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A Deferred Proofs of Section 3

Lemma 3.1. Given a correlation clustering instance
G, a fairlet decomposition P for G, and a clustering C
of G, there exists a clustering C′ of GP such that

cost(GP , C′) ≤ cost(G, C) + fcostout(P).

Proof. To show existence of the claimed clustering C′,
we devise a randomized algorithm and bound the ex-
pected cost of the clustering output of this algorithm.
We abuse notation and let clustering C′ be the output of
this randomized algorithm on GP . Given fairlet decom-
position P , the algorithm first picks a representative ri
for each partition Pi in P uniformly at random. Next
the algorithm defines clustering C′ based on where ri
is assigned in C: if ri is placed in cluster Cj , it places
the vertex pi of GP in the cluster C ′j .

Next, we bound the expected cost of C′ in GP . Let us
fix two vertices pi and pj in GP . We first consider the
case σ(pi, pj) > 0; the other case follows by a similar
argument. The clustering C′ incurs a cost of |σ(pi, pj)|
if pi and pj are assigned to different clusters, which
happens when the two representatives ri and rj are in
different clusters in C. Now, if σ(ri, rj) = +1, then C
also pays a cost of 1 for separating ri and rj and if
σ(ri, rj) = −1, then the edge (ri, rj) is an edge with the
minority sign and it contributes to fcostout(Pi, Pj).
Hence, if we denote the cost of the edge between pi and
pj in the clustering C′ by costC′(pipj), we can bound
the expected value of this cost as follows:

E[costC′(pi, pj)] ≤ |σ(pi, pj)| · E[costC(ri, rj)

+1 (σ(pi, pj) ∗ σ(ri, rj) < 0)],

where 1 (A) is an indicator function having value 1 if
A is true and zero otherwise. Now since ri and rj are
picked uniformly at random,

E[costC′(pi, pj)]

≤ |σ(pi, pj)|
|Pi| · |Pj |

· (costC(Pi, Pj) + fcostout(Pi, Pj)).

This follows from the fact that there are |Pi| · |Pj | many
possible pairs (ri, rj) to be selected. Summing the
above over all pi, pj and using |σ(pi, pj)| ≤ |Pi| · |Pj |,
we get

E
[
cost(GP , C′)

]
≤ cost(C) + fcostout(P).

Lemma 3.2. Assume C is a clustering of GP , and let
C′ be the clustering computed in line 4 of Algorithm 1
for G. Then we have

cost(G, C′) ≤ cost(GP , C) + fcost(P).

Proof. Any edge (u, v) contributing to the cost of the
clustering C′ is either a negative edge inside a fairlet or
an edge between two fairlets that are clustered in dis-
agreement with σ(u, v) in C. Negative edges inside fair-
lets are counted in fcostin(P). An edge (u, v) between
fairlets Pi and Pj that is clustered in disagreement with
σ(u, v) either has the same sign as the majority sign
of E(Pi, Pj), or as the minority sign of E(Pi, Pj). The
edges in the former case are counted in cost(GP , C),
and the edges in the latter case are counted in
fcostout(P). Therefore, the total cost of C′ is at most
cost(GP , C) + fcostin(P) + fcostout(P).

Lemma 3.3. For any constrained correlation clus-
tering instance G, and any constrained clustering C of
G, there is a fairlet decomposition P of G satisfying
fcost(P) ≤ cost(G, C).

Proof. We can simply take P to be the same as the
clustering C. It is easy to observe that this is a valid
fairlet decomposition. To bound fcost(P), it is enough
to note that each edge counted in fcostin(P) also
imposes a cost of 1 in C (as it is a negative edge inside
a cluster), and for any two clusters Ci and Cj , the
number of positive edges between Ci and Cj is at least
fcostout(Ci, Cj). Summing over all these inequalities,
we obtain that fcost(P) is at most cost(G, C).

B Deferred Proofs of Section 4

Lemma 4.1. For any fairlet decomposition P, we
have

mcost(P) ≤ 2 · fcost(P).

Proof. Consider a fairlet Pi in P. We define a vector
µ ∈ [0, 1]n indexed by the vertices of G as follows:
µu = majority({φ(v)u : v ∈ Pi}). By the definition of
mcost, we have

mcost(Pi) = min
u∈[0,1]n

∑
v∈Pi

d(u, v)

≤
∑
v∈Pi

|µ− φ(v)|. (1)

On the other hand, for every vertex u, if we denote
N−(u) = {v : (u, v) ∈ E−} and N+(u) = {u} ∪ {v :
(u, v) ∈ E+}, we have∑

v∈Pi

|µu − φ(v)u| = |{v ∈ Pi : φ(v)u 6= µu|}|

= min(|N−(u) ∩ Pi|, |N+(u) ∩ Pi|).

For u 6∈ Pi, the above quantity is precisely
fcostout(Pi, {u}). For u ∈ Pi, the above quantity
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is at most |N−(u) ∩ Pi|, which is the number of nega-
tive edges in Pi incident on u. Therefore, the sum of
this quantity over all u can be bounded by

∑
u∈V

∑
v∈Pi

|µu − φ(v)u| (2)

≤ 2 · fcostin(Pi) +
∑

u∈V \Pi
fcostout(Pi, {u}).

Finally, by the definition of fcostout, we have
fcostout(Pi, S) + fcostout(Pi, T ) ≤ fcostout(Pi, S ∪
T ) for any two disjoint sets S and T . Therefore,∑

u∈V \Pi

fcostout(Pi, {u}) ≤
∑
j 6=i

fcostout(Pi, Pj).

Combining this with Equations (1) and (2), we get
mcost(P) ≤ 2 · fcostin(P) + fcostout(P) ≤ 2 ·
fcost(P).

Lemma 4.2. Let P be any fairlet decomposition and
let f = maxP∈P |P |. Then,

fcost(P) ≤ 2f ·mcost(P).

Proof. Consider a fairlet Pi and define the vector µ as
in the proof of Lemma 4.1. It is easy to see that

mcost(Pi) = min
x∈[0,1]n

∑
v∈Pi

|x− φ(v)|

= |µ− φ(v)|
=

∑
u∈V

min(|N−(u) ∩ Pi|, |N+(u) ∩ Pi|).

As in the proof of Lemma 4.1, for every u 6∈ Pi,
the summand in the above expression is precisely
fcostout(Pi, {u}). For u ∈ Pi, this quantity is zero if
u has no negative edge to any other vertex in Pi, and
is at least 1 otherwise. Therefore, since |Pi| ≤ f , this
quantity is always at least the number of negative edges
from u to other vertices in Pi divided by f . Therefore,

mcost(Pi)

≥ 2

f
· fcostin(Pi) +

∑
j:j 6=i

∑
u∈Pj

fcostout(Pi, {u}).

Summing over all i and rearranging the terms, we
obtain:

mcost(P) ≥ 2

f
· fcostin(P) (3)

+
∑
i<j

∑
u∈Pj

fcostout(Pi, {u})

+
∑
u∈Pi

fcostout(Pj , {u})

)
.

Now, we fix i < j and bound the summand in the
above expression. Without loss of generality, we assume
|Pi| ≥ |Pj |. We consider the following cases:

Case 1: There are at most |Pi|/2 vertices u in Pi

with fcostout(Pj , {u}) = 0. In this case, we have∑
u∈Pi

fcostout(Pj , {u}) ≥ |Pi|
2 ≥ |Pi|·|Pj |

2f ≥
fcostout(Pi,Pj)

2f .

Case 2: There are at least |Pi|/2 vertices u in Pi with
fcostout(Pj , {u}) = 0. Let S be the set of such
vertices. By the definition of fcostout(Pj , {u}),
any u ∈ S must have either positive edges to all
vertices in Pj , or negative edges to all of them.
Assume x vertices in S have positive edges to all
vertices in Pj and y of them have negative edges,
for some x, y with x+y = |S| ≥ |Pi|/2. We further
consider the following cases:

Case 2a: If x = 0, then every vertex u in Pj

has at least Pi/2 positive edges to vertices in
Pi (namely, at least to those in S). There-
fore, fcostout(Pi, {u}) = |E− ∩ E(Pi, {u})|.
Thus,

∑
u∈Pj

fcostout(Pi, {u}) = |E− ∩
E(Pi, Pj)| ≥ fcostout(Pi, Pj).

Case 2b: If y = 0, an argument similar to case
2a shows that

∑
u∈Pj

fcostout(Pi, {u}) =

|E+ ∩ E(Pi, Pj)| ≥ fcostout(Pi, Pj).

Case 2c: If x ≥ 1 and y ≥ 1, then each vertex
in Pj has at least one positive edge and at
least one negative edge to Pi. Therefore, for
every u ∈ Pj , fcostout(Pi, {u}) ≥ 1. Thus,∑

u∈Pj
fcostout(Pi, {u}) ≥ |Pj | ≥ |Pi|·|Pj |

f ≥
fcostout(Pi,Pj)

f .

In all of the above cases, we have:∑
u∈Pj

fcostout(Pi, {u}) +
∑
u∈Pi

fcostout(Pj , {u})

≥ fcostout(Pi, Pj)

2f
.

This, together with (3), implies:

mcost(P) ≥ 2

f
· fcostin(P) +

1

2f
· fcostout(P)

≥ 1

2f
· fcost(P).
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Theorem 4.6. For α = 1/2, there is a 256-
approximation algorithm for fair correlation clustering.

Proof. From Theorem 4.3 and Lemma 4.5, we get
a 24-approximation algorithm for solving fairlet de-
composition with minimum fcost (f = 3, γ = 2).
From Lemma 3.5, there is a 2 · 2.06 · (1.5)2 = 9.27-
approximation algorithm for unconstrained correlation
clustering. Combining, we get a 255.75-approximation
algorithm for fair correlation clustering.

Theorem 4.8. For α = 1/C, there is a (16.48C2)-
approximation algorithm for fair correlation clustering.

Proof. From Theorem 4.3 and Lemma 4.5, we get a
4C2-approximation algorithm for solving fairlet decom-
position with minimum fcost (f = C, γ = C). From
Lemma 3.5, there is a 2·2.06·1 = 4.12-approximation al-
gorithm for unconstrained correlation clustering. Com-
bining, we get a (16.48C2)-approximation algorithm
for fair correlation clustering.

Theorem 4.10. For α = 1/t, given an γ-
approximation for fair decomposition with median cost,
there exists an O(tγ)-approximation algorithm for fair-
let correlation clustering.

Proof. Let P be the output of the output of the γ-
approximation algorithm on the metric space (M,d)
obtained from correlation instance G. Let fairlet
decomposition P ′ be obtained from P by applying
Lemma 4.9 and assigning each fairlet to a center min-
imizing the median cost of the fairlet. Since dedi-
cating a center to a subset of points assigned to the
same center in P can only decrease the median cost,
mcost(P ′) ≤ mcost(P). From Theorem 4.3 and
Lemma 4.5, there is a ((8t− 4)γ)-approximation algo-
rithm for solving fairlet decomposition with minimum
fcost (f = 2t − 1, γ = γA). Since the size of each
fairlet is at least t, applying Lemma 3.5, there is a
2 · 2.06 · ( 2t−1

t )2 < 16.48-approximation algorithm for
solving unconstrained correlation clustering. Now ap-
plying Theorem 3.4, we get an O(tγ)-approximation
algorithm for fair correlation clustering.

C Supplemental Experimental Results

Here, we report additional experimental results.

C.1 Description of the datasets

We describe more in detail the datasets used.

amazon: Vertices represents products on the Ama-
zon website (Leskovec et al., 2007) and positive edges

connect products co-reviewed by the same user (all
missing edges are treated as negative). We set the
color of each item to its category. Further, we use 1000
vertices equally distributed among 2 popular book cat-
egories Nonfiction and Literature & Fiction for a total
of ∼ 106,000 positive edges.

reuters: This graph is extracted from a dataset, which
was used in previous fair clustering work (Ahmadian
et al., 2019) and includes 50 English language articles
from each of up to 16 authors (for a total of up to
800 texts).This dataset is available at archive.ics.
uci.edu/ml/datasets/Reuter_50_50. We transform
each text into a 10-dimensional vector using Gensim’s
Doc2Vec with standard parameters, as in previous
work (Ahmadian et al., 2019), and we create one vertex
for each text. Then we use a threshold on the dot prod-
uct of the embedding vectors. Through this operation,
we set the top θ ∈ {0.25, 0.50, 0.75} fraction of edges
via dot products as +1’s ,and the remaining edges are
assigned −1’s. Note that the colors represent the text
authors.

victorian: Similarly, for the victorian dataset,
available at archive.ics.uci.edu/ml/datasets/
Victorian+Era+Authorship+Attribution. We use
texts from up to 16 English-language authors from
the Victorian era. Each text consists of 1,000-word
sequences obtained from a book written by one of these
authors (we use the training dataset). The data was
extracted and processed as in Gungor (2018). From
each document, we extract a 10-dimensional vector
using Gensim’s Doc2Vec with the standard parameter
settings again, and we assign the author id as color, as
in prior work (Ahmadian et al., 2019). We use 100 texts
from each author, create one vertex for each text, and
set the top θ ∈ {0.25, 0.50, 0.75} fraction of pairwise
dot product edges as positive, and the remaining edges
as negative. All graphs are unweighted and complete.

C.2 Other experimental results

In Table 3 we report an overview of the results of the
various algorithms for a dataset extracted from Amazon
involving 250 vertex for each of 4 colors corresponding
to the book categories Literature & Fiction, Nonfiction,
Business & Investing, Computers & Internet.

Similarly in Table 4 we report the results for reuters,
θ = 0.50, c = 8 colors.

Finally, in Table 5 we report an evaluation of our
algorithms in a variety of datasets and for different
number of colors.

Notice how in all cases the results matches qualitatively
the results reported in the main paper.
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Algorithm Error Imbalance Imbalance
for 1/2 for equality

Local 0.005 0.375 0.541
Pivot 0.009 0.365 0.529

Match + Local 0.006 0 0.518
Rep. Match + Local 0.070 0 0

Single 0.828 0 0
Rand 0.173 0 0

Table 3: Experimental results for amazon, C = 4 colors.

Algorithm Error Imbalance Imbalance
for 1/2 for equality

Local 0.239 0.036 0.344
Pivot 0.35 0.024 0.298

Match + Local 0.251 0 0.310
Rep. Match + Local 0.416 0 0

Single 0.501 0 0
Rand 0.500 0 0

Table 4: Experimental results for reuters, θ = 0.50, C = 8 colors.

Error Error
Local Rep. Match +

Local
dataset C

reuters, θ = 0.25 2 0.096 0.230
4 0.120 0.244
8 0.133 0.252
16 0.146 0.255

reuters, θ = 0.50 2 0.181 0.350
4 0.191 0.336
8 0.239 0.416
16 0.258 0.391

reuters, θ = 0.75 2 0.188 0.199
4 0.211 0.227
8 0.237 0.250
16 0.220 0.250

victorian, θ = 0.25 2 0.109 0.212
4 0.141 0.210
8 0.161 0.212
16 0.150 0.222

victorian, θ = 0.50 2 0.183 0.348
4 0.228 0.311
8 0.249 0.319
16 0.232 0.343

victorian, θ = 0.75 2 0.203 0.237
4 0.225 0.245
8 0.218 0.246
16 0.215 0.250

Table 5: Experimental results for various datasets and number of colors.
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Additional baselines. We further experimented
with two other greedy baselines. First, we tried the fol-
lowing (unfair) greedy baseline: in an arbitrary order,
iterate over the vertices, and for each vertex, add it to
either the current cluster with most positive neighbors
(if it exists) or to a singleton cluster. More precisely,
we assign the vertex to the best current cluster, if it
is connected with more positive edges than negative
edges to it, otherwise we leave the vertex as a singleton.
Unsurprisingly, this unfair baseline is worse than all
other unfair baselines we considered in terms of error
and it has also a large imbalance, so we omit the results.

We also tested a fair greedy baseline for α = 1
2 , for

C = 2: sort all pairs of different color vertices by
distance in the Hamming space in an increasing order,

and assign vertices to clusters of size 2 with a greedy
matching algorithm over this order. This creates fair
clusters but again, we observe that this baseline to be
close to that of Rand and as such we omit the results.

Running time. All experiments have been con-
ducted on commodity hardware. Each run of an algo-
rithm completed in less than an hour. In our experi-
ments, our fair algorithms have a running time in the
same order of magnitude of that of the local search
heuristic. For instance, for reuters, θ = 0.50, the ratio
of mean running time of Match +Local and Rep.
Match + Local w.r.t. Local was 90% and 29%,
respectively. For victorian, θ = 0.50 it was 123% and
41%, respectively.


