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Abstract

We consider the problem of PAC learning the
most valuable item from a pool of n items us-
ing sequential, adaptively chosen plays of sub-
sets of k items, when, upon playing a subset,
the learner receives relative feedback sampled
according to a general Random Utility Model
(RUM) with independent noise perturbations
to the latent item utilities. We identify a
new property of such a RUM, termed the
minimum advantage, that helps in character-
izing the complexity of separating pairs of
items based on their relative win/loss empiri-
cal counts, and can be bounded as a function
of the noise distribution alone. We give a
learning algorithm for general RUMs, based
on pairwise relative counts of items and hier-
archical elimination, along with a new PAC
sample complexity guarantee of O( n

c2ε2 log k
δ )

rounds to identify an ε-optimal item with con-
fidence 1 − δ, when the worst case pairwise
advantage in the RUM has sensitivity at least
c to the parameter gaps of items. Fundamen-
tal lower bounds on PAC sample complexity
show that this is near-optimal in terms of its
dependence on n, k and c.

1 Introduction

Random utility models (RUMs) are a popular and well-
established framework for studying behavioral choices
by individuals and groups (Thurstone, 1927). In a
RUM with finite alternatives or items, a distribution
on the preferred alternative(s) is assumed to arise from
a random utility drawn from a distribution for each
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item, followed by rank ordering the items according to
their utilities.

Perhaps the most widely known RUM is the Plackett-
Luce or multinomial logit model (Plackett, 1975; Luce,
2012) which results when each item’s utility is sampled
from an additive model with a Gumbel-distributed
perturbation. It is unique in the sense of enjoying
the property of independence of irrelevant attributes
(IIA), which is often key in permitting efficient infer-
ence of Plackett-Luce models from data (Khetan and
Oh, 2016). Other well-known RUMs include the probit
model (Bliss, 1934) featuring random Gaussian pertur-
bations to the intrinsic utilities, mixed logit, nested
logit, etc.

A long line of work in statistics and machine learning
focuses on estimating RUM properties from observed
data (Soufiani et al., 2014; Zhao et al., 2018; Soufiani
et al., 2013). Online learning or adaptive testing, on
the other hand, has shown efficient ways of identify-
ing the most attractive (i.e., highest utility) items in
RUMs by learning from relative feedback from item
pairs or more generally subsets (Szörényi et al., 2015;
Saha and Gopalan, 2019; Jang et al., 2017). However,
almost all existing work in this vein exclusively em-
ploys the Plackett-Luce model, arguably due to its very
useful IIA property, and our understanding of learning
performance in other, more general RUMs has been
lacking. We take a step in this direction by framing the
problem of sequentially learning the best item/items in
general RUMs by adaptive testing of item subsets and
observing relative RUM feedback. In the process, we
uncover new structural properties in RUMs, including
models with exponential, uniform, Gaussian (probit)
utility distributions, and give algorithmic principles
to exploit this structure, that permit provably sample-
efficient online learning and allow us to go beyond
Plackett-Luce.

Our contributions: We introduce a new property of
a RUM, called the (pairwise) advantage ratio, which
essentially measures the worst-case relative probabili-
ties between an item pair across all possible contexts
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(subsets) where they occur. We show that this ratio
can be controlled (bounded below) as an affine func-
tion of the relative strengths of item pairs for RUMs
based on several common centered utility distributions,
e.g., exponential, Gumbel, uniform, Gamma, Weibull,
normal, etc., even when the resulting RUM does not
possess analytically favorable properties such as IIA.

We give an algorithm for sequentially and adaptively
PAC (probably approximately correct) learning the
best item from among a finite pool when, in each de-
cision round, a subset of fixed size can be tested and
top-m rank ordered feedback from the RUM can be
observed. The algorithm is based on the idea of main-
taining pairwise win/loss counts among items, hierar-
chically testing subsets and propagating the surviving
winners – principles that have been shown to work
optimally in the more structured Plackett-Luce RUM
(Szörényi et al., 2015; Saha and Gopalan, 2019).

In terms of performance guarantees, we derive a PAC
sample complexity bound for our algorithm: when
working with a pool of n items in total with subsets
of size-k chosen in each decision round, the algorithm
terminates in O( n

c2ε2 log k
δ ) rounds where c is a lower

bound on the advantage ratio’s sensitivity to intrinsic
item utilities. This can in turn be shown to be a
property of only the RUM’s perturbation distribution,
independent of the subset size k. A novel feature of the
guarantee is that, unlike existing sample complexity
results for sequential testing in the Plackett-Luce model,
it does not rely on specific properties like IIA which are
not present in general RUMs. We also extend the result
to cover top-m rank ordered feedback, of which winner
feedback (m = 1) is a special case. Finally, we show
that the sample complexity of our algorithm is order-
wise optimal across RUMs having a given advantage
ratio sensitivity c, by arguing an information-theoretic
lower bound on the sample complexity of any online
learning algorithm.

Our results and techniques represent a conceptual ad-
vance in the problem of online learning in general
RUMs, moving beyond the Plackett-Luce model for the
first time to the best of our knowledge.

Related Work: For classical multiarmed bandits set-
ting, there is a well studied literature on PAC-arm
identification problem (Even-Dar et al., 2006; Audibert
and Bubeck, 2010; Kalyanakrishnan et al., 2012; Karnin
et al., 2013; Jamieson et al., 2014), where the learner
gets to see a noisy draw of absolute reward feedback of
an arm upon playing a single arm per round. On the
contrary, learning to identify the best item(s) with only
relative preference information (ordinal as opposed to
cardinal feedback) has seen steady progress since the
introduction of the dueling bandit framework (Zoghi

et al., 2013) with pairs of items (size-2 subsets) that
can be played, and subsequent work on generalisation
to broader models both in terms of distributional pa-
rameters (Yue and Joachims, 2009; Gajane et al., 2015;
Ailon et al., 2014; Zoghi et al., 2015) as well as combina-
torial subset-wise plays (Mohajer et al., 2017; González
et al., 2017; Saha and Gopalan, 2018b; Sui et al., 2017).
There have been several developments on the PAC ob-
jective for different pairwise preference models, such
as those satisfying stochastic triangle inequalities and
strong stochastic transitivity (Yue and Joachims, 2011),
general utility-based preference models (Urvoy et al.,
2013), the Plackett-Luce model (Szörényi et al., 2015)
and the Mallows model (Busa-Fekete et al., 2014a)].
Recent work has studied PAC-learning objectives other
than identifying the single (near) best arm, e.g. re-
covering a few of the top arms (Busa-Fekete et al.,
2013; Mohajer et al., 2017), or the true ranking of
the items (Busa-Fekete et al., 2014b; Falahatgar et al.,
2017). Some of the recent works also extended the
PAC-learning objective with relative subsetwise pref-
erences (Saha and Gopalan, 2018a; Chen et al., 2017,
2018; Saha and Gopalan, 2019; Ren et al., 2018).

However, none of the existing work considers strategies
to learn efficiently in general RUMs with subset-wise
preferences and to the best of our knowledge we are
the first to address this general problem setup. In
a different direction, there has been work on batch
(non-adaptive) estimation in general RUMs, e.g., (Zhao
et al., 2018; Soufiani et al., 2013); however, this does
not consider the price of active learning and the asso-
ciated exploration effort required as we study here. A
related body of literature lies in dynamic assortment
selection, where the goal is to offer a subset of items
to customers in order to maximise expected revenue,
which has been studied under different choice models,
e.g. Multinomial-Logit (Talluri and Van Ryzin, 2004),
Mallows and mixture of Mallows (Désir et al., 2016a),
Markov chain-based choice models (Désir et al., 2016b),
single transition model (Nip et al., 2017) etc., but again
each of this work addresses a given and a very specific
kind of choice model, and their objective is more suited
to regret minimization type framework where playing
every item comes with a associated cost.

2 Preliminaries

Notation. We denote by [n] the set {1, 2, ..., n}. For
any subset S ⊆ [n], let |S| denote the cardinality of
S. When there is no confusion about the context, we
often represent (an unordered) subset S as a vector,
or ordered subset, S of size |S| (according to, say, a
fixed global ordering of all the items [n]). In this case,
S(i) denotes the item (member) at the ith position in
subset S. ΣS = {σ | σ is a permutation over items of
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S}, where for any permutation σ ∈ ΣS , σ(i) denotes
the element at the i-th position in σ, i ∈ [|S|]. 1(ϕ) is
generically used to denote an indicator variable that
takes the value 1 if the predicate ϕ is true, and 0
otherwise. x∨ y denotes the maximum of x and y, and
Pr(A) is used to denote the probability of event A, in
a probability space that is clear from the context.

2.1 Random Utility-based Discrete Choice
Models

A discrete choice model specifies the relative preferences
of two or more discrete alternatives in a given set.
Random Utility Models (RUMs) are a widely-studied
class of discrete choice models; they assume a (non-
random) ground-truth utility score θi ∈ R for each
alternative i ∈ [n], and assign a distribution Di(·|θi)
for scoring item i, where E[Di | θi] = θi. To model
a winning alternative given any set S ⊆ [n], one first
draws a random utility score Xi ∼ Di(·|θi) for each
alternative in S, and selects an item with the highest
random score. More formally, the probability that an
item i ∈ S emerges as the winner in set S is given by:

Pr(i|S) = Pr(Xi > Xj ∀j ∈ S \ {i}) (1)

In this paper, we assume that for each item i ∈ [n],
its random utility score Xi is of the form Xi = θi + ζi,
where all the ζi ∼ D are ‘noise’ random variables drawn
independently from a probability distribution D.

A widely used RUM is the Multinomial-Logit (MNL) or
Plackett-Luce model (PL), where the Dis are taken to
be independent Gumbel(0, 1) distributions with loca-
tion parameters 0 and scale parameter 1 (Azari et al.,
2012), which results in score distributions Pr(Xi ∈
[x, x+dx]) = e−(x−θi)e−e

−(x−θi)
dx, ∀i ∈ [n]. Moreover,

it can be shown that the probability that an alternative
i emerges as the winner in any set S 3 i is simply pro-

portional to its score parameter: Pr(i|S) = eθi∑
j∈S e

θj
.

Other families of discrete choice models can be obtained
by imposing different probability distributions over the
iid noise ζi ∼ D; e.g.,

1. Exponential noise: D is the Exponential(λ) distri-
bution (λ > 0).

2. Noise from Extreme value distributions: D is the
Extreme-value-distribution(µ, σ, ξ) (µ ∈ R, σ >
0, ξ ∈ R). Many well-known distributions fall
in this class, e.g., Frechet, Weibull, Gumbel.
For instance, when χ = 0, this reduces to the
Gumbel(µ, σ) distribution.

3. Uniform noise: D is the (continuous) Uniform(a, b)
distribution (a, b ∈ R, b > a).

4. Gaussian or Frechet, Weibull, Gumbel noise: D
is the Gaussian(µ, σ) distribution (µ ∈ R, σ > 0).

5. Gamma noise: D is the Gamma(k, ξ) distribution
(where k, ξ > 0).

Other distributions D can alternatively be used for
modelling the noise distribution , depending on desired
tail properties, domain-specific information, etc.

Finally, we denote a RUM choice model, comprised
of an instance θ = (θ1, θ2, . . . , θn) (with its implicit
dependence on the noise distribution D) along with a
playable subset size k ≤ n, by RUM(k,θ).

3 Problem Setting

We consider the probably approximately correct (PAC)
version of the sequential decision-making problem of
finding the best item in a set of n items, by making
only subset-wise comparisons.

Formally, the learner is given a finite set [n] of n > 2
items or ‘arms’1 along with a playable subset size k ≤ n.
At each decision round t = 1, 2, . . ., the learner selects
a subset St ⊆ [n] of k distinct items, and receives
(stochastic) feedback depending on (a) the chosen sub-
set St, and (b) a RUM(k,θ) choice model with pa-
rameters θ = (θ1, θ2, . . . , θn) a priori unknown to the
learner. The nature of the feedback can be of several
types as described in Section 3.1. For the purposes of
analysis, we assume, without loss of generality2, that
θ1 > θi ∀i ∈ [n] \ {1} for ease of exposition3. We define
a best item to be one with the highest score parameter:
i∗ ∈ argmax

i∈[n]

θi = {1}, under the assumptions above.

Remark 1. Under the assumptions above, it follows
that item 1 is the Condorcet Winner (Zoghi et al., 2014)
for the underlying pairwise preference model induced
by RUM(k,θ).

3.1 Feedback models

We mean by ‘feedback model’ the information received
(from the ‘environment’) once the learner plays a subset
S ⊆ [n] of k items. Similar to different types of feedback
models introduced earlier in the context of the specific
Plackett-Luce RUM (Saha and Gopalan, 2019), we
consider the following feedback mechanisms:

• Winner of the selected subset (WI: The en-
vironment returns a single item I ∈ S, drawn

1terminology borrowed from multi-armed bandits
2under the assumption that the learner’s decision rule

does not contain any bias towards a specific item index
3The extension to the case where several items have the

same highest parameter value is easily accomplished.
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independently from the probability distribution
Pr(I = i|S) = Pr(Xi > Xj , ∀j ∈ S \ {i}) ∀i ∈
S, S ⊆ [n].

• Full ranking selected subset of items (FR):
The environment returns a full ranking σ ∈ ΣS ,
drawn from the probability distribution Pr(σ =

σ|S) =
∏|S|
i=1 Pr(Xσ(i) > Xσ(j), ∀j ∈ {i +

1, . . . |S|}), ∀σ ∈ ΣS . In fact, this is equivalent
to picking σ(1) according to the winner feedback
from S, then picking σ(2) from S \ {σ(1)} follow-
ing the same feedback model, and so on, until all
elements from S are exhausted, or, in other words,
successively sampling |S| winners from S according
to the RUM(k,θ) model, without replacement.

3.2 PAC Performance Objective:
Correctness and Sample Complexity

For a RUM(k,θ) instance with n ≥ k arms, an arm
i ∈ [n] is said to be ε-optimal if θi > θ1 − ε. A sequen-
tial4 learning algorithm that depends on feedback from
an appropriate subset-wise feedback model is said to
be (ε, δ)-PAC, for given constants 0 < ε ≤ 1

2 , 0 < δ ≤ 1,
if the following properties hold when it is run on any
instance RUM(k,θ): (a) it stops and outputs an arm
I ∈ [n] after a finite number of decision rounds (subset
plays) with probability 1, and (b) the probability that
its output I is an ε-optimal arm in RUM(k,θ) is at
least 1 − δ, i.e, Pr(I is ε-optimal) ≥ 1 − δ. Further-
more, by sample complexity of the algorithm, we mean
the expected time (number of decision rounds) taken
by the algorithm to stop when run on the instance
RUM(k,θ).

4 Connecting Subsetwise preferences
to Pairwise Scores

In this section, we introduce the key concept of Advan-
tage ratio as a means to systematically relate subsetwise
preference observations to pairwise scores in general
RUMs.

Consider any set S ⊆ [n], |S| = k, and recall that
the probability of item i winning in S is Pr(i|S) :=
Pr(Xi > Xj , ∀j ∈ [n] \ {i}) for all i ∈ S, S ⊆ [n]. For
any two items i, j ∈ [n], let us denote ∆ij = (θi − θj).
Let us also denote by f(·), F (·) and F̄ (·) the proba-
bility density function5, cumulative distribution func-

4We essentially mean a causal algorithm that makes
present decisions using only past observed information at
each time; the technical details for defining this precisely
are omitted.

5We assume by default that all noise distributions have
a density; the extension to more general noise distributions
is left to future work.

tion and complementary cumulative distribution func-
tion of the noise distribution D, respectively; thus,
F (x) =

∫ x
−∞ f(x)dx for any x ∈ Support(D) and

F̄ (x) =
∫∞
x
f(x)dx = 1−F (x) for any x ∈ Support(D).

We now introduce and analyse the Advantage-Ratio
(Def. 1); we will see in Sec. 5.1 how this quantity helps
us deriving an improved sample complexity guarantee
for our (ε, δ)-PAC item identification problem.

Definition 1 (Advantage ratio and Minimum advan-
tage ratio). Given any subsetwise preference model
defined on n items, we define the advantage ratio of
item i over item j within the subset S ⊆ [n], i, j ∈ S
as Advantage-Ratio(i, j, S) = Pr(i|S)

Pr(j|S) .

Moreover, given a playable subset size k, we define the
minimum advantage ratio, Min-AR, of item-i over j,
as the least advantage ratio of i over j across size-k
subsets of [n], i.e.,

Min-AR(i, j) = min
S⊆[n],|S|=k,S3i,j

Pr(i|S)

Pr(j|S)
. (2)

The key intuition here is that when Min-AR(i, j) does
not equal 1, it serves as a distinctive measure for identi-
fying item i and j separately irrespective of the context
S. We specifically build on this intuition later in Sec.
5.1 to propose a new algorithm (Alg. 1) which finds the
(ε, δ)-PAC best item relying on the unique distinctive
properly of the best-item θ1 > θj∀j ∈ [n] \ {1} (as
described in Sec. 3).

The following result shows a variational lower bound,
in terms of the noise distribution, for the minimum ad-
vantage ratio in a RUM(k,θ) model with independent
and identically distributed (iid) noise variables, that is
often amenable to explicit calculation/bounding.

Lemma 2 (Variational lower bound for the advantage
ratio). For any RUM(k,θ) based subsetwise preference
model and any item pair (i, j),6

Min-AR(i, j) ≥ min
z∈R

Pr
(
Xi > max(Xj , z))

Pr(Xj > max(Xi, z)
) . (3)

Moreover for RUM(k,θ) models one can show that
for any triplet (i, j, S), Pr

(
Xi > max(Xj , z)) = F (z −

θj)F̄ (z − θi) +
∫∞
z−θj F̄ (x−∆ij)f(x)dx, which further

lower bounds Min-AR(i, j) by:

min
z∈R

F (z − θj)F̄ (z − θi) +
∫∞
z−θj F̄ (x−∆ij)f(x)dx

F (z − θi)F̄ (z − θj) +
∫∞
z−θi F̄ (x+ ∆ij)f(x)dx

.

The proof of the result appears in Appendix A.1.
Fig. 1 shows a geometrical interpretation behind Min-
AR(i, j), under the joint realization of the pair of values
(ζi, ζj).

6We assume 0
0

to be ∞ in the right hand side of Eqn. 3.
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Figure 1: A two-dimensional geometrical interpretation
for the quantity Min-AR(i, j). Let z ∈ R be a random
variable denoting the max score observed for the rest
of the items, i.e. maxa∈S\{i,j}Xa. Let the blue, green
and red dot respectively denote the position of z, z−θj
and z−θi. With Xi = θi+ζi, ∀i ∈ [n], the green shaded
region is where Xj > max(Xi, z), the red shaded region
is where Xi > max(Xj , z) i.e. item i is the winner, and
the white rectangle is where max(Xi, Xj) < z i.e. some
other item wins. The shape of the green and red region
varies as z moves on R (in the hindsight this basically
covers the realizations of all z over all possible subsets
S)–Min-AR(i, j) is attained at the particular z where
the ratio of the mass of the red and green region is
minimized (see Eqn. (3) for details).

Remark 2. Suppose S̄ := arg min|S|=k,i,j∈S
Pr(i|S)
Pr(j|S) .

It is sufficient to consider the domain of z in the right
hand side of (3) to be just the set maxr∈S̄\{i,j} θr +
support(D), as the proof of Lemma 2 brings out. How-
ever, for simplicity we use a smaller lower bound in
Eqn. 3 and take z ∈ R.

We next derive the Min-AR(i, j) values certain specific
noise distributions:

Lemma 3 (Analysing Min-AR for specific noise mod-
els). Given a fixed item pair (i, j) such that θi > θj,
the following bounds hold under the respective noise
models in an iid RUM.

1. Exponential(λ): Min-AR(i, j) ≥ e∆ij > 1 + ∆ij

for Exponential noise with λ = 1.

2. Extreme value distribution(µ, σ, χ): For
Gumbel(µ, σ) (χ = 0) noise, Min-

AR(i, j) = e
∆ij
σ > 1 +

∆ij

σ .

3. Uniform(a, b): Min-AR(i, j) ≥ 1 +
2∆ij

b−a for
Uniform(a, b) noise (a, b ∈ R, b > a, and ∆ij <

a
2 ).

4. Gamma(k, ξ): Min-AR(i, j) ≥ 1 + ∆ij for
Gamma(2, 1) noise.

5. Weibull(λ, k): Min-AR(i, j) ≥ eλ∆ij > 1 + λ∆ij

for (k = 1).

6. Normal N (0, 1): ∃c > 0 such that, for ∆ij small
enough (in a neighborhood of 0), Min-AR(i, j) ≥
1 + c∆ij.

The proof appears in Appendix A.2.

5 An optimal algorithm for the
winner feedback model

In this section, we propose an algorithm (Sequential-
Pairwise-Battle, Algorithm 1) for the (ε, δ)-PAC objec-
tive with winner feedback. We then analyse its correct-
ness and sample complexity guarantee (Theorem 4) for
any noise distribution D (under a mild assumption of
its being Min-AR bounded away from 1). Following
this, we also prove a matching lower bound for the
problem which shows that the sample complexity of
Algorithm Sequential-Pairwise-Battle is unimprovable
(up to a factor of log k).

5.1 The Sequential-Pairwise-Battle algorithm

Our algorithm is based on the simple idea of dividing
the set of n items into sub-groups of size k, querying
each subgroup ‘sufficiently enough’, retaining thereafter
only the empirically ‘strongest item’ of each sub-group,
and recursing on the remaining set of items until only
one item remains.

More specifically, it starts by partitioning the initial
item pool into G := dnk e mutually exclusive and ex-
haustive sets G1,G2, · · · GG such that ∪Gj=1Gj = S and
Gj ∩ Gj′ = ∅, ∀j, j′ ∈ [G] |Gj | = k, ∀j ∈ [G− 1]. Each

set Gg, g ∈ [G] is then queried for t = O
(
k
ε2`

ln k
δ`

)
rounds, and only the ‘empirical winner’ cg of each
group g is retained in a set S, rest are discarded. The
algorithm next recurses the same procedure on the
remaining set of surviving items, until a single item is
left, which then is declared to be the (ε, δ) PAC-best
item. Algorithm 1 presents the pseudocode in more
detail.

Key idea: The primary novelty here is how the al-
gorithm reasons about the ‘strongest item’ in each
sub-group Gg: It maintains the pairwise preferences
of every item pair (i, j) in any sub-group Gg and sim-
ply chooses the item that beats the rest of the items
in the sub-group with a positive advantage of greater
than 1

2 (alternatively, the item that wins maximum
number of subset-wise plays). Our idea of maintaining
pairwise preferences is motivated by a similar algo-
rithm proposed in (Saha and Gopalan, 2019); how-
ever, their performance guarantee applies to only the
very specific class of Plackett-Luce feedback models,
whereas the novelty of our current analysis reveals the
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Algorithm 1 Sequential-Pairwise-Battle(Seq-PB)

1: Input:
2: Set of items: [n], Subset size: n ≥ k > 1
3: Error bias: ε > 0, Confidence parameter: δ > 0
4: Noise model (D) dependent constant c > 0
5: Initialize:
6: S ← [n], ε0 ← cε

8 , and δ0 ← δ
2

7: Divide S into G := dnk e sets G1,G2, . . . ,GG such
that ∪Gj=1Gj = S and Gj ∩ Gj′ = ∅, ∀j, j′ ∈ [G],
where |Gj | = k, ∀j ∈ [G− 1]

8: If |GG| < k, then set R1 ← GG and G = G− 1
9: while ` = 1, 2, . . . do

10: Set S ← ∅, δ` ← δ`−1

2 , ε` ← 3
4ε`−1

11: for g = 1, 2, . . . , G do
12: Play the set Gg for t :=

⌈
k

2ε2`
ln k

δ`

⌉
rounds

13: wi ← Number of times i won in t plays of Gg,
∀i ∈ Gg

14: Set cg ← arg max
i∈A

wi and S ← S ∪ {cg}

15: end for
16: S ← S ∪R`
17: if (|S| == 1) then
18: Break (go out of the while loop)
19: else if |S| ≤ k then
20: S′ ← Randomly sample k − |S| items from

[n] \ S, and S ← S ∪ S′, ε` ← cε
2 , δ` ← δ

21: else
22: Divide S into G := d |S|k e sets G1,G2, . . . ,GG,

such that ∪Gj=1Gj = S, and Gj ∩ Gj′ =
∅, ∀j, j′ ∈ [G], where |Gj | = k, ∀j ∈ [G− 1]

23: If |GG| < k, then set R`+1 ← GG and G =
G− 1

24: end if
25: end while
26: Output: The unique item left in S

power of maintaining pairwise-estimates for more gen-
eral RUM(k,θ) subsetwise model (which includes the
Plackett-Luce choice model as a special case). The
pseudo code of Sequential-Pairwise-Battle is given in
Alg. 1.

The following is our chief result; it proves correctness
and a sample complexity bound for Algorithm 1.

Theorem 4 (Sequential-Pairwise-Battle: Correctness
and Sample Complexity). Consider any iid subsetwise
preference model RUM(k,θ) based on a noise distri-
bution D, and suppose that for any item pair i, j, we
have Min-AR(i, j) ≥ 1 +

4c∆ij

1−2c for some D-dependent
constant c > 0. Then, Algorithm 1, with input con-
stant c > 0, is an (ε, δ)-PAC algorithm with sample
complexity O( n

c2ε2 log k
δ ).

The proof of the result appears in Appendix B.1.

Remark 3. The linear dependence on the total num-

ber of items, n, is, in effect, indicates the price to
pay for learning the n unknown model parameters
θ = (θ1, . . . , θn) which decide the subsetwise winning
probabilities of the n items. Remarkably, however, the
theorem shows that the PAC sample complexity of the
(ε, δ)-best item identification problem, with only winner
feedback information from k-size subsets, is indepen-
dent of k (except some mild logarithmic dependencies).
One may expect to see improved sample complexity as
the number of items being simultaneously tested in each
round is large (k ≥ 2), but note that on the other side,
the sample complexity could also worsen, since it is also
harder for a good item to win and show itself in a few
draws against a large population of k− 1 other competi-
tors – these effects roughly balance each other out, and
the final sample complexity only depends on the total
number of items n and the accuracy parameters (ε, δ).

Note that Lemma 3 gives specific values of the noise-
model D dependent constant c > 0, using which we can
derive specific sample complexity bounds for certain
noise models:

Corollary 5 (Model specific correctness and sample
complexity guarantees). For the following representa-
tive noise distributions: Exponential(1), Gumbel(µ, σ)
Gamma(2, 1), Uniform(a, b), Weibull(λ, 1), Standard
normal or Normal(0, 1), Seq-PB (Alg.1) finds an (ε, δ)-
PAC item within sample complexity O

(
n
ε2 ln k

δ

)
.

Proof sketch. The proof follows from the general per-
formance guarantee of Seq-PB (Thm. 4) and Lem. 3.
More specifically from Lem. 3 it follows that the value
of c for these specific distributions are constant, which
concludes the claim. For completeness the distribution-
specific values of c are given in Appendix B.2.

5.2 Sample Complexity Lower Bound

In this section we derive a sample complexity lower
bound for any (ε, δ)-PAC algorithm for any RUM(k,θ)
model with Min-AR(i, j) strictly bounded away from 1
in terms of ∆ij . Our formal claim goes as follows:

Theorem 6 (Sample Complexity Lower Bound for
RUM(k,θ) model). Given ε ∈ (0, 1

4 ], δ ∈ (0, 1], c >
0 and an (ε, δ)-PAC algorithm A with winner item
feedback, there exists a RUM(k,θ) instance ν with Min-
AR(i, j) ≥ 1+4c∆ij for all i, j ∈ [n], where the expected
sample complexity of A on ν is at least Ω

(
n
c2ε2 ln 1

2.4δ

)
.

The proof is given in Appendix B.3. It essentially
involves a change of measure argument demonstrating
a family of Plackett-Luce models (iid Gumbel noise),
with the appropriate c value, that cannot easily be
teased apart by any learning algorithm.

Comparing this result with the performance guarantee
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of our proposed algorithm (Theorem 6) shows that
the sample complexity of the algorithm is order-wise
optimal (up to a log k factor). Moreover, this result
also shows that the IIA (independence of irrelevant
attributes) property of the Plackett-Luce choice model
is not essential for exploiting pairwise preferences via
rank breaking, as was claimed in (Saha and Gopalan,
2019). Indeed, except for the case of Gumbel noise,
none of the RUM(k,θ) based models in Corollary 5

satisfies IIA, but they all respect the O
(
n
ε2 ln 1

δ

)
(ε, δ)-

PAC sample complexity guarantee.

Remark 4. For constant c = O(1), the fundamental
sample complexity bound of Theorem 6 resembles that
of PAC best arm identification in the standard multi-
armed bandit (MAB) problem (Even-Dar et al., 2006).
Recall that our problem objective is exactly same as
MAB, however our feedback model is very different since
in MAB, the learner gets to see the noisy rewards/scores
(i.e. the exact values of Xi, which can be seen as a
noisy feedback of the true reward/score θi of item-i),
whereas here the learner only sees a k-wise relative
preference feedback based on the underlying observed
values of Xi, which is a more indirect way of giving
feedback on the item scores, and thus intuitively our
problem objective is at least as hard as that of MAB
setup.

6 Results for Top-m Ranking (TR)
feedback model

We now address our (ε, δ)-PAC item identification prob-
lem for the case of more general, top-m rank ordered
feedback for the RUM(k,θ) model, that generalises
both the winner-item (WI) and full ranking (FR) feed-
back models.

Top-m ranking of items (TR-m): In this feed-
back setting, the environment is assumed to return
a ranking of only m items from among S, i.e., the
environment first draws a full ranking σ over S ac-
cording to RUM(k,θ) as in FR above, and returns
the first m rank elements of σ, i.e., (σ(1), . . . ,σ(m)).
It can be seen that for each permutation σ on a sub-
set Sm ⊂ S, |Sm| = m, we must have Pr(σ = σ|S) =∏m
i=1 Pr(Xσ(i) > Xσ(j), ∀j ∈ {i+1, . . .m}), ∀σ ∈ Σm

S ,
where by Σm

S we denote the set of all possible m-
length ranking of items in set S, it is easy to note
that |S| =

(
k
m

)
m!. Thus, generating such a σ is also

equivalent to successively sampling m winners from S
according to the PL model, without replacement. It
follows that TR reduces to FR when m = k = |S| and
to WI when m = 1. Note that the idea for top-m rank-
ing feedback was introduced by (Saha and Gopalan,
2018a) but only for the specific Plackett Luce choice
model.

6.1 Algorithm for top-m ranking feedback

In this section, we extend the algorithm proposed earlier
(Alg. 1) to handle feedback from the general top-m
ranking feedback model. We also show that we can
achieve an 1

m -factor improved sample complexity rate
with top-m ranking feedback (Thm. 7). We finally give
a fundamental sample complexity bound (Thm. 8),
which shows the optimality of our proposed algorithm
mSeq-PB up to logarithmic factors.

Main idea: Same as Seq-PB, the algorithm proposed
in this section (Alg. 2) in principle follows the same
sequential elimination based strategy to find the near-
best item of the RUM(k,θ) model based on pairwise
preferences. However, we use the idea of rank breaking
(Soufiani et al., 2014; Saha and Gopalan, 2018a) to
extract the pairwise preferences: formally, given any
set S of size k, if σ ∈ Σm

S , (Sm ⊆ S, |Sm| = m) denotes
a possible top-m ranking of S, then the Rank-Breaking
subroutine considers each item in S to be beaten by its
preceding items in σ in a pairwise sense. For instance,
given a full ranking of a set of 4 elements S = {a, b, c, d},
say b � a � c � d, Rank-Breaking generates the set of
6 pairwise comparisons: {(b � a), (b � c), (b � d), (a �
c), (a � d), (c � d)} etc.

As a whole, our new algorithm now again divides
the set of n items into small groups of size k, say
G1, . . .GG, G = dnk e, and play each sub-group some

t = O
(

k
mε2 ln 1

δ

)
many rounds. Inside any fixed sub-

group Gg, after each round of play, it uses Rank-
Breaking on the top-m ranking feedback σ ∈ Σm

Gg ,

to extract out
(
m
2

)
+ (k−m)m many pairwise feedback,

which is further used to estimate the empirical pairwise
preferences p̂ij for each pair of items i, j ∈ Gg. Based
on these pairwise estimates it then only retains the
strongest item of Gg and recurse the same procedure
on the set of surviving items, until just one item is left
in the set. The complete algorithm is given in Alg. 2
(Appendix C.1).

Theorem 7 analyses the correctness and sample com-
plexity bounds of mSeq-PB. Note that the sample com-
plexity bound of mSeq-PB with top-m ranking (TR)
feedback model is 1

m -times that of the WI model (Thm.
4). This is justified since intuitively revealing a ranking
on m items in a k-set provides about m many WI feed-
back per round, which essentially leads to the m-factor
improvement in the sample complexity.

Theorem 7 (mSeq-PB(Alg. 2): Correctness and
Sample Complexity). Consider any RUM(k,θ) sub-
setwise preference model based on noise distribution
D and suppose for any item pair i, j, we have Min-
AR(i, j) ≥ 1 +

4c∆ij

1−2c for some D-dependent constant
c > 0. Then mSeq-PB (Alg.2) with input constant
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c > 0 on top-m ranking feedback model is an (ε, δ)-
PAC algorithm with sample complexity O( n

mc2ε2 log k
δ ).

(Proof is given in Appendix C.2.) Similar to Cor. 5, for
the top-m model again, we can derive specific sample
complexity bounds for different noise distributions, e.g.,
Exponential, Gumbel, Gaussian, Uniform, Gamma etc.,
in this case as well.

6.2 Lower Bound: Top-m ranking feedback

In this section, we analyze the fundamental limit of
sample complexity lower bound for any (ε, δ)-PAC al-
gorithm for RUM(k,θ) model.

Theorem 8 (Sample Complexity Lower Bound for
RUM(k,θ) model with TR-m feedback). Given ε ∈
(0, 1

4 ] and δ ∈ (0, 1], and an (ε, δ)-PAC algorithm A with
winner item feedback, there exists a RUM(k,θ) instance
ν, in which for any pair i, j ∈ [n] Min-AR(i, j) ≥
1 + 4c∆ij, where the expected sample complexity of A
on ν with top-m ranking feedback has to be at least

Ω

(
n

mc2ε2 ln 1
2.4δ

)
for A to be (ε, δ)-PAC.

(The proof is given in Appendix C.3.) Similar to the
case of winner feedback, comparing Theorem 7 with
the above result shows that the sample complexity
of mSeq-PB is orderwise optimal (up to logarithmic
factors), for general case of top-m ranking feedback as
well.

7 Experiments

To complement our theoretical guarantees, we carry
out some empirical simulations, as detailed below.

RUM models. We use the following 4 different
noise models: 1. Gumbel(0, 1), 2. Normal(0, 1), 3.
Uniform(0, 1), 4. Exponential(1).

Utility Scores. Towards modelling different RUM
based choice models, we combine the above noise mod-
els with the following 4 different ground utility scores
(θ): 1. b1: θ1 = 0.8, θi = 0.6, otherwise. 2. g1:

θ1 = 0.8, θi = 0.2, otherwise. 3. geo: θ1 = 1, θi+1

θi
=

0.9, ∀i ∈ [n]. 4. arith: θ1 = 1, θi−θi+1 = 0.01, ∀i ∈ [n].
with respectively n = 8, 16, 50 and 100 items.

All reported performances are averaged across 50 runs.
To the best of our knowledge no known algorithm
address our problem setup for general RUM models,
unfortunately we could not compare our method (Alg.
1 and 2) with any baseline. Given the above setup, we
run two types the experiments to investigate:

Success probability (1 − δ) (i.e. rate of correct-
ness) vs sample complexity. We set k = n

2 ,m = k
2 ,

ε = minij |θi − θj | (i.e. the minimum pairwise gap
among the utility scores) for each different environ-
ment. As expected from Thm 4, 6—with higher sample
complexity, the success probability 1− δ goes to 1 for
each noise model showing that the algorithm is almost
always correct with sufficient queries; similarly for lower
number of observations the algorithms errors too often.

Figure 2: Success probability (1 − δ) vs sample com-
plexity of Alg. 1 on different utility score-noise model
combination

Sample complexity vs length of rank-ordered
feedback (m). We run these expeiments on the geo
dataset. Fig. 3 shows that the sample complexity
seem to scale as O( 1

m ) while ε, δ is kept fixed to 0.1
(validating the claim from Thm. 7).

Figure 3: Sample complexity vs length of rank-ordered
feedback (m) of Alg. 2 on geo utility score for different
RUM models

8 Conclusion and Future Directions
We have identified a new principle to learn with general
subset-size preference feedback in general iid RUMs –
rank breaking followed by pairwise comparisons. This
is by extending the concept of pairwise advantage from
the Plackett-Luce (PL) choice model to more general
RUMs, and by showing that the IIA property that PL
models enjoy is not essential for optimal sample com-
plexity. Several interesting directions exist for future
investigation, e.g., considering correlated noise models
(more general RUMs), explicitly modeling item features
or attributes, other metrics like regret for online util-
ity optimization, and relative preference learning in
time-correlated Markov Decision Processes.
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Szörényi, B., Busa-Fekete, R., Paul, A., and
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Supplementary for Best-item Learning in Random Utility Models
with Subset Choices

A Appendix for Section 4

A.1 Proof of Lemma 2

Lemma 2 (Variational lower bound for the advantage ratio). For any RUM(k,θ) based subsetwise preference
model and any item pair (i, j),7

Min-AR(i, j) ≥ min
z∈R

Pr
(
Xi > max(Xj , z))

Pr(Xj > max(Xi, z)
) . (3)

Moreover for RUM(k,θ) models one can show that for any triplet (i, j, S), Pr
(
Xi > max(Xj , z)) = F (z −

θj)F̄ (z − θi) +
∫∞
z−θj F̄ (x−∆ij)f(x)dx, which further lower bounds Min-AR(i, j) by:

min
z∈R

F (z − θj)F̄ (z − θi) +
∫∞
z−θj F̄ (x−∆ij)f(x)dx

F (z − θi)F̄ (z − θj) +
∫∞
z−θi F̄ (x+ ∆ij)f(x)dx

.

Proof. Let us fix any subset S and two consider the items i, j ∈ S such that θi > θj . Recall that we also denote
by ∆ij = (θi− θj). Let us define a random variable XS

r = maxr∈S\{i,j}Xr that denotes the maximum score value
taken by the rest of the items in set S. Note that the support of XS

r , say denoted by supp(XS
r ) = maxr∈S\{i,j} θr+

supp(D).

Let us also denote S̄ := arg minS⊆[n]||S|=k
Pr(i|S)
Pr(j|S) . We have:

Min-AR(i, j) =
Pr(i|S̄)

Pr(j|S̄)
=
Pr({Xi > Xj} ∩ {Xi > Xr ∀r ∈ S̄ \ {i, j}})
Pr({Xj > Xi} ∩ {Xj > Xr ∀r ∈ S̄ \ {i, j}})

=
Pr({Xi > Xj} ∩ {Xi > X S̄

r }})
Pr({Xj > Xi} ∩ {Xj > X S̄

r })

=

∫
suppXS̄r

Pr
(
{Xi > x} ∩ {Xi > Xj}

)
fXS̄r (x)dx∫

suppXS̄r
Pr
(
{Xi > x} ∩ {Xj > Xi}

)
fXS̄r (x)dx

=

∫
suppXS̄r

Pr
(
{Xi > x} ∩ {Xj > Xi}

)Pr({Xi>x}∩{Xi>Xj})
Pr
(
{Xi>x}∩{Xj>Xi}

)fXS̄r (x)dx∫
suppXS̄r

Pr
(
{Xi > x} ∩ {Xj > Xi}

)
fXS̄r (x)dx

> min
z∈supp(XS̄r )

[
Pr
(
{Xi > z} ∩ {Xi > Xj}

)
Pr
(
{Xi > z} ∩ {Xj > Xi}

)]∫suppXS̄r
Pr
(
{Xi > x} ∩ {Xj > Xi}

)
fXS̄r (x)dx∫

suppXS̄r
Pr
(
{Xi > x} ∩ {Xj > Xi}

)
fXS̄r (x)dx

= min
z∈supp(XS̄r )

Pr
(
{Xi > max(Xj , z)}

)
Pr
(
{Xj > max(Xi, z)}

)
> min

z∈R

Pr
(
{Xi > max(Xj , z)}

)
Pr
(
{Xj > max(Xi, z)}

)
Let us now introduce a random variable Y = max(Xj , z). Now owing to the ‘independent and identically
distributed noise’ assumption of the RUM(k,θ) model, we can further show that:

Pr
(
Xi > max(Xj , z)

)
= Pr(Xi > Y ) = Pr({Xi > Y } ∩ {Y = z}) + Pr({Xi > Y } ∩ {Y > z})

7We assume 0
0

to be ∞ in the right hand side of Eqn. 3.
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= Pr
(
{Xi > z} | {Y = z}

)
Pr(Xj < z) + Pr

(
{Xi > Y } ∩ {Y > z}

)
= Pr

(
{ζi + θi > z}

)
Pr(ζj + θj < z) + Pr

(
{Xi > Xj} ∩ {Xj > z}

)
= Pr

(
{ζi > z − θi}

)
Pr(ζj < z − θj) + Pr

(
{ζi > ζj − (θi − θj)} ∩ {ζj > z − θj}

)
= F (z − θj)F̄ (z − θi) +

∫ ∞
z−θj

F̄ (x−∆ij)f(x)dx,

which proves the claim.

A.2 Proof of Lemma 3

Lemma 3 (Analysing Min-AR for specific noise models). Given a fixed item pair (i, j) such that θi > θj, the
following bounds hold under the respective noise models in an iid RUM.

1. Exponential(λ): Min-AR(i, j) ≥ e∆ij > 1 + ∆ij for Exponential noise with λ = 1.

2. Extreme value distribution(µ, σ, χ): For Gumbel(µ, σ) (χ = 0) noise, Min-AR(i, j) = e
∆ij
σ > 1 +

∆ij

σ .

3. Uniform(a, b): Min-AR(i, j) ≥ 1 +
2∆ij

b−a for Uniform(a, b) noise (a, b ∈ R, b > a, and ∆ij <
a
2 ).

4. Gamma(k, ξ): Min-AR(i, j) ≥ 1 + ∆ij for Gamma(2, 1) noise.

5. Weibull(λ, k): Min-AR(i, j) ≥ eλ∆ij > 1 + λ∆ij for (k = 1).

6. Normal N (0, 1): ∃c > 0 such that, for ∆ij small enough (in a neighborhood of 0), Min-AR(i, j) ≥ 1 + c∆ij.

Proof. We can derive the Min-AR(i, j) values for the following distributions by simply applying the lower bound

formula stated in Thm. 2

(
minz∈R

F (z−θj)F̄ (z−θi)+
∫∞
z−θj

F̄ (x−∆ij)f(x)dx

F (z−θi)F̄ (z−θj)+
∫∞
z−θi

F̄ (x+∆ij)f(x)dx

)
along with their specific density functions

as stated below for each specific distributions:

1. Exponential noise:

When the noise distribution D is Exponential(1), i.e. ζi, ζj
iid∼ Exponential(1) note that: f(x) = e−x, F (x) = 1−e−x,

and support(D) = [0,∞).

2. Gumbel noise:

When the noise distribution D is Gumbel(µ, σ), i.e. ζi, ζj
iid∼ Gumbel(µ, σ) note that: f(x) = e−

(x−µ)
σ e−e

− (x−µ)
σ ,

F (x) = e−e
− (x−µ)

σ , and support(D) = (−∞,∞).

3. Uniform noise case:

When the noise distribution D is Uniform(a, b), i.e. ζi, ζj
iid∼ Uniform(a, b) note that: f(x) = 1

b−a , F (x) = x−a
b−a ,

and support(D) = [a, b].

4. Gamma noise:

When the noise distribution D is Gamma(k, ξ), with k = 2 and ξ = 1, i.e. ζi, ζj
iid∼ Gamma(2, 1) note that:

f(x) = xe−x, F (x) = 1− e−x − xe−x, and support(D) = [0,∞).

5. Weibull noise:

When the noise distribution D is Weibull(λ, k), with k = 1, i.e. ζi, ζj
iid∼ Weibull(λ, 1) note that: f(x) = 1

λe
− xλ ,

F (x) = 1− e− xλ , and support(D) = [0,∞).

6. Gaussian noise. (sketch) Note that Gaussian distributions do not have closed form CDFs and are difficult
to compute in general, so we propose a different line of analysis specifically for the Gaussian noise case: Take the

noise distribution to be standard normal, i.e., ζi, ζj
iid∼ N (0, 1), with density f(x) = 1√

2π
e−x

2/2. When Xi = θi+ζi
and Xj = θj + ζj with ∆ij = θi − θj > 0, we describe a method to find a lower bound for the quantity

inf
z∈R

Pr
(
Xi > max(Xj , z))

Pr(Xj > max(Xi, z)
) .
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First, note that by translation, we can take θj = 0 and θi = ∆ without loss of generality. Doing so allows us to
write

Pr
(
Xi > max(Xj , z)) = F (z)(1− F (z −∆)) +

∫ ∞
z

(1− F (y −∆))f(y)dy = g(∆, z),

where
g(a, b) = Pr(U,V )∼N (a,1)×N (0,1) [U > max(V, b)] .

It follows that

Pr
(
Xj > max(Xi, z)) = F (z −∆)(1− F (z)) +

∫ ∞
z−∆

(1− F (y + ∆))f(y)dy = g(−∆, z −∆).

With this notation, we wish to minimize the ratio g(∆,z)
g(−∆,z−∆) over z ∈ R.

Notice that g(0, z) = 1−F 2(z)
2 , and ∂g(∆,z)

∂∆ = F (z)f(z −∆) +
∫∞
z
f(y −∆)f(y)dy. Hence, up to first order, for ∆

small enough, we have8

g(∆, z)

g(−∆, z −∆)
≈

g(0, z) + ∆∂g(∆′,z)
∂∆′ |∆′=0

g(0, z −∆)−∆∂g(∆̃,z−∆)

∂∆̃
|∆̃=0

=
1
2 −

F 2(z)
2 + ∆F (z)f(z) + ∆

∫∞
z
f(y)2dy

1
2 −

F 2(z−∆)
2 −∆F (z −∆)f(z −∆)−∆

∫∞
z−∆

f(y)2dy

≡ h1(z)

h2(z)
, say.

Differentiating the above ratio w.r.t. z and equating it to 0 to find its minimum, we obtain the condition

h′1(z∗)h2(z∗) = h1(z∗)h
′
2(z∗)

⇔ (1−∆)F (z∗)f
′(z∗)h2(z∗) = (1 + ∆)F (z∗ −∆)f ′(z∗ −∆)h1(z∗). (4)

The solution z∗ to (4) is 0 for ∆ = 0. Since the Gaussian density is infinitely smooth, it follows that there exists
a universal constant c1 > 0 such that the solution z∗ to (4), for a general small ∆ is, z∗ = c1∆ up to first order.
This implies that

h1(z∗)

h2(z∗)
=

1
2 −

F 2(c1∆)
2 + ∆F (c1∆)f(c1∆) + ∆

∫∞
c1∆

f(y)2dy

1
2 −

F 2(c1∆−∆)
2 −∆F (−c1∆)f(−c1∆)−∆

∫∞
−c1∆

f(y)2dy

≈ 1 + c∆,

for a universal constant c > 0. This concludes the argument.

B Appendix for Section 5.1

B.1 Proof of Theorem 4

Theorem 4 (Sequential-Pairwise-Battle: Correctness and Sample Complexity). Consider any iid subsetwise
preference model RUM(k,θ) based on a noise distribution D, and suppose that for any item pair i, j, we have

Min-AR(i, j) ≥ 1 +
4c∆ij

1−2c for some D-dependent constant c > 0. Then, Algorithm 1, with input constant c > 0, is

an (ε, δ)-PAC algorithm with sample complexity O( n
c2ε2 log k

δ ).

Proof. We start by analyzing the required sample complexity of Sequential-Pairwise-Battle. Note that at any
iteration `, any set Gg is played for exactly t = k

2ε2`
ln k

δ`
many number of rounds. Also, since the algorithm

8The argument can be made rigorous using the Taylor expansion up to 2nd order.
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discards exactly k − 1 items from each set Gg, the maximum number of iterations possible is dlnk ne. Now at any

iteration `, since G =
⌊
|S`|
k

⌋
< |S`|

k , the total sample complexity the for iteration is at most |S`|k t ≤ n
2k`−1ε2`

ln k
δ`

,

as |S`| ≤ n
k`

for all ` ∈ [blnk nc]. Also note that for all but last iteration ` ∈ [blnk nc], we have ε` = cε
8

(
3
4

)`−1

,

and δ` = δ
2`+1 . Moreover, for the last iteration ` = dlnk ne, the sample complexity is clearly t = 2k

c2ε2 ln 2k
δ , as in

this case ε` = cε
2 , and δ` = δ

2 , and |S| = k. Thus, the total sample complexity of Algorithm 1 is given by

dlnk ne∑
`=1

|S`|
2ε2`

ln
k

δ`
≤
∞∑
`=1

n

2k`
(
cε
8

(
3
4

)`−1
)2 k ln

k2`+1

δ
+

2k

c2ε2
ln

2k

δ

≤ 64n

2c2ε2

∞∑
`=1

16`−1

(9k)`−1

(
ln
k

δ
+ (`+ 1)

)
+

2k

c2ε2
ln

2k

δ

≤ 32n

c2ε2
ln
k

δ

∞∑
`=1

4`−1

(9k)`−1

(
3`
)

+
2k

c2ε2
ln

2k

δ
= O

(
n

c2ε2
ln
k

δ

)
[for any k > 1],

and this proves the sample complexity bound of Theorem 4. We next prove the (ε, δ)-PAC property of Sequential-
Pairwise-Battle.

Consider any fixed subgroup G of size k, such that two items a, b ∈ G. Now suppose we denote by Pr({ab}|G) =
Pr(a|G) + Pr(b|G) the probability that either a or b wins in the subset G. Then the probability that a wins

in G given either a or b won in G is given by pab|G := Pr(a|G)
Pr({ab}|G) = Pr(a|G)

Pr(a|G)+Pr(b|G) — this quantity in a way

models the pairwise preference of a over b in the set G. Note that as long as θa > θb, pab|G >
1
2 , for any G (since

Pr(a|G) > Pr(b|G)). We in fact now introduce the notation pab := minG⊆[n]||G|=k pab|G .

Lemma 9. For any item pair i, j ∈ [n] and any set S ⊆ [n], if their advantage ratio Pr(i|S)
Pr(j|S) ≥ 1 + α, for some

α > 0, then pairwise preference of item i over j in set S pij|S >
1
2 + α

4 .

Proof. Note that

Pr(i|S)

Pr(j|S)
≥ 1 + α =⇒ Pr(i|S)− Pr(j|S)

Pr(j|S)
≥ α

=⇒ pij|S − 0.5 =
Pr(i|S)− Pr(j|S)

2(Pr(i|S) + Pr(j|S))
≥ αPr(j|S))

2(Pr(j|S) + Pr(j|S))
=
α

4
,

which concludes the proof.

Corollary 10. For any item pair i, j ∈ [n], if If Min-AR(i, j) ≥ 1 + α for some α > 0, then pij >
1
2 + α

4 .

Proof. The proof directly follows from Lem . 9 by using subset S = minS⊆[n]||S|=kMin-AR(i, j).

Let us denote the set of surviving items S at the beginning of phase ` as S`. We now claim the following crucial
lemma which shows at any phase `, the best (the one with highest θ parameter) item retained in S`+1 can not be
too bad in comparison to the best item of S`. The formal claim goes as follows:

Lemma 11. At any iteration `, for any Gg, if ig := arg max
i∈Gg

θi, then with probability at least (1−δ`), θcg > θig− ε`
c .

Proof. Let us define p̂ij = wi
wi+wj

, ∀i, j ∈ Gg, i 6= j. Then clearly p̂cgig ≥ 1
2 , as cg is the empirical winner in t

rounds, i.e. cg ← arg max
i∈Gg

wi. Moreover cg being the empirical winner of Gg we also have wcg ≥ t
k , and thus

wcg +wrg ≥ t
k as well. Let nij := wi +wj denotes the number of pairwise comparisons of item i and j in t rounds,
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i, j ∈ Gg. Clearly 0 ≤ nij ≤ t. Then let us analyze the probability of a ‘bad event’ where cg is indeed such that
θcg < θig − ε`

c .

This implies that the advantage ratio of ig and cg in G is
Pr(ig|G)
Pr(cg|G) ≥ 1 + 4ε`.

But now by Lem. 9 this further implies pigcg|G ≥ 1
2 + ε`. But since cg beats ig empirically in the subgroup G,

this implies p̂cgig >
1
2 . The following argument shows that this is even unlikely to happen, more formally with

probability (1− δ`/k):

Pr
({
p̂cgig ≥

1

2

})
= Pr

({
p̂cgig ≥

1

2

}
∩
{
ncgig ≥

t

k

})
+Pr

({
ncgig <

t

k

})
Pr
({
p̂cgig ≥

1

2

}∣∣∣{ncgig< t

k

})
= Pr

({
p̂cgig − ε` ≥

1

2
− ε`

}
∩
{
ncgig ≥

t

k

})
≤ Pr

({
p̂cgig − pcgig|G ≥ ε`

}
∩
{
ncgig ≥

t

k

})
≤ exp

(
− 2

t

k

(
ε`
)2)

=
δ`
k
.

where the first inequality holds as pcgig|G <
1
2 − ε`, and the second inequality follows from Hoeffdings lemma.

Now taking the union bound over all ε`-suboptimal elements i′ of Gg (i.e. θi′ < θig − ε`), we get:

Pr
({
∃i′ ∈ Gg | pi′ig<

1

2
− ε`, and cg = i′

})
≤ δ`
k

∣∣∣{∃i′ ∈ Gg | pi′ig< 1

2
− ε`, and cg = i′

}∣∣∣ ≤ δ`,
as |Gg| = k, and the claim follows henceforth.

Let us denote the single element remaining in S at termination by r ∈ [n]. Also note that for the last iteration

` = dlnk ne, since ε` = ε
2 , and δ` = δ

2 , applying Lemma 11 on S, we get that Pr
(
θr < θig − ε

2

)
≤ δ

2 .

Without loss of generality we assume the best item of the RUM(k,θ) model is θ1, i.e. θ1 > θi ∀i ∈ [n] \ {1}. Now
for any iteration `, let us define g` ∈ [G] to be the index of the set that contains best item of the entire set S`, i.e.
arg maxi∈S` θi ∈ Gg` . Then applying Lemma 11, with probability at least (1− δ`), θcg` > θig` − ε`/c. Note that
initially, at phase ` = 1, ig` = 1. Then, for each iteration `, applying Lemma 11 recursively to Gg` , we finally get

θr > θ1 −
(
ε
8 + ε

8

(
3
4

)
+ · · ·+ ε

8

(
3
4

)blnk nc)− ε
2 ≥ θ1 − ε

8

(∑∞
i=0

(
3
4

)i)− ε
2 ≥ θ1 − ε. Thus assuming the algorithm

does not fail in any of the iteration `, we finally have that pr∗1 >
1
2 − ε—this shows that the final item output by

Seq-PB is ε optimal.

Finally since at any phase `, the algorithm fails with probability at most δ`, the total failure probability of the

algorithm is at most
(
δ
4 + δ

8 + · · ·+ δ
2dlnk ne

)
+ δ

2 ≤ δ. This concludes the correctness of the algorithm showing

that it indeed satisfies the (ε, δ)-PAC objective.

B.2 Proof of Corollary 5

Proof. The proof essentially follows from the general performance guarantee of Seq-PB (Thm. 4) and Lem. 3.
More specifically from Lem. 3 it follows that the value of c for these specific distributions are constant, which
concludes the claim. For completeness the distribution-specific values of c are given below:

1. c = 0.25 for Exponential noise with λ = 1

2. c = 0.25
σ for Gumbel(µ, σ)

3. c = 0.5
(b−a) for Uniform(a, b)

4. c = 1
4 for Gamma(2, 1)
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5. c = λ
4 for Weibull(λ, 1)

6. c = 1
3 Normal N (0, 1), etc.

B.3 Proof of Theorem 6

Before proving the lower bound result we state a key lemma from (Kaufmann et al., 2016) which is a general
result for proving information theoretic lower bound for bandit problems:

Consider a multi-armed bandit (MAB) problem with n arms or actions A = [n]. At round t, let At and Zt denote
the arm played and the observation (reward) received, respectively. Let Ft = σ(A1, Z1, . . . , At, Zt) be the sigma
algebra generated by the trajectory of a sequential bandit algorithm up to round t.

Lemma 12 (Lemma 1, (Kaufmann et al., 2016)). Let ν and ν′ be two bandit models (assignments of reward
distributions to arms), such that νi (resp. ν′i) is the reward distribution of any arm i ∈ A under bandit model
ν (resp. ν′), and such that for all such arms i, νi and ν′i are mutually absolutely continuous. Then for any
almost-surely finite stopping time τ with respect to (Ft)t,

n∑
i=1

Eν [Ni(τ)]KL(νi, ν
′
i) ≥ sup

E∈Fτ
kl(Prν(E), P rν′(E)),

where kl(x, y) := x log(xy ) + (1− x) log( 1−x
1−y ) is the binary relative entropy, Ni(τ) denotes the number of times

arm i is played in τ rounds, and Prν(E) and Prν′(E) denote the probability of any event E ∈ Fτ under bandit
models ν and ν′, respectively.

We now proceed to proof our lower bound result of Thm. 6.

Theorem 6 (Sample Complexity Lower Bound for RUM(k,θ) model). Given ε ∈ (0, 1
4 ], δ ∈ (0, 1], c > 0

and an (ε, δ)-PAC algorithm A with winner item feedback, there exists a RUM(k,θ) instance ν with Min-
AR(i, j) ≥ 1 + 4c∆ij for all i, j ∈ [n], where the expected sample complexity of A on ν is at least Ω

(
n
c2ε2 ln 1

2.4δ

)
.

Proof. In order to apply the change of measure based lemma Lem. 12, we constructed the following specific
instances of the RUM(k,θ) model for our purpose and assume D to be the Gumbel(0, 1) noise:

True Instance (ν1) : θ1
j = 1− ε,∀j ∈ [n] \ {1}, and θ1

1 = 1,

Note the only ε-optimal arm in the true instance is arm 1. Now for every suboptimal item a ∈ [n] \ {1}, consider
the modified instances νa such that:

Instance–a (νa) : θaj = 1− 2ε,∀j ∈ [n] \ {a, 1}, θa1 = 1− ε, and θaa = 1.

For any problem instance νa, a ∈ [n] \ {1}, the probability distribution associated with arm S ∈ A is given by

νaS ∼ Categorical(p1, p2, . . . , pk), where pi = Pr(i|S), ∀i ∈ [k], ∀S ∈ A,

where Pr(i|S) is as defined in Section 3.1. Note that the only ε-optimal arm for Instance-a is arm a. Now
applying Lemma 12, for any event E ∈ Fτ we get,

∑
{S∈A:a∈S}

Eν1 [NS(τA)]KL(ν1
S ,ν

a
S) ≥ kl(Prν(E), P rν′(E)). (5)

The above result holds from the straightforward observation that for any arm S ∈ A with a /∈ S, ν1
S is

same as νaS , hence KL(ν1
S ,ν

a
S) = 0, ∀S ∈ A, a /∈ S. For notational convenience, we will henceforth denote

Sa = {S ∈ A : a ∈ S}.
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Now let us analyse the right hand side of (5), for any set S ∈ Sa.

Case-1: First let us consider S ∈ Sa such that 1 /∈ S. Note that in this case:

ν1
S(i) =

1

k
, for all i ∈ S

On the other hand, for problem Instance-a, we have that:

νaS(i) =

{
e1

(k−1)e1−2ε+e1 when S(i) = a,
e1−2ε

(k−1)e1−2ε+e1 , otherwise

Now using the following upper bound on KL(p1,p2) ≤
∑
x∈X

p2
1(x)
p2(x) − 1, p1 and p2 be two probability mass

functions on the discrete random variable X (Popescu et al., 2016) we get:

KL(ν1
S ,ν

a
S) ≤ (k − 1)

(k − 1)e1−2ε + e1

k2(e1−2ε)
+

(k − 1)e1−2ε + e1

k1e1
− 1

=
(k − 1)

k2

(
eε − e−ε

)2

=
(k − 1)

k2
e−2ε(eε − 1)2 ≤ ε2

k
for any ε ∈

[
0,

1

2

]
Case-2: Now let us consider the remaining set in Sa such that S 3 1, a. Similar to the earlier case in this case
we get that:

νaS(i) =

{
e1

(k−1)e1−ε+e1 when S(i) = 1,
e1−ε

(k−1)e1−ε+e1 , otherwise

On the other hand, for problem Instance-a, we have that:

νaS(i) =


e1−ε

(k−2)e1−2ε+e1−ε+e1 when S(i) = 1,
e1

(k−2)e1−2ε+e1−ε+e1 when S(i) = a,
e1−2ε

(k−2)e1−2ε+e1−ε+e1 , otherwise

Now using the previously mentioned upper bound on the KL divergence, followed by some elementary calculations
one can show that for any

[
0, 1

4

]
:

KL(ν1
S ,ν

a
S) ≤ 8ε2

k

Thus combining the above two cases we can conclude that for any S ∈ Sa, KL(ν1
S ,ν

a
S) ≤ 8ε2

k , and as argued
above for any S /∈ Sa, KL(ν1

S ,ν
a
S) = 0.

Note that the only ε-optimal arm for any Instance-a is arm a, for all a ∈ [n]. Now, consider E0 ∈ Fτ be an
event such that the algorithm A returns the element i = 1, and let us analyse the left hand side of (5) for E = E0.
Clearly, A being an (ε, δ)-PAC algorithm, we have Prν1(E0) > 1− δ, and Prνa(E0) < δ, for any suboptimal arm
a ∈ [n] \ {1}. Then we have

kl(Prν1(E0), P rνa(E0)) ≥ kl(1− δ, δ) ≥ ln
1

2.4δ
(6)
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where the last inequality follows from (Kaufmann et al., 2016) (Eqn. 3).

Now applying (5) for each modified bandit Instance-νa, and summing over all suboptimal items a ∈ [n] \ {1} we
get,

n∑
a=2

∑
{S∈A|a∈S}

Eν1 [NS(τA)]KL(ν1
S ,ν

a
S) ≥ (n− 1) ln

1

2.4δ
. (7)

Using the upper bounds on KL(ν1
S ,ν

a
S) as shown above, the right hand side of (7) can be further upper bounded

as:

n∑
a=2

∑
{S∈A|a∈S}

Eν1 [NS(τA)]KL(ν1
S ,ν

a
S) ≤

∑
S∈A

Eν1 [NS(τA)]
∑

{a∈S|a 6=1}

8ε2

k

=
∑
S∈A

Eν1 [NS(τA)]k −
(
1(1 ∈ S)

)8ε2

k
≤
∑
S∈A

Eν1 [NS(τA)]8ε2. (8)

Finally noting that τA =
∑
S∈A[NS(τA)], combining (7) and (8), we get

(8ε2)Eν1 [τA] =
∑
S∈A

Eν1 [NS(τA)](8ε2) ≥ (n− 1) ln
1

2.4δ
. (9)

Now note that as derived in Lem. 3, for Gumbel(0, 1) noise, we have shown that for any pair i, j ∈ [n], Min-
AR(i, j) = e∆ij > 1 + ∆ij = 1 + 4 1

4∆ij =⇒ the value of the noise dependent constant c can be taken to

be c = 1
4 . Thus rewriting Eqn. 9 we get Eν1 [τA] ≥ (n−1)

8ε2 ln 1
2.4δ = (n−1)

128c2ε2 ln 1
2.4δ . The above construction

shows the existence of a problem instance of RUM(k,θ) model where any (ε, δ)-PAC algorithm requires at least
Ω( n

c2ε2 ln 1
2.4δ ) samples to ensure correctness of its performance, concluding our proof.

Remark 5. It is worth noting that our lower bound analysis is essentially in spirit the same as the one proposed
by (Saha and Gopalan, 2019) for the Plackett luce model. However note that, their PAC objective is quite different
than the one considered in our case–precisely their model is positive scale invariant, unlike ours which is shift
invariant w.r.t the model parameters θ. Moreover our setting aims to find a ε-best item in additive sense (i.e.
to find an item i whose score difference w.r.t to the best item 1 is at most ε > 0 or θ1 − θi < ε), as opposed to
the (ε, δ)-PAC objective considered in (Saha and Gopalan, 2019) which seeks to find a multiplicative-ε-best item
(i.e. to find an item i which matches the score of the best item up to ε-factor or θi > εθ1). Therefore the problem
instance construction for proving a suitable lower bound these two setups are very different where lies the novelty
of out current lower bound analysis.

C Appendix for Section 6

C.1 Pseudo code of Sequential-Pairwise-Battle for top-m ranking feedback (mSeq-PB)

The description is given in Algorithm 2.

C.2 Proof of Theorem 7

Theorem 7 (mSeq-PB(Alg. 2): Correctness and Sample Complexity). Consider any RUM(k,θ) subsetwise

preference model based on noise distribution D and suppose for any item pair i, j, we have Min-AR(i, j) ≥ 1+
4c∆ij

1−2c
for some D-dependent constant c > 0. Then mSeq-PB (Alg.2) with input constant c > 0 on top-m ranking
feedback model is an (ε, δ)-PAC algorithm with sample complexity O( n

mc2ε2 log k
δ ).
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Algorithm 2 Sequential-Pairwise-Battle (TR-m feedback)

1: Input:
2: Set of items: [n], and subset size: k > 2 (n ≥ k ≥ m)
3: Error bias: ε > 0, and confidence parameter: δ > 0
4: Noise model (D) dependent constant c > 0
5: Initialize:
6: S ← [n], ε0 ← cε

8 , and δ0 ← δ
2

7: Divide S into G := dnk e sets G1,G2, · · · GG such that ∪Gj=1Gj = S and Gj ∩ Gj′ = ∅, ∀j, j′ ∈ [G], |Gj | =
k, ∀j ∈ [G− 1]. If |GG| < k, then set R1 ← GG and G = G− 1.

8: while ` = 1, 2, . . . do
9: Set S ← ∅, δ` ← δ`−1

2 , ε` ← 3
4ε`−1

10: for g = 1, 2, · · ·G do
11: Initialize pairwise (empirical) win-count wij ← 0, for each item pair i, j ∈ Gg
12: for τ = 1, 2, . . . t (:=

⌈
4k
mε2`

ln 2k
δ`

)
⌉

do

13: Play the set Gg (one round of battle)
14: Receive: The top-m ranking στ ∈ Σm

G
15: Update win-count wij of each item pair i, j ∈ Gg applying Rank-Breaking on στ
16: end for
17: Define p̂i,j =

wij
wij+wji

, ∀i, j ∈ Gg
18: If ∃ any i ∈ Gg such that p̂ij + ε`

2 ≥
1
2 , ∀j ∈ Gg, then set cg ← i, else select cg ← uniformly at random

from Gg, and set S ← S ∪ {cg}
19: end for
20: S ← S ∪R`
21: if (|S| == 1) then
22: Break (go out of the while loop)
23: else if |S| ≤ k then
24: S′ ← Randomly sample k − |S| items from [n] \ S, and S ← S ∪ S′, ε` ← cε

2 , δ` ← δ
25: else
26: Divide S into G :=

⌈ |S|
k

⌉
sets G1, · · · GG such that ∪Gj=1Gj = S, Gj ∩ Gj′ = ∅, ∀j, j′ ∈ [G], |Gj | = k, ∀j ∈

[G− 1]. If |GG| < k, then set R`+1 ← GG and G = G− 1.
27: end if
28: end while
29: Output: The unique item left in S

Proof. Same as the proof of Thm. 4, we start by analyzing the required sample complexity of the algorithm.
Note that at any iteration `, any set Gg is played for exactly t = 4k

mε2`
ln 2k

δ`
many number of times. Also since

the algorithm discards away exactly k − 1 items from each set Gg, hence the maximum number of iterations

possible is dlnk ne. Now at any iteration `, since G =
⌊
|S`|
k

⌋
< |S`|

k , the total sample complexity for iteration

` is at most |S`|k t ≤ 4n
mk`−1ε2`

ln 2k
δ`

, as |S`| ≤ n
k`

for all ` ∈ [blnk nc]. Also note that for all but last iteration

` ∈ [blnk nc], ε` = ε
8

(
3
4

)`−1

, and δ` = δ
2`+1 . Moreover for the last iteration ` = dlnk ne, the sample complexity is

clearly t = 4k
mc2(ε/2)2 ln 4k

δ , as in this case ε` = cε
2 , and δ` = δ

2 , and |S| = k. Thus the total sample complexity of

Algorithm 2 is given by

dlnk ne∑
`=1

|S`|
m(ε`/2)2

ln
2k

δ`
≤
∞∑
`=1

4n

mc2k`
(
ε
8

(
3
4

)`−1
)2 k ln

k2`+1

δ
+

16k

mc2ε2
ln

4k

δ

≤ 256n

mc2ε2

∞∑
`=1

16`−1

(9k)`−1

(
ln
k

δ
+ (`+ 1)

)
+

16k

mc2ε2
ln

4k

δ



Best-item Learning in Random Utility Models with Subset Choices

≤ 256n

mc2ε2
ln
k

δ

∞∑
`=1

4`−1

(9k)`−1

(
3`
)

+
16k

mc2ε2
ln

4k

δ
= O

(
n

mc2ε2
ln
k

δ

)
[for any k > 1].

We are now only left with proving the (ε, δ)-PAC correctness of the algorithm. We used the same notations as
introduced in the proof of Thm. 4.

We start by making a crucial observation that at any phase, for any subgroup Gg, the strongest item of the Gg
gets picked in the top-m ranking quite often. More formally:

Lemma 13. Consider any particular set Gg at any phase `, and let us denote by qi as the number of times
any item i ∈ Gg appears in the top-m rankings when items in the set Gg are queried for t rounds. Then if

ig := arg maxi∈Gg θi, then with probability at least
(

1 − δ`
2k

)
, one can show that qig > (1 − η)mtk , for any

η ∈
(

3
32
√

2
, 1
]
.

Proof. Fix any iteration ` and a set Gg, g ∈ 1, 2, . . . , G. Define iτg := 1(i ∈ στ ) as the indicator variable if ith

element appeared in the top-m ranking at iteration τ ∈ [t]. Recall the definition of TR feedback model (Sec. 3.1).

Using this we get E[iτg ] = Pr({ig ∈ σ) = Pr
(
∃j ∈ [m] | σ(j) = ig

)
=
∑m
j=1 Pr

(
σ(j) = ig

)
=
∑m−1
j=0

1
k−j ≥

m
k ,

as Pr({ig|S}) ≥ 1
|S| for any S ⊆ [Gg] (ig := arg maxi∈Gg θi being the best item of set Gg). Hence E[qig ] =∑t

τ=1 E[iτg ] ≥ mt
k . Now applying Chernoff-Hoeffdings bound for wig , we get that for any η ∈ ( 3

32 , 1],

Pr
(
qig ≤ (1− η)E[qig ]

)
≤ exp(−

E[qig ]η2

2
) ≤ exp(−mtη

2

2k
)

= exp

(
− 2η2

ε2`
ln

(
2k

δ`

))
= exp

(
− (
√

2η)2

ε2`
ln

(
2k

δ`

))
≤ exp

(
− ln

(
2k

δ`

))
≤ δ`

2k
,

where the second last inequality holds as η ≥ 3
32
√

2
and ε` ≤ 3

32 , for any iteration ` ∈ dlnne; in other words for any

η ≥ 3
32
√

2
, we have

√
2η
ε`
≥ 1 which leads to the second last inequality. Thus we finally derive that with probability

at least
(

1− δ`
2k

)
, one can show that qig > (1− η)E[qig ] ≥ (1− η) tmk , and the proof follows henceforth.

In particular, fixing η = 1
2 in Lemma 13, we get that with probability at least

(
1− δ`

2

)
, qig > (1− 1

2 )E[wig ] > mt
2k .

Note that, for any round τ ∈ [t], whenever an item i ∈ Gg appears in the top-m set Gτgm, then the rank breaking
update ensures that every element in the top-m set gets compared with rest of the k − 1 elements of Gg. Based
on this observation, we now prove that for any set Gg, a near-best (ε`-optimal of ig) is retained as the winner cg
with probability at least

(
1− δ`

2

)
. More formally:

Lemma 14. Consider any particular set Gg at any iteration `. Let ig ← arg maxi∈Gg θi, then with probability at

least
(

1− δ`
)

, θcg > θig − ε`
c .

Proof. With top-m ranking feedback, the crucial observation lies in that at any round τ ∈ [t], whenever an
item i ∈ Gg appears in the top-m ranking στ , then the rank breaking update ensures that every element in the
top-m set gets compared to each of the rest k − 1 elements of Gg - it defeats to every element preceding item in
σ ∈ ΣGgm , and wins over the rest. If nij = wij +wji denotes the number of times item i and j are compared after
rank-breaking, for i, j ∈ Gg, nij = nji, and from Lemma 13 with η = 1

2 we have that nigj ≥ mt
2k with probability

at least (1− δ`/2k). Given the above arguments in place, for any item j ∈ Gg \ {ig}, by Hoeffdings inequality:

Pr
({
p̂jig − pjig|Gg >

ε`
2

}
∩
{
njig ≥

mt

2k

})
≤ exp

(
− 2

mt

2k
(ε`/2)

2
))
≤ δ`

2k
,
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Now consider any item j such that θig − θj > ε`/c, then we have
Pr(ig|Gg)
Pr(j|Gg) > 1 + 4ε`, which by Lem. 9 implies

pigj|Gg >
1
2 + ε`, or equivalently pjig|Gg <

1
2 − ε`.

But since we show that for any item j ∈ Gg \ {1}, with high probability (1− δ`/2k), we have p̂jig − pjig|Gg <
ε`
2 .

Taking union bound above holds true for any j ∈ Gg \ {1} with probability at least (1− δ/2). Combining with
the above claim of pjig|Gg <

1
2 − ε`, this further implies p̂jig + ε`

2 < pjig|Gg + ε` <
1
2 . Thus no such ε` suboptimal

item can be picked as cg for any subgroup Gg, at any phase `.

On the other hand, following the same chain of arguments note that p̂igj−pigj|Gg > −
ε`
2 =⇒ p̂igj+

ε`
2 > pigj|Gg >

1
2

for all j ∈ Gg, ig is a valid candidate for cg always, or in other case some other ε`-suboptimal item j (such
θj > θig − ε`) can be chosen as cg. This concludes the proof.

The correctness-claim now follows using a similar argument as given for the proof of Thm. 4. We add the details
below for the sake of completeness: Without loss of generality, we assume the best item of the RUM(k,θ) model is
θ1, i.e. θ1 > θi ∀i ∈ [n]\{1}. Now for any iteration `, let us define g` ∈ [G] to be the index of the set that contains
best item of the entire set S`, i.e. arg maxi∈S` θi ∈ Gg` . Then applying Lemma 14, with probability at least (1−δ`),
θcg` > θig` − ε`/c. Note that initially, at phase ` = 1, ig` = 1. Then, for each iteration `, applying Lemma 14

recursively to Gg` , we finally get θr > θ1−
(
ε
8 + ε

8

(
3
4

)
+ · · ·+ ε

8

(
3
4

)blnk nc)− ε
2 ≥ θ1− ε

8

(∑∞
i=0

(
3
4

)i)− ε
2 ≥ θ1− ε.

Thus assuming the algorithm does not fail in any of the iteration `, we finally have that pr∗1 >
1
2 − ε—this shows

that the final item output by Seq-PB is ε optimal.

Finally note that since at each iteration `, the algorithm fails with probability at most δ`(1/2 + 1
2k ) ≤ δ`, the

total failure probability of the algorithm is at most
(
δ
4 + δ

8 + · · ·+ δ

2d
n
k
e

)
+ δ

2 ≤ δ. This shows the correctness of

the algorithm, concluding the proof.

C.3 Proof of Theorem 8

The proof proceeds almost same as the proof of Thm. 6, the only difference lies in the analysis of the KL-divergence
terms with top-m ranking feedback.

Consider the exact same set of RUM(k,θ) instances, {νa}na=1 we constructed for Thm. 6. It is now interesting to
note that how the top-m ranking feedback affects the KL-divergence analysis, precisely the KL-divergence shoots
up by a factor of m which in fact triggers an 1

m reduction in regret learning rate. We show this below formally.

Note that for top-m ranking feedback for any problem instance νa, a ∈ [n], each k-set S ⊆ [n] is associated
to
(
k
m

)
(m!) number of possible outcomes, each representing one possible ranking of set of m items of S, say

Sm. Also the probability of any permutation σ ∈ Σm
S is given by paS(σ) = Prνa(σ|S), where Prνa(σ|S) is as

defined for top-m ranking feedback for RUM(k,θ) problem instance νa (see Sec. 6). More formally, for problem
Instance-a, we have that:

paS(σ) = Prνa(σ = σ|S) =

m∏
i=1

Pr(Xσ(i) > Xσ(j), ∀j ∈ {i+ 1, . . .m}), ∀σ ∈ Σm
S

= Prνa(σ = σ|S) =

m∏
i=1

Pr(ζσ(i) > ζσ(j) − (θσ(i) − θaσ(j)), ∀j ∈ {i+ 1, . . .m}), ∀σ ∈ Σm
S

As also argued in the proof of Thm. 6, note that for any top-m ranking of σ ∈ Σm
S , KL(p1

S(σ), paS(σ)) = 0 for
any set S 63 a. Hence while comparing the KL-divergence of instances ν1 vs νa, we need to focus only on sets
containing a (recall we denote this as Sa). Applying the chain rule for KL-divergence, we now get:

KL(p1
S , p

a
S) = KL(p1

S(σ1),paS(σ1)) +KL(p1
S(σ2 | σ1), paS(σ2 | σ1)) + · · ·

+KL(p1
S(σm | σ(1 : m− 1)), paS(σm | σ(1 : m− 1))), (10)
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where we abbreviate σ(i) as σi and KL(P (Y | X), Q(Y | X)) :=
∑
x Pr

(
X = x

)[
KL(P (Y | X = x), Q(Y | X =

x))
]

denotes the conditional KL-divergence. Moreover it is easy to note that for any σ ∈ ΣmS such that σ(i) = a,
we have KL(p1

S(σi+1 | σ(1 : i)), paS(σi+1 | σ(1 : i))) := 0, for all i ∈ [m].

Now using the KL divergence upper bounds, as derived in the proof of Thm. 6, we have than

KL(p1
S(σ1), paS(σ1)) ≤ ∆′2a

8ε2

k

.

One can potentially use the same line of argument to upper bound the remaining KL divergence terms of (10) as
well. More formally note that for all i ∈ [m− 1], we can show that:

KL(p1
S(σi+1 | σ(1 : i)), paS(σi+1 | σ(1 : i)))

=
∑
σ′∈ΣiS

Pr(σ′)KL(p1
S(σi+1 | σ(1 : i)) = σ′, paS(σi+1 | σ(1 : i)) = σ′) ≤ 8ε2

k

Thus applying above in (10) we get:

KL(p1
S , p

a
S) = KL(p1

S(σ1) + · · ·+KL(p1
S(σm | σ(1 : m− 1)), paS(σm | σ(1 : m− 1))) ≤ 8mε2

k
. (11)

Eqn. (11) precisely gives the main result to derive Thm. 8. Note that it shows an m-factor blow up in the
KL-divergence terms owning to top-m ranking feedback. The rest of the proof can be derived by following
exactly the same argument used in 6, which yields to the desired sample complexity lower bound.
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