 3 days, otherwise 1. This creates a
47.1% positive subject rate in-task. This task has the added benefit of investigating date
randomisation effects in a more balanced-class problem without a directly targeted policy
change.

Appendix D. Year Agnostic Results

Tables 2 & 3 contain the model performances when trained without knowledge of the years
(5 x 2 fold CV splits (Dietterich, 1998)).

Table 2: The in ICU Mortality performance trained in a year-agnostic fashion. This represents
how machine learning models trained on electronic health records are typically reported in
literature. The AUROC (mean ± std) is reported

Model Average AUROC for Random Splits
Raw PCA CUI Code Spanning Clinical

LR 0.71± 0.02 0.79± 0.01 0.68± 0.01 0.85± 0.01
RF 0.82± 0.02 0.77± 0.03 0.79± 0.02 0.86± 0.02
LSTM 0.70± 0.03 0.75± 0.01 0.68± 0.03 0.84± 0.01
GRUD 0.81± 0.04 - 0.80± 0.01 0.83± 0.02

Table 3: The in length of stay (greater than 3 days) classification performance trained in a
year-agnostic fashion. This represents how machine learning models trained on electronic
health records are typically reported in literature. The AUROC (mean ± std) is reported

Model Average AUROC
Raw PCA CUI Code Spanning Clinical

LR 0.67± 0.02 0.68± 0.01 0.68± 0.01 0.70± 0.01
RF 0.70± 0.00 0.68± 0.01 0.67± 0.01 0.71± 0.01
LSTM 0.65± 0.01 0.62± 0.02 0.63± 0.02 0.69± 0.01
GRUD 0.69± 0.01 − 0.67± 0.01 0.70± 0.00

Appendix E. Performance on Length-of-Stay Task

We show the full results for the LOS task reported on in the main text of this work here. As
noted previously, much of the commentary for mortality holds here as well. Figure 6 shows
the AUROC of various models over time across all our representations and training regimes.
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Similar to the results in Figure 3, we see dramatic decays in response to the CareVue to
MetaVision shift, which are recovered by the clinical aggregation representation. Again,
similar to Figure 3, under training regimes that offer insufficient prior data, we see general
decay year-over-year as well. Table 4 compares the average (± standard deviation) AUROCs
and maximum drop in AUROC observed when comparing the first year of evaluation to each
subsequent unseen year from 2003 onward using the Full History training regime between
the Raw and Clinical Aggregation representations.

Figure 6: Impact of representation (columns) and training style (rows) on the chronological
performance of classifiers for the task of early length of stay classification. Error bars indicate
± standard error.
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Table 4: LOS: A comparison of the a) average (± standard deviation) AUROC over each
unseen year from 2003 onward, and b) max loss observed between the first year of evaluation
and subsequent years’ performance from 2003 onward. All numbers were computed between
the clinical and raw representations under the Full History training regime across various
models. Bold indicates best performance across all models and representations. Bigger is
better for averages, while smaller is better for maximum AUROC drop. ”∗” indicates that
2003 was the worst performing year, and that models consistently improved in subsequent
years.

Model Average AUROC Max AUROC Drop
Raw Clinical Raw Clinical

LR 0.66± 0.04 0.69 ± 0.02 0.11 ∗(+0.02)
RF 0.67± 0.04 0.68 ± 0.03 0.10 0.03
LSTM 0.60± 0.06 0.65 ± 0.03 0.07 0.02
GRUD 0.66± 0.03 0.67 ± 0.03 0.01 ∗(+0.06)
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Appendix F. Subpopulation Sensitivity Analyses

Here, we consider subpopulation sensitivity. In Figure 7 we partition our prediction task
across gender. In Figure 9 we partition our prediction task across ethnicity. A bidirectional
LSTM shown on all representations. In Figure 8 we show the occurrence of each of the
sensitive groups from Figure 9. The predictive performance is erratic for groups with
fewer samples. In Figure 11 we partition our prediction task across insurance type. The
performance is demonstrated for the GRU-D model In Figure 10 we show the occurrence
of each insurance type from Figure 11. Note that unlike ethnicity, insurance type was not
included in our feature sets. Self-pay patients and government insurance patients have highly
erratic mortality results due to the lack of training samples. Models deteriorated slower for
individuals with private insurance as opposed to individuals with Medicaid. The deterioration
of performance (both gradual, and over the CareVue/MetaVision shift) is shown in Figure
11.

Figure 7: Impact of representation on the longevity of performance across two genders. The
model shown is a GRU-D classifying in-ICU mortality. Error bars indicate ± standard error.

Figure 8: The number of ICU admissions per year by ethnicity.
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Figure 9: The performance of the GRU-D on the task of mortality prediction. The classifica-
tion is shown for highlighted demographics.

Figure 10: The number of ICU admissions per year by insurance type.

Figure 11: The performance of the GRU-D on the task of mortality prediction. The
classification is shown for highlighted insurance types.
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