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We here present proofs of each introduced theoretical result (Appendix A) along with additional experiments and
implementation details (Appendix B). All of our code is publicly available for extension and reproduction.1

A Proofs

In this section we provide proofs of each introduced result.

Remark 1. Every deterministic policy defined over abstract states and �-relative options, ⇡O� : S� ! O�, induces

a unique Markov policy in the ground MDP, ⇡+

O�
: S ! �(A). We denote by ⇧O� the set of abstract policies

representable by the pair (�,O�), and let ⇧+

O�
be the corresponding set of policies in the original MDP.

Proof. Consider an arbitrary deterministic policy ⇡O� . By definition, this policy assigns one option to each abstract
state. Let O⇡ denote the set of options this policy assigns.

By construction of �-relative options, for every ground state s 2 S there is one unique option o�(s) 2 O⇡ that can
be executed in s.

Therefore, we construct a policy ⇡+

O�
as the combination of option policies in O⇡. Specifically, letting ⇡o�(s)

denote

the option policy of the option in O⇡ that is assigned to �(s):

⇡+

O�
(s) = ⇡o�(s)

(s) (22)

Theorem 1. (Main Result) For any �, the four introduced classes of �-relative options satisfy:

L(�,O�,Q⇤
"
) 

"Q
1� �

, L(�,O�,M") 
"R + |S|"TRMax

(1� �)2
, (23)

L(�,O�,⌧ ) 
⌧�|S|

(1� �)2
, L(�,O�,H) 

2

1� �

✓
"r +

�RMax

1� �

"p
2

◆
, (24)

where the L(�,O�,⌧ ) bound holds in goal-based MDPs and the other three hold in any MDP.

We prove this claim using four separate proofs, each targeting one class.

1https://github.com/david-abel/vpsa_aistats2020
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Proof. (L(�,O�,Q⇤
"
)  "Q

1��
)

Consider L(�,O�,Q⇤
"
) = min

⇡
+

O�
2⇧+

O�

maxs2S |V ⇤(s)� V
⇡
+

O� (s)|. Since V ⇤(s) � V ⇡(s) for all ⇡, we henceforth drop

the absolute value for convenience.

To proceed, we recall that o⇤
s�

is the �-relative option that executes ⇡⇤ in every state and terminates when it leaves
the abstract state s�:

o⇤
s�

:= 8s2S :hI(s) ⌘ �(s) = s�, (25)

�(s) ⌘ �(s) 6= s�, (26)

⇡(s) = ⇡⇤(s)i. (27)

Note that since o⇤
s�

always chooses actions according to ⇡⇤, that Q⇤
s�
(s, o⇤

s�
) = V ⇤(s) (where Q⇤

s�
is defined according

to Equation 8).

Then, by the Q⇤
"
predicate, we can construct a policy over abstract states and options µO� 2 ⇧O� with the following

property:
8s�2S�,s2s� : Q⇤

s�
(s, o⇤

s�
)�Q⇤

s�
(s, µO�(s�))  "Q. (28)

Note that µO�(s�) outputs an option. As in Equation 28, we henceforth denote s� = �(s) and correspondingly
s0
�
= �(s0).

Then it must be the case that

L(�,O�,Q⇤
"
)  max

s2S

V ⇤(s)� V
µ
+

O� (s). (29)

Let Q⇤
t
(s, o) denote the expected discounted reward of executing option o, then executing t options under µO� , then

following the optimal policy thereafter. Note that

lim
t!1

Q⇤

t
(s, µO�(s�)) = V

µ
+

O� (s), (30)

because Q⇤
t
(s, µO�(s�)) is the expected discounted reward of executing t + 1 options under µO� , then following the

optimal policy thereafter.

We next show by induction on t that

max
s2S

V ⇤(s)� V
µ
+

O� (s) = max
s2S

lim
t!1

V ⇤(s)�Q⇤

t
(s, µO�(s�)) 

"Q
1� �

. (31)

In particular, we wish to show that

8t2N : max
s2S

V ⇤(s)�Q⇤

t
(s, µO�(s�)) 

tX

i=0

"Q�
i. (32)

(Base Case)
When t = 0, for all s 2 S,

Q⇤

0(s, µO�(s�)) = Q⇤

s�
(s, µO�(s�)), (33)

because both quantities represent the expected discounted reward of executing the option µO�(s�) then following
the optimal policy thereafter. It follows that

max
s2S

V ⇤(s)�Q⇤

0(s, µO�(s�)) = max
s2S

V ⇤(s)�Q⇤

s�
(s, µO�(s�)), (34)

= max
s2S

Q⇤

s�
(s, o⇤

s�
)�Q⇤

s�
(s, µO�(s�)), (35)

 "Q, (36)

=
0X

i=0

"Q�
0, (37)
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where the inequality holds by definition of µO� .

(Inductive Case)
We assume as the inductive hypothesis that

max
s2S

V ⇤(s)�Q⇤

k
(s, µO�(s�)) 

kX

i=0

"Q�
i, (38)

and want to show that

max
s2S

V ⇤(s)�Q⇤

k+1(s, µO�(s�)) 
k+1X

i=0

"Q�
i. (39)

To begin, fix s 2 S and consider

V ⇤(s)�Q⇤

k+1(s, µO�(s�)) (40)

= V ⇤(s)�

 
Ro(s, µO�(s�)) +

X

s02S

To(s
0
|s, µO�(s�))Q

⇤

k
(s0, µO�(s

0

�
))

!
(41)

= V ⇤(s)�Ro(s, µO�(s�))�
X

s02S

To(s
0
|s, µO�(s�))Q

⇤

k
(s0, µO�(s

0

�
)) (42)

where Ro and To indicate the reward and multi-time option models from Sutton et al. (1999).

Now, subtract and add
P

s02S
To(s0|s, µO�(s�))V

⇤(s0):

= V ⇤(s)�Ro(s, µO�(s�))�
X

s02S

To(s
0
| s, µO�(s�))V

⇤(s0) (43)

+
X

s02S

To(s
0
| s, µO�(s�))V

⇤(s0)�
X

s02S

To(s
0
| s, µO�(s�))Q

⇤

k
(s0, µO�(s

0

�
))

= V ⇤(s)�Q⇤

s�
(s, µO�(s�)) +

X

s02S

To(s
0
| s, µO�(s�))

⇥
V ⇤(s0)�Q⇤

k
(s0, µO�(s

0

�
)
⇤

(44)

= Q⇤

s�
(s, o⇤

s�
)�Q⇤

s�
(s, µO�(s�)) +

X

s02S

To(s
0
| s, µO�(s�))

⇥
V ⇤(s0)�Q⇤

k
(s0, µO�(s

0

�
)
⇤

(45)

 "Q +
X

s02S

To(s
0
| s, µO�(s�))

⇥
V ⇤(s0)�Q⇤

k
(s0, µO�(s

0

�
)
⇤
, (46)

by definition of µO� . Continuing, we have that:

= "Q +
X

s02S

1X

n=1

P(s0, n|s, µO�(s�))�
n
⇥
V ⇤(s0)�Q⇤

k
(s0, µO�(s

0

�
)
⇤

(47)

 "Q +
X

s02S

1X

n=1

P(s0, n|s, µO�(s�))�
n

kX

i=0

"Q�
i, (48)

by the inductive hypothesis. Then:

= "Q + �
X

s02S

1X

n=0

P(s0, n+ 1|s, µO�(s�))�
n

kX

i=0

"Q�
i (49)

= "Q + �
kX

i=0

"Q�
i
X

s02S

1X

n=0

P(s0, n+ 1|s, µO�(s�))�
n (50)

 "Q + �
kX

i=0

"Q�
i
· 1 (51)

=
k+1X

i=0

"Q�
i, (52)
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since P(s0, n+ 1|s, µO�(s�)) is a probability distribution and � is less than 1.

All together, we’ve shown that V ⇤(s)�Q⇤

k+1(s, µO�(s�)) 
P

k+1
i=0 "Q�i for all s 2 S, which implies that

max
s2S

V ⇤(s)�Q⇤

k+1(s, µO�(s�)) 
k+1X

i=0

"Q�
i, (53)

as desired.

It follows by induction that

8t2N : max
s2S

V ⇤(s)�Q⇤

t
(s, µO�(s�)) 

tX

i=0

"Q�
i. (54)

Therefore,

L(�,O�,Q⇤
"
)  max

s2S

V ⇤(s)� V
µ
+

O� (s) (55)

= max
s2S

lim
t!1

V ⇤(s)�Q⇤

t
(s, µO�(s�)) (56)

 lim
t!1

tX

i=0

"Q�
i (57)

=
"Q

1� �
, (58)

which completes the proof.

Proof. (L(�,O�,M") 
"R+|S|"TVMax

1��
)

We show that this class is a subclass of the O�,Q⇤
"
class. Therefore, it stands to show that, given our class definition,

there exists an option in every abstract state that is near-optimal in Q-value.

Fix s 2 S. Let s� = �(s). By the M" predicate, there exists an option o 2 O� such that

||T s
0

s,o⇤s�
� T s

0

s,o
||1  "T and ||Rs,o⇤s�

�Rs,o||1  "R. (59)

Now, we consider the di↵erence in optimal Q-values between o⇤
s�

and o. We first have that:

Q⇤

s�
(s, o) = R(s,⇡o(s)) + �

X

s02S

T (s0 | s,⇡o(s))
⇣

(s0 2 s�)Q
⇤

s�
(s0, o) + (s0 62 s�)V

⇤(s0)
⌘

= Ro(s, o) +
X

s02S

To(s
0
|s, o)V ⇤(s0),

(60)

with Ro and To denoting the reward model and multi-time model of Sutton et al. (1999).
By symmetry,

Q⇤

s�
(s, o⇤

s�
) = Ro(s, o

⇤

s�
) +

X

s02S

To(s
0
|s, o⇤

s�
)V ⇤(s0). (61)
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Therefore,

|Q⇤

s�
(s, o⇤

s�
)�Q⇤

s�
(s, o)| = |Ro(s, o

⇤

s�
)�Ro(s, o) +

X

s02S

To(s
0
|s, o⇤

s�
)V ⇤(s0) �

X

s02S

To(s
0
|s, o)V ⇤(s0)|

 |Ro(s, o
⇤

s�
)�Ro(s, o)|+ |

X

s02S

⇣
To(s

0
|s, o⇤

s�
)� To(s

0
|s, o)

⌘
V ⇤(s0)|

 |Ro(s, o
⇤

s�
)�Ro(s, o)|+

X

s02S

|To(s
0
|s, o⇤

s�
)� To(s

0
|s, o)||V ⇤(s0)|

 "R + |S|"TVMax,

(62)

by the model similarity assumption. We have now shown that any option with near-optimal models has a near-optimal
Q-value with "Q = "R + |S|"TVMax. Therefore, by the previous result,

L(�, O�,M") 
"R + |S|"TVMax

1� �
. (63)

Proof. (L(�,O�,⌧ ) 
⌧�|S|

(1��)2 )

We first state rigorously our definition of a goal-based MDP.

Definition 8 (Goal-based MDP): A goal-based MDP is an MDP with some number of goal states, denoted SG ✓ S.

The reward function is such that R(s, a) = 1 if s 2 SG, R(s, a) = 0 otherwise, and the episode terminates after

receiving a reward in a goal state. Furthermore, we assume that each goal state exists in its own abstract state:

s 6= sG ) �(sG) 6= �(s), where sG 2 SG, s 2 S.

We show that this class is a subclass of the O�,Q⇤
"
class in goal-based MDPs. In particular, it stands to show that

given our class definition, there exists an option in every abstract state that is near-optimal in Q-value.

First, note that in the abstract states containing a goal state, any option is optimal since R(s, a) = 1 regardless of
action. Therefore, we restrict our attention to an arbitrary s 2 S \SG, fixing s� = �(s). Let o be an option available
in s� such that maxs2s�,s

02S |P(s0, k | s, o⇤
s�
)� P(s0, k | s, o)|  ⌧ , by the option class definition. Then

Q⇤

s�
(s, o⇤

s�
)�Q⇤

s�
(s, o) (64)

= Ro(s, o
⇤

s�
) +

X

s02S

To(s
0
|s, o⇤

s�
)V ⇤(s0)�Ro(s, o)�

X

s02S

To(s
0
|s, o)V ⇤(s0) (65)

=
X

s02S

h
To(s

0
|s, o⇤

s�
)� To(s

0
|s, o)

i
V ⇤(s0), (66)

where we drop the Ro terms since s 62 SG, each goal state has its own abstract state, and R(s, a) = 0 for s 62 SG.
Continuing, we have that

Q⇤

s�
(s, o⇤

s�
)�Q⇤

s�
(s, o) =

X

s02S

"
1X

k=1

|P(s0, k | s, o⇤
s�
)� P(s0, k | s, o)|�k

#
V ⇤(s), (67)

writing out the multi-time model. This implies that

Q⇤

s�
(s, o⇤

s�
)�Q⇤

s�
(s, o) 

X

s02S

⌧�

1� �
V ⇤(s). (68)
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Now, note that V ⇤(s0) =
P

sG2SG

P
1

t=0 p(sG, t | s
0,⇡⇤)�t in a goal-based MDP, where p(sG, t | s0,⇡⇤) is the prob-

ability of being in state sG after t timesteps, starting from s0 and following ⇡⇤. Indeed, this gives that V ⇤(s0)  1
since p(sG, t | s0,⇡⇤) is a probability distribution and � is less than one. Therefore,

Q⇤

s�
(s, o⇤

s�
)�Q⇤

s�
(s, o) 

⌧�|S|

1� �
. (69)

We have shown that there exists an option, o, in any abstract state that is near-optimal in Q-value, with "Q = ⌧�|S|

1��
.

Therefore, by the O�,Q⇤
"
bound,

L(�,O�,⌧ ) 
⌧�|S|

(1� �)2
, (70)

as desired.

Proof.

⇣
L(�,O�,H)  2

1��

⇣
"r +

�RMax
1��

"p

2

⌘⌘

We prove this result by illustrating the connection between our formalisms and the work of Ravindran and Barto
(2004). To do so, we first restate their definition of an approximate homomorphism.

Definition 9 (Approximate Homomorphism (Ravindran and Barto (2004))): An approximate MDP homomorphism

h from an MDP M = hS,A, , P,Ri to an MDP M
0 = hS0, A0, 0, P 0, R0

i is a surjection from  to  0, defined by a

tuple of surjections hf, {gs|s 2 S}i , with h((s, a)) = (f(s), gs(a)) , where f : S ! S0
and gs : As ! A0

f(s) for s 2 S,

such that for all s, s0 in S and a 2 As :

P 0 (f(s), gs(a), f (s0)) =
X

(q,b)2[(s,a)]h

wqb

X

s002[s0]f

P (q, b, s00) (71)

R0 (f(s), gs(a)) =
X

(q,b)2[(s,a)]h

wqb R(q, b), (72)

where [(s, a)]h denotes the preimage of h((s, a)), [s0]f denotes the preimage of f(s0), andP
(q,b)2[(s,a)]h

wqb = 1. Furthermore,  and  0
denote the sets of admissible state-action pairs in the ground and

abstract MDP respectively. Based on  and  0
, As denotes the set of actions available in state s of the ground MDP,

and A0

f(s) denotes the set of abstract actions available in state f(s) of the abstract MDP.

We now illustrate how our definitions of �, R�, T� with respect to a given ⇡O� induce an approximate homomorphism.
First, note that our � precisely corresponds to their definition of f , a state abstraction. Then, fix s� 2 S�, and let
A0

s�
= {⇡O�(s�)} with gs(a) = ⇡O�(s�)8s2s� 8a2A.

We now consider our definitions of T� and R�:

T�(s
0

�
| s�, o) =

X

s2s�

w(s)
X

s02s
0

�

T (s0|s,⇡o(s)) R�(s�, o) =
X

s2s�

w(s)R(s,⇡o(s)), (73)

We note that these are precisely an instance of P 0 and R0 as defined above, with wqb = 0 whenever b 6= ⇡o(q) . We
write w(s) to denote this choice of weighting function, which depends only on the action prescribed by ⇡o. We select
this choice of weighting function (as opposed to a weighting dependent on all available actions) in order to faithfully
represent the 1-step behavior of executing an option in the abstract MDP.

By these connections, a deterministic policy ⇡O� over �-relative options coupled with our choice of weighting function
defines an approximate homomorphism. We further adapt their definitions of Kp and Kr to our notational setting,
which describe the maximum discrepancy in models between the ground and abstract MDPs.
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Kp = max
s2S,a2A

X

s�2S�

���
X

s02s�

T (s0|s, a)� T�(s�|�(s),⇡O�(�(s)))
���, (74)

Kr = max
s2S,a2A

|R(s, a)�R�(�(s),⇡O�(�(s)))|. (75)

The main theorem of Ravindran and Barto (2004) guarantees that the value loss of the optimal policy in the abstract
MDP M

0 is upper-bounded by
2

1� �

✓
Kr +

�

1� �
�r0

Kp

2

◆
,

where �r0 is upper-bounded by RMax. Let µO� 2 ⇧O� denote the optimal policy in the abstract MDP. By our option
class definition, all abstract policies ⇡O� 2 ⇧O� induce homomorphisms with bounded Kp,Kr, so, in particular, µO�

has bounded Kp,Kr. Then:

L(�,O�,H) = min
⇡O�

2⇧O�

����

����V
⇤
� V

⇡
+

O�

����

����
1

(76)



����

����V
⇤
� V

µ
+

O�

����

����
1

(77)


2

1� �

✓
Kr +

�

1� �
�r0

Kp

2

◆
(78)


2

1� �

✓
"r +

�RMax

1� �

"p
2

◆
, (79)

as desired.

Theorem 2. For any (�,O�) pair with L(�,O�)  ⌘, there must exist at least one option per abstract state that is

⌘-optimal in Q-value. Precisely, if L(�,O�)  ⌘, then:

8s�2S�8s2s�9o2O� : Q⇤

s�
(s, o⇤)�Q⇤

s�
(s, o)  ⌘. (80)

Proof. Let µO� = argmin
⇡O�

2⇧O�

����

����V
⇤
� V

⇡
+

O�

����

����
1

.

Suppose, for contradiction, that there exists an abstract state s� for which there is no ⌘-optimal option in O�. Then
it must be the case that

Q⇤

s�
(s, o⇤)�Q⇤

s�
(s, µO�(s)) > ⌘ (81)

for some s 2 s�.

By, Q⇤
s�
(s, o⇤) = V ⇤(s), this implies that

V ⇤(s)�Q⇤

s�
(s, µO�(s)) > ⌘. (82)

Then, note that Q⇤
s�
(s, µO�(s)) � V

µ
+

O� (s) because Q⇤
s�

describes the expected return of executing option µO�(s),

then switching to optimal behavior, whereas V
µ
+

O� describes the expected return of executing µO�(s) then continuing
to execute options according to µO� .

Noticing that V ⇤(s) � Q⇤
s�
(s, µO�(s)) � V

µ
+

O� (s), we have that

V ⇤(s)� V
µ
+

O� (s) > ⌘. (83)
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This implies that

L(�,O�) = min
⇡O�

2⇧O�

����

����V
⇤
� V

⇡
+

O�

����

����
1

(84)

= V ⇤(s)� V
µ
+

O� (s) (85)

> ⌘, (86)

which contradicts the premise. Therefore, it must be true that

8s�2S�8s2s�9o2O� : Q⇤

s�
(s, o⇤)�Q⇤

s�
(s, o)  ⌘. (87)

� A state abstraction function.

O� A set of �-relative options.

L(�,O�) The value loss of the �,O� pair.

⇡O� A policy that maps each abstract state to an option.

⇡+

O�
A policy over S and A, induced by ⇡O� .

Hn A hierarchy of depth n, denoting the pair of lists (�(n),O(n)
�

).

�(n) A list of n state abstractions, where �i : S�,i�1 ! S�,i.

�i The i-th state abstraction in a list �(n).

�i The result of applying the first i state abstractions to s, �i(. . .�1(s) . . .).

S�,i The i-th abstract state space.

si A state belonging to S�,i

V ⇡

i
Value of level i under policy ⇡, defined according to Ri and Ti.

O�,i Options at level i, with each component defined over states in S�,i�1.

Ri The reward function of level i.

Ti The reward function of level i.

⇡i The policy over level i of the hierarchy such that ⇡i : Si ! O�,i.

⇡#

i
A policy over S�,i�1 and O�,i�1, induced by ⇡i.

⇡+

i
A policy over S and A, induced by ⇡i.

Table 1: Abstraction notation.

A.1 Hierarchical Analysis

Our aim is to generalize Theorem 1 arbitrary hierarchies, Hn. To do so, we make two key observations. First, any
policy ⇡n represented at the top level of a hierarchy Hn also has a unique Markov policy in the ground MDP, which
we denote ⇡+

n
(in contrast to ⇡#

n
, which moves the level n policy to level n � 1). We summarize this fact in the

following lemma:

Remark 2. Every deterministic policy ⇡i defined according to the i-th level of a hierarchy, Hn, induces a unique

policy in the ground MDP, which we denote ⇡+

i
.

To be precise, note that ⇡#

i
specifies the level i policy ⇡i mapped into level ⇡i�1, whereas ⇡

+

i
refers to the policy at

⇡i mapped into ⇡0. For further details regarding notion, see Table 1.
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The second key insight is that the same notion of value loss from �,O� pairs can be extended to hierarchies, Hn.

Definition 10 (Hn-Value Loss): The value loss of a depth n hierarchy Hn is the smallest degree of suboptimality

across all policies representable at the top level of the hierarchy:

L(Hn) := min
⇡n2⇧n

���
���V ⇤

� V ⇡
+

n

���
���
1

. (88)

Note that the above value functions are the value function in the original MDP; this bound evaluates how suboptimal
the best hierarchical policy is in the ground MDP. We next show that there exist value-preserving hierarchies by
bounding the above quantity for well constructed hierarchies. To prove this result, we require two assumptions.

Assumption 1. The value function is consistent throughout the hierarchy. That is, for every level of the hierarchy

i 2 [1 : n], for any policy ⇡i over states S�,i and options O�,i, there is a small  2 R�0 such that:

max
s2S

����V
⇡
#

i
i�1

�
�i�1(s)

�
� V ⇡i

i

�
�i(s)

�����   (89)

Assumption 2. Subsequent levels of the hierarchy can represent policies similar in value to the best policy at the

previous level. That is, for every i 2 [1 : n � 1], letting ⇡⇧

i
= argmin

⇡i2⇧i
||V ⇤

0 � V
⇡
+

i
0 ||1, there is a small ` 2 R�0

such that:

min
⇡
#

i+12⇧#

i+1

����

����V
⇡
⇧

i
i

� V
⇡
#

i+1

i

����

����
1

 `. (90)

We strongly suspect that both assumptions are true given the right choice of state abstractions, options, and methods
of constructing abstract MDPs. As some motivating evidence, a claim closely related to Assumption 1 is proven
by Abel et al. (2016) as Claim 1, and Assumption 2 is of similar structure to our own Theorem 1. Regardless,
these two assumptions (along with Theorem 1) give rise to hierarchies that can represent near-optimal behavior. We
present this fact through the following theorem:

Theorem 3. Consider two algorithms: 1) A�: given an MDP M , outputs a �, and 2) AO� : given M and a �,
outputs a set of options O such that there are constants  and ` for which Assumption 1 and Assumption 2 are

satisfied. Then, by repeated application of A� and AO� , we can construct a hierarchy of depth n such that

L(Hn)  n(+ `). (91)

Proof. We present the proof of the bound for a two level hierarchy, but the same strategy generalizes to n levels via
induction.

Let ` be the known upper bound for L(�,O). Then:

By Theorem 1: min
⇡12⇧1

||V ⇤

0 � V
⇡
#

1
0 ||1  `

By Assumption 1: 8⇡12⇧1 : ||V
⇡
#

1
0 � V ⇡1

1 ||1  

Letting ⇡⇧

1 = argmin
⇡12⇧1

||V ⇤

0 � V
⇡
#

1
0 ||1, by Assumption 2: min

⇡
#

22⇧#

2

||V
⇡
⇧

1
1 � V

⇡
#

2
1 ||1  `

By Assumption 1 8
⇡
#

22⇧#

2
: ||V

⇡
#

2
1 � V

⇡
+

2
0 ||1  

Therefore, by the triangle inequality:

min
⇡22⇧2

||V ⇤

0 � V
⇡
+

2
0 ||1  2+ 2`. (92)

In short: the right hierarchies, constructed out of �,O� pairs, can also preserve value.
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B Experimental Details

We next provide further detail about the experiment described in Section 3.2.

The environment used is the Four Rooms grid world domain from Sutton et al. (1999). We place the start state
in the bottom left corner and the goal state in the top right corner, with no slip probability. We experiment with
Double Q-Learning (Hasselt, 2010), given access to di↵erent �,O� pairs from the O�,Q⇤

"
. We define the size of the

option set as follows: the first option included for each abstract state is guaranteed to have at worst an "-sub-optimal
policy within the cluster, as defined in the proof of the bounded value loss for the class. To construct this policy,
we explicitly create an " suboptimal version of ⇡⇤ via Lemma 2 of Arumugam et al. (2018). When |O| > 1, we
add options that execute the uniform random policy within the cluster, until it exits (and hence, terminates the
option). Thus, the learning problem requires that the agent discovers options of each abstract state which belong to
the near-optimal policy and learns to ignore others. We set the exploration parameter ✏ for Double Q to be 0.1, the
learning rate ↵ to be .05, and � = 0.95, with no tuning.

We ran further variations of the experiment with other canonical RL algorithms, including Q-Learning (Watkins
and Dayan, 1992), R-Max (Brafman and Tennenholtz, 2002), SARSA (Rummery and Niranjan, 1994), and Delayed
Q-Learning (Strehl et al., 2006). Results are presented in Figure 3. Again, we find the same trend uncovered in the
experiment with Double Q-Learning:
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(a) Q-Learning
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(c) Delayed Q-Learning
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(d) R-Max

Figure 3: Learning with value preserving �,O� pairs for di↵erent algorithms.
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B.1 Experiment: Learning with �,O�

We next conduct learning experiments of two kinds: 1) single-task, and 2) multi-task, in both cases contrasting the
sample e�ciency of learning algorithms with and without value-preserving abstractions. We first construct pairs
(�,O�) prescribed by the �,OQ⇤

"
class with " = 0.05. We conduct experiments in the classic Four Rooms MDP (Sut-

ton et al., 1999) and in a random graph MDP. We test with two di↵erent algorithms: 1) Q-Learning (Watkins and
Dayan, 1992), and 2) Delayed Q-Learning (Strehl et al., 2006). We ran each of the algorithms with and without
pairs (�,O�) from the option classes analyzed in Theorem 1.

We compare performance to learning algorithms on their own and given eigenoptions, which are chosen due to their
capacity for e↵ective exploration. As in the previous experiment, we test with two variants of eigenoptions: 1)
-eigen all, in which the primitive actions are removed and the options initiate in all states, and 2) -eigen prims, in
which the options are added to the primitive actions.

Single Task In the single-task experiments, we let each algorithm-abstraction pair interact with the Four Rooms
MDP for 500 episodes with each episode consisting of 75 steps, and the Random MDP for 500 episodes with 25 steps
per episode. We present the average cumulative reward achieved per episode across 10 runs with 95% confidence
intervals.

Results for the Four Rooms experiments are presented in Figure 4b and Figure 4c. Unsurprisingly, we find that both
learning algorithms are more sample e�cient with value-preserving pairs (�,O�), requiring a few episodes to learn
a near-optimal policy (see Q-learning-�, O and Delayed-Q-�, O, both in green). In contrast, the baseline learning
algorithms are unable to learn a reasonable policy even after around 400 episodes. The eigenoption variant shown
in red further exposes the di�culty of value preservation: since the algorithm can only reason with the options, it is
never able to find a good policy. Notably, the orange approach that includes primitive actions is able to also unable
to learn, since it has to search through the fully policy space representable by the primitive actions. Results for the
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(a) Random MDP: Q-Learning
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(b) Four Rooms: Q-Learning
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(c) Four Rooms: Double-Q
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(d) Multitask: Seen Goals
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(e) Multitask: Unseen Friendly Goals
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(f) Multitask: Unseen Adversarial Goals

Figure 4: Results for single-task learning experiments in Four Rooms and the Random MDP (top) and multi-task
learning experiments in Four Rooms (bottom).
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Random MDP experiment are presented in Figure 4a; again, we find the value preserving abstractions are capable
of supporting e�cient learning of a high value policy. Here, eigenoptions paired with primitives achieves roughly
the same learning speed as the baseline algorithm, while the variant without primitives can never learn a high-value
policy.

Multitask In the multitask setting, we fixed a uniform random probability distribution over goal states. Then,
we defined a state abstraction that picks out each goal state as its own abstract state, and otherwise groups each of
the four rooms into four di↵erent abstract states, which we give to Q-Learning-(�, O). At time step zero we sample
a goal from the goal distribution and let each algorithm interact with the sampled MDP for 200 episodes, with each
episode consisting of 50 steps. At the end of the 200 episodes, we reset each agent to tabula rasa, sample a new
goal, and repeat. We present the mean cumulative reward achieved averaged over 50 samples from the distribution,
with 95% confidence intervals. These results indicate how much the prior knowledge encoded by the abstractions
improves sample e�ciency over the entire distribution of goals. We again compare to the two variants of eigenoptions
discussed in the single task experiment.

Results are presented in the bottom row of Figure Figure 4. We consider three distributions of goals: 1) seen goals,
in which the agent constructs �-relative options for goals it sees during learning (Figure 4d); 2) unseen but friendly

goals, containing some goals the agent did not see during the construction of the options, but are close to those seen
during the option construction (Figure 4e), and 3) unseen but adversarial goals, where the agent is faced with some
goals not seen during construction of the options that are distant from those seen (Figure 4f). As expected, when
the agent faces familiar goals, the abstraction-equipped learner is far more sample e�cient than other approaches.
Indeed, in under fifty episodes, Q-Learning-�, O tends to find a high-value policy as seen in Figure 4d. Conversely,
as the goals shift to being out of distribution, the improvement is less significant, as showcased by the drop in the
green line’s performance in Figure 4e. In the adversarial case, we construct goals that avoid representation by the
�-relative options the agent has constructed, thereby ensuring worse overall performance than the baseline learner.
We find that the eigenoptions, given primitives, can learn faster than the baseline in some cases, and is typically
competitive. Without primitives, however, eigenoptions can never discover a good policy, since no high-value policies
can be represented.

B.2 Experiment: Value Loss

We next establish further empirical support of our main result by contrasting the value loss of basic abstraction
types in small MDPs.

Four Rooms Lava Maze Random Hanoi Taxi

max⇡2⇧M V ⇡(s0) 0.86 0.71 76.12 0.74 0.94
max⇡2⇧O�

V ⇡(s0) 0.85 0.70 72.12 0.66 0.94

Table 2
In Table 2 we illustrate the value loss of our first class of value preserving �-relative options (O�,Q⇤

"
) in simple MDPs.

Each row indicates the value (shown in blue) of the best policy representable using the policy space induced by the
abstractions. As expected, the value preserving options can still represent a near-optimal policy in each MDP. For
instance, in Four Rooms, ⇧O� achieves value of 0.85 compared to the optimal value of 0.86.

In short, we find support for our main theorem: value preserving �-relative options can in fact preserve representation
of near-optimal policies when reasoning only in terms of options. In most MDPs tested, the optimal policy over
options only deviates from V ⇤ by a small amount, as expected.
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