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Abstract

In this paper, we study correlation cluster-
ing under fairness constraints. Fair vari-
ants of k-median and k-center clustering have
been studied recently, and approximation al-
gorithms using a notion called fairlet decom-
position have been proposed. We obtain ap-
proximation algorithms for fair correlation
clustering under several important types of
fairness constraints.

Our results hinge on obtaining a fairlet de-
composition for correlation clustering by in-
troducing a novel combinatorial optimization
problem. We define a fairlet decomposition
with cost similar to the k-median cost and this
allows us to obtain approximation algorithms
for a wide range of fairness constraints.

We complement our theoretical results with
an in-depth analysis of our algorithms on real
graphs where we show that fair solutions to
correlation clustering can be obtained with
limited increase in cost compared to the state-
of-the-art (unfair) algorithms.

1 Introduction

There is a growing literature on fairness in various
learning and optimization problems (Kamishima et al.,
2011, 2012; Joseph et al., 2016; Celis et al., 2018b,a;
Chierichetti et al., 2019; Yang and Stoyanovich, 2017).
The goal of this literature is to develop criteria and
algorithms to ensure that we can find solutions for
optimization/learning problems that are fair with re-
spect to a certain sensitive feature. In the case of
clustering, a fundamental unsupervised learning and
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optimization problem, the study of fairness was initi-
ated by Chierichetti et al. (2017). They formulated the
notion of proportional fairness, and developed approxi-
mation algorithms for fair k-median and fair k-center
under this notion of fairness. Follow-up work general-
ized their results to other clustering problems, such as
k-means and facility location, and to more relaxed no-
tions of fairness (Ahmadian et al., 2019; Bercea et al.,
2019; Bera et al., 2019; Backurs et al., 2019; Klein-
dessner et al., 2019a). Notably, the important graph
problem of correlation clustering has been so far not
addressed by this literature.

Correlation clustering uses information about both sim-
ilarity and dissimilarity relationships among a set of
objects in order to cluster them (Bansal et al., 2004). In
contrast to other clustering problems such as k-median,
k-means, and k-center, the number of clusters is not
pre-specified but rather determined based on the out-
come of an optimization. This, as well as the fact that
correlation clustering uses both similarity and dissimi-
larity information, makes it a desirable clustering model
in many applications (Kushagra et al., 2019; Pouget-
Abadie et al., 2019; Ailon et al., 2008). Therefore, it is
natural to study this problem with fairness.

The main tool introduced by Chierichetti et al. (2017)
for solving fair k-center and k-median problems is the
notion of fairlets. A fairlet is a small set of elements
that satisfies the fairness property. Chierichetti et al.
(2017) showed that fair k-median and k-center can be
solved by first decomposing an instance into fairlets
and then solving the clustering problem on the set of
centers of these fairlets. To the best of our knowledge,
this technique has been used only for metric space
clustering problems such as k-center and k-median.

Our main result is developing a fairlet-based reduction
for the graph clustering problem of correlation cluster-
ing. Whereas, in the case of k-center and k-median, the
fairlet decomposition problem amounts to solving the
same clustering problem on the same instance under
the condition that each cluster is a fairlet, the situation
for correlation clustering is complicated by the lack of
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the properties of metric spaces. To tackle this problem,
we introduce a novel cost function for the correlation
clustering fairlet decomposition, and prove that this
cost can be approximated by a median-type clustering
cost function for a carefully defined metric space.

Given a solution to this fairlet decomposition problem,
we show that the fair correlation clustering instance
can be reduced to a regular correlation clustering in-
stance through a graph transformation. Therefore, any
approximation algorithm for fairlet decomposition with
median cost yields an approximation algorithm for fair
correlation clustering; the loss in the approximation
ratio depends on the size of the fairlets. We show that
in many natural cases, there is a fairlet decomposition
with small fairlets, thereby bounding the approximation
ratio of our algorithm for fair correlation clustering.

In addition to the theoretical bounds on our algorithm,
we provide an empirical evaluation based on real data
sets, showing that the algorithms often perform much
better in practice than their worst-case guarantees
and that they yield solutions of costs comparable to
that of unfair clustering algorithms while substantially
reducing the cluster imbalance. Our implementation is
also publicly available (Ahmadian et al., 2020).

Related work. Clustering is a fundamental unsuper-
vised machine learning task with a long history (Jain,
2010). Our paper spans the areas of correlation clus-
tering, clustering in metric spaces, and fairness in clus-
tering which are actively growing fields. For brevity,
we will only focus of key works in these three areas.

Correlation clustering. Correlation clustering is a
widely studied formulation of clustering with both
similarity and dissimilarity information (Bansal et al.,
2004), with many applications in machine learn-
ing (Kushagra et al., 2019; Bressan et al., 2019).
Variants of the problem include complete signed
graphs (Bansal et al., 2004; Ailon et al., 2008) and
weighted graphs (Demaine et al., 2006). We focus
on the complete graph case with ±1 weights which is
APX-hard (Charikar et al., 2005) but admits constant-
factor algorithms (Ailon et al., 2008; Chawla et al.,
2015). Distributed and streaming algorithms are also
known (Pan et al., 2015; Ahn et al., 2015).

Metric space clustering. The most widely studied clus-
tering setting is clustering in metric spaces consisting in
minimizing the `p-norm of the distances between points
in a cluster and their center. For p ∈ {1, 2,∞} this cor-
responds to k-median, k-means, and k-center, respec-
tively, which are NP-hard problems but admit constant-
factor approximations (Gonzalez, 1985; Hochbaum and
Shmoys, 1985; Li and Svensson, 2016; Ahmadian et al.,
2017; Kanungo et al., 2004).

Fairness in clustering. Fairness in machine learning is
new area with a fast growing literature. Fundamen-
tal work in this area is devoted to defining notions
of fairness (Calders and Verwer, 2010; Dwork et al.,
2012; Feldman et al., 2015; Kamishima et al., 2012)
and solving fairness-constrained problems (Celis et al.,
2018a,b; Chierichetti et al., 2017; Joseph et al., 2016;
Kamishima et al., 2012; Yang and Stoyanovich, 2017;
Backurs et al., 2019; Kamishima et al., 2011; Fish et al.,
2016; Ahmadian et al., 2019; Chierichetti et al., 2019;
Har-Peled and Mahabadi, 2019).

Chierichetti et al. (2017) introduced a notion of dis-
parate impact for clustering and provided fair k-center
algorithms for the case of two colors (or groups); see
Section 2. Following this work, the problem has been
later generalized in many directions including allow-
ing many colors (Rösner and Schmidt, 2018), allow-
ing upper bounds on the fraction of points of a given
color (Ahmadian et al., 2019) and both upper and lower
bounds (Bera et al., 2019; Bercea et al., 2019). Back-
urs et al. (2019) designed near-linear algorithms for
finding k-median fairlets, and Huang et al. (2019) de-
signed core-sets for the problem. Other variants include
clustering with diversity constraints (Li et al., 2010),
proportionality constraints (Chen et al., 2019), and fair
center selection (Kleindessner et al., 2019a). Fairness
has been studied in spectral clustering as well (Klein-
dessner et al., 2019b; Ziko et al., 2019). From an ap-
plication point, fair clustering can be seen through the
lenses of fair allocation (Elzayn et al., 2019), Medicaid
eligibility (Fang et al., 2019), and ensuring protected
group representations (Dash et al., 2019).

To the best of our knowledge no prior work has ad-
dressed correlation clustering with fairness. Kalhan
et al. (2019) recently studied a fairness notion in which
the maximum error for a vertex is bounded.

2 Problem Statement

Correlation clustering. Let G = (V,E) be a
complete undirected graph on |V | = n vertices and
σ : E 7→ R be a function that assigns a label to
each edge. The label σ(e) for each e is either posi-
tive (indicating that the two endpoints of e are simi-
lar) or non-positive (indicating that they are dissimi-
lar). In the unweighted version of the problem (Bansal
et al., 2004), σ(e) ∈ {−1,+1} for each e. Our focus
in this paper is on the unweighted version, although
we will use the weighted version in the proofs. Let
E+ = {e ∈ E | σ(e) > 0} be the set of positive edges
and E− = E \E+ be the set of non-positive edges. For
subsets S, T ⊆ V , let E(S) = E ∩ S2 denote the edges
inside S and E(S, T ) = E ∩ (S × T ) denote the edges
between S and T . Let E+(S, T ) = E+ ∩ E(S, T ) and
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E−(S, T ) = E− ∩ E(S, T ).

A clustering is a partitioning C = {C1, C2, . . .} of V
into disjoint subsets. The sets of intra-cluster and
inter-cluster edges in a clustering C are defined as
intra(C) =

⋃
C∈C E(C) and inter(C) = E \ intra(C).

The correlation clustering cost of C is defined as:
cost(G, C) =

∑
e∈intra(C)∩E−

|σ(e)|+
∑

e∈inter(C)∩E+

|σ(e)|.

In the unweighted version of the problem, this is sim-
ply cost(G, C) = |intra(C) ∩ E−| + |inter(C) ∩ E+|.
The goal of correlation clustering1 is to find C to min-
imize cost(G, C). For unweighted correlation clus-
tering, there are constant-factor approximation algo-
rithms (Bansal et al., 2004; Ailon et al., 2008; Chawla
et al., 2015), with the best known constant being 2.06.
For the weighted case, the best known algorithm ob-
tains an O(log n)-approximation (Demaine et al., 2006).

Fairness constraints. In the fair version of any clus-
tering problem, each vertex v ∈ V has a color c(v).
Proportional fairness (Chierichetti et al., 2017) requires
that in every cluster, the number of vertices of each
color is proportional to the corresponding number in
the whole graph. In particular, in the symmetric case
where each color appears the same number of times in
the graph, we require the same in each cluster. Ahma-
dian et al. (2019) relaxed this property by requiring
that each color constitutes at most an α-fraction of
each cluster, for a given α ∈ (0, 1). Bera et al. (2019)
further generalized this notion to include lower bounds
on the number of vertices of each color in each cluster.

We give a general reduction from fair correlation clus-
tering to a median fairlet decomposition that works for
any of these definitions of fairness, and in fact for a
more general class of constraints. As long as the fairlet
decomposition problem can be solved with small fairlets
(holds for the above fairness definitions; see Section 4),
this will give us an approximation algorithm for the
corresponding fair correlation clustering problems.

3 Overview of Results

In this section, we give a high-level overview of our
algorithm and our main result. A key ingredient of
our algorithm is a general reduction from the given
constrained correlation clustering problem (as defined
below) to a fairlet decomposition problem. We then
show how the cost of a fairlet decomposition can be
approximated by a median clustering cost function.

1This is the minimizing disagreements variant of correla-
tion clustering. A maximizing agreements version can also
be defined similarly. In this paper we focus on minimizing
disagreements, since the maximization version admits a
trivial randomized 2-approximation that can be made fair.

This allows us to use previous results on the fair me-
dian problem to solve fairlet decomposition for the
standard notions of fairness defined in the previous
section. Finally, given an approximately optimal fairlet
decomposition, we use our reduction to reduce the con-
strained correlation clustering instance to a standard
correlation clustering instance, and apply known algo-
rithms (Bansal et al., 2004; Ailon et al., 2008; Chawla
et al., 2015) to solve this problem.

Constrained correlation clustering. We start by
defining a general class of constrained correlation clus-
tering problems. Consider an unweighted correlation
clustering instance G and let F be a family of subsets
of V . We treat F as the family of feasible clusters,
and assume it has the following composability property:
for every F1, F2 ∈ F , we have F1 ∪ F2 ∈ F . Note this
property is satisfied when F is the collection of all fair
sets under any of the definitions of fairness given in Sec-
tion 2. The constrained correlation clustering problem
is to define a correlation clustering C with minimum
cost(G, C) such that for all C ∈ C, we have C ∈ F .

Fairlet decomposition. Next, we define the notion
of fairlet decomposition used in our reduction. A fairlet
decomposition for a constrained correlation clustering
problem is simply a partition P = {P1, P2, . . .} of V
into subsets in F , i.e., Pi ∈ F for all i. We call each
Pi a fairlet. The key in our reduction is a cost func-
tion fcost that evaluates P’s usefulness in building a
correlation clustering of G. Here we define this cost
function, and in Section 4.1 we show how it can be
approximated by the standard median clustering cost
function in a carefully defined metric space.

Fairlet decomposition cost. Consider a fairlet de-
composition P = {P1, P2, . . .}. For each fairlet Pi, we
let fcostin(Pi) be the number of negative edges inside
Pi, i.e., fcostin(Pi) = |E− ∩ intra(Pi)|. For fairlets
Pi, Pj , we let let fcostout(Pi, Pj) be the number of
edges between them with the minority sign, i.e.,
fcostout(Pi, Pj) = min(

∣∣E−(Pi, Pj)
∣∣ , ∣∣E+(Pi, Pj)

∣∣).
Finally, we let fcostin(P) =

∑
i fcostin(Pi),

fcostout(P) =
∑

i<j fcostout(Pi, Pj), and
fcost(P) = fcostin(P) + fcostout(P).

Reduced instance. Given a constrained correlation
clustering instance G and a fairlet decomposition P for
G, we define a reduced correlation clustering instance as
follows. Let GP be a complete graph on {p1, . . . , p|P|},
where vertex pi corresponds to fairlet Pi ∈ P. The
label σ(pi, pj) of the edge between pi and pj is the
majority sign of the edges in E(Pi, Pj) (with ties broken
arbitrarily) multiplied by a weight that is equal to the
number of edges in E(Pi, Pj) with the majority sign.
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Note that the instance GP defined above is an instance
of weighted correlation clustering, although as we will
observe, the edges have weights that are within a con-
stant factor each other, and therefore the problem can
be solved using unweighted correlation clustering al-
gorithms. Given a solution to this problem, it can be
expanded into a solution of the original constrained
problem. The final algorithm is sketched below.

Algorithm 1 Constrained Correlation Clustering
1: P ← approx. fairlet decomp. (Lemmas 4.5, 4.7).
2: GP : (pi, pj) gets majority sign in E(Pi, Pj) and

weight max(|E+(Pi, Pj), |E−(Pi, Pj)|).
3: Let C be an approximate (non-constrained) corre-

lation clustering solution of GP .
4: Output the clustering {

⋃
pj∈Ci

Pj : Ci ∈ C}.

To prove that the Algorithm 1 produces an approxi-
mately optimal solution to the constrained correlation
clustering problem, we need the following lemmas. The
first two lemmas prove that a solution of G can be
transformed to a solution of GP and vice versa, and
these transformations do not increase the cost by more
than the cost of the fairlet decomposition. The third
lemma bounds the cost of a fairlet decomposition in
terms of the cost of the optimal solution to the con-
strained correlation clustering problem. The proofs of
these lemmas are presented in Supplementary Material.

Lemma 3.1. Given a correlation clustering instance
G, a fairlet decomposition P for G, and a clustering
C of G, there exists a clustering C′ of GP such that
cost(GP , C′) ≤ cost(G, C) + fcostout(P).

Lemma 3.2. Let C be a clustering of GP and C′ be
the clustering computed in line 4 of Algorithm 1. Then,
cost(G, C′) ≤ cost(GP , C) + fcost(P).

Lemma 3.3. For any constrained correlation cluster-
ing instance G, and any constrained clustering C of
G, there is a fairlet decomposition P of G satisfying
fcost(P) ≤ cost(G, C).

Putting these together, we have the following:

Theorem 3.4. Assume there is an η-approximation al-
gorithm A1 for finding the minimum cost fairlet decom-
position P and a β-approximation algorithm A2 for the
unconstrained correlation clustering instance GP . Then
Algorithm 1 produces a (β(1 + η) + η)-approximation
for the constrained correlation clustering instance G.

Proof. Let OPT be an optimal solution to the
constrained correlation clustering instance G. By
Lemma 3.3, the fairlet decomposition problem has a
solution of cost at most cost(G,OPT), and there-
fore, algorithm A1 for this problem must find a de-
composition P with fcost(P) ≤ η · cost(G,OPT).

Also, by Lemma 3.1, the instance GP has a solution
of cost at most (1 + η) · cost(G,OPT). Therefore,
algorithm A2 can find a clustering C of cost at most
β(1 + η) · cost(G,OPT). Thus, by Lemma 3.2, the
cost of the clustering produced by Algorithm 1 is at
most (β(1 + η) + η) · cost(G,OPT). Finally, by the
composability property of the constraints, we know
that this clustering satisfies the constraints, since each
of its clusters is a union of fairlets in P.

In the following, we explain the approximation factor
β we can get for solving unconstrained correlation
clustering instance GP and we dedicate the next section
to approximation ratios η that we can get for minimum
cost fairlet decomposition problem depending on the
fairness parameter α and the number of colors in a
given fair correlation clustering instance.

Lemma 3.5. There exists an approximation algorithm
for unconstrained correlation clustering of GP with
approximation ratio of β = min(log n, 2ρr2) where
r = maxP∈P |P |

minP∈P |P | and ρ is the approximation factor of
unweighted correlation clustering2.

Proof. Since the reduced correlation clustering in-
stance is a weighted instance, there exists an O(log n)-
approximation (Demaine et al., 2006). Now since the
weight of the edge between pi and pj in GP is at least
|Pi|·|Pj |/2 and at most |Pi|·|Pj |, any two edges weights
are within 2r2 of each other. So if we remove the
weights from GP and solve the resulting unweighted
instance, we will get a (2ρr2)-approximation.

4 Fairlet Decomposition

In this section we show how to solve the fairlet de-
composition problem by reducing it to a fair clustering
problem with the median cost function in an appropri-
ate metric space. The reduction (Section 4.1), loses
a factor that is proportional to the size of the largest
fairlet, but as we show in Section 4.2, in cases that we
know how to solve the fairlet decomposition problem,
the size of the fairlets can be guaranteed to be small.

4.1 Reduction to median cost

Consider a correlation clustering instance G and let
d be a distance function defined on a metric space
M containing the set of vertices V . For a fairlet de-
composition P = {P1, P2, . . .}, we define the following
median cost: mcost(Pi) = minu∈M

∑
v∈Pi

d(u, v) and
mcost(P) =

∑
Pi∈P mcost(Pi). Notice that the prob-

lem of finding the fairlet decomposition with minimum
2Currently best known approximation factor is

2.06 (Chawla et al., 2015)
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mcost(P) is precisely the fairlet decomposition prob-
lem for fair k-median, as studied by Chierichetti et al.
(2017); Bera et al. (2019).

We now define a metric space (M,d) such that the
median cost mcost can approximate the fairlet cost
fcost. We first define an embedding φ : V → [0, 1]n

as follows. For a vertex u ∈ V , let

φ(u)v =

{
1 if u = v or (u, v) ∈ E+

0 if (u, v) ∈ E−.

In other words, φ(v) is the vth row of the adjacency
matrix of G(V,E+) after adding a positive self-loop at
every vertex. Now we let M = [0, 1]n, and place the
vertices in V in this space using the mapping φ. We
let d(·, ·) be the Hamming distance between the points
in M . In other words, for vertices u, v ∈ V , we have
d(u, v) = |φ(u) − φ(v)|. Intuitively, d(u, v) measures
the “cost” of committing to put u and v in one cluster
in the correlation clustering instance.

We now prove the following two lemmas, which show
that the fcost of a fairlet decomposition is close to
its mcost with respect to the metric d. The proofs of
these lemmas are in the Supplementary Material.

Lemma 4.1. For any fairlet decomposition P, we have
mcost(P) ≤ 2 · fcost(P).

Lemma 4.2. Let P be any fairlet decomposition and let
f = maxP∈P |P |. Then, fcost(P) ≤ 2f ·mcost(P).

Using the above lemmas, we have the following.

Theorem 4.3. Assume there is a γ-approximation al-
gorithm for fairlet decomposition with median costs.
Furthermore, assume that this algorithm always pro-
duces fairlets of size at most f . Then the solution
produced by this algorithm is a (4fγ)-approximation
to the problem of finding a fairlet decomposition with
minimum fcost.

4.2 Algorithms for fairlet decomposition

In this section, we give algorithms for fairlet decompo-
sition with median cost for several notions of fairness.
Using Theorem 4.3, these algorithms imply algorithms
for fairlet decomposition problem and provide the algo-
rithm A1 in Theorems 3.4. We focus on three fairness
constraints: an upper bound of α = 1

2 on the frac-
tion of vertices of each color in each cluster; an upper
bound of α = 1/C where C is the number of distinct
colors (this corresponds to the proportional fairness
property studied by Chierichetti et al. (2017)); and
an upper bound of α = 1/t for an integer t on the
fraction of vertices of each color in each cluster. We
give approximation algorithms for the first two cases
and a bicriteria approximation for the third case, with

upper bounds of 3, C, and 2t− 1, respectively, on the
size of fairlets.

Throughout this subsection, when we speak of the cost
of a fairlet decomposition, we mean its median cost.

4.2.1 α = 1/2

This is probably the most common case of fair de-
composition where clusters are required to not have a
dominant color. In this case, we can show that a fairlets
have size at most 3 and find these fairlets by solving a
minimum weight 2-factor problem in a graph. Recall
that a 2-factor is a subgraph where each vertex has
degree 2 and edges may be used multiple times. This
problem can be solved polynomially (Schrijver, 2003,
Chapter 21). Define a graph H on points in V as fol-
lows: two vertices u, v are connected by an edge if they
have distinct colors; the weight of the edge is d(u, v).
We first bound the cost of the optimal 2-factor and
then explain our approximation factor in the lemma.

Lemma 4.4. The cost of an optimal 2-factor in H can
be bounded by 2 ·mcost(P∗), where P∗ is the optimal
fairlet decomposition.

Proof. We construct a feasible 2-factor by constructing
a 2-factor for each fairlet P ∈ P∗ with center µ. Since
there are at most |P |/2 vertices of any color, depend-
ing on the parity of P , vertices of P can be covered
by matching and a possible multi-color triangle in H.
Doubling the matching edges, we can get a 2-factor
for covering P∗. It remains to bound the cost of this
2-factor. For a matching edge (u, v) for u, v ∈ P , by
triangle inequality, d(u, v) ≤ d(u, µi) +d(v, µi), and for
a triangle (u, v, w), the sum of pairwise distances can
be bounded by 2(d(u, µ) + d(v, µ) + d(w, µ)). Hence
the cost of the proposed 2-factor for covering P∗ is at
most 2 ·mcost(P∗) and the overall cost of the optimal
2-factor is at most 2 ·mcost(P∗).

Lemma 4.5. For α = 1/2, there is an algorithm for
fairlet decomposition that returns a solution with

• median cost at most 2 ·mcost(P∗).
• the size of largest fairlet is at most 3.
• the size of smallest fairlet is at least 2.

Proof. Consider an optimal 2-factor in H. Define a
fairlet decomposition as follows. For each cycle of
even length, consider a set of alternating edges and
let each alternating edge be a fairlet with one of the
endpoints chosen as the center. For a cycle of odd
length, there must exists three consecutive vertices of
pairwise distinct colors. In this case, let one fairlet
be these three vertices with the middle vertex chosen
as the center and for the (unique) alternating edges
covering the remaining vertices, let each edge be a
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fairlet with one of the endpoints chosen as the center.
The median cost of these fairlets is at most the weight
of the original 2-factor, which is at most 2 ·mcost(P∗)
by Lemma 4.4; the proof follows by construction.

Lemma 4.5 and Lemma 3.5 yield the following.
Theorem 4.6. For α = 1/2, there is a 256-
approximation algorithm for fair correlation clustering.

4.2.2 α = 1/C for C colors

In the case of α = 1/C, each fairlet has equal number of
points of each color and so these points can be matched
together. We use this observation and devise an algo-
rithm based on solving repeated matching problems in
graph H (construction explained in Section 3).
Lemma 4.7. For α = 1/C, there is an algorithm for
fairlet decomposition that returns a solution with

• median cost at most C ·mcost(P∗),
• the size of each fairlet is C.

Proof. Consider an arbitrary ordering of the colors and
solve a mincost matching problem between points of
color c and c+ 1 in the graph H. The union of these
matchings yields a partition of V into paths of length
C. Each such path is a fairlet; let P denote this fairlet
decomposition. It remains to bound the cost of P.

Let us fix two colors c and c + 1 and let M be an
arbitrary matching between vertices of color c and c+1
such that point u is matched to a point v only if u and
v belong to the same partition of P∗. Since each part in
P∗ has equal number of vertices of each color and there
is an edge between any two vertices of different colors
in H, matching M exists. Now since the cost of each
matching edge (u, v) can be bounded by d(u, µ)+d(v, µ)
where µ is the center of the partition containing u and v,
the cost ofM can be bounded by median cost of serving
clients of colors c and c+1. Since each color is matched
twice, the total cost of each path corresponding to a
partition is at most 2 ·mcost(P∗). Now for each path
we pick the middle vertex as center and the cost of
assigning vertices of the path to the center is at most
C/2 cost of the path as each edge is charged at most
C/2 times. Hence mcost(P) ≤ C ·mcost(P∗).

So in this case, we get a 2-approximation with fairlets of
size at most C. Note that in the motivating application
of fair clustering, the color of each vertex corresponds
to one possible value of a sensitive feature like race or
gender, and therefore the value C tends to be small in
such applications.

Lemma 4.7 and Lemma 3.5 yield the following.
Theorem 4.8. For α = 1/C, there is a (16.48C2)-
approximation algorithm for fair correlation clustering.

4.2.3 α = 1/t

The fair decomposition with median cost is not well
studied in the literature and in this paper, we were able
to devise algorithms for the case of α = 1/2 and α =
1/C. Next we consider the case where 1/α ∈ Z+ and
we argue how to utilize any approximation algorithm
for fairlet decomposition as a black-box to build an
algorithm for fair correlation clustering. While we allow
the black-box algorithm to produce fairlets of arbitrary
size, the following lemma ensures that the size of the
fairlets can be bounded.

Lemma 4.9. For any set P that satisfies fairness
constraint with α = 1/t, there exists a partition of P
into sets (P1, P2, . . .) where each Pi satisfies the fairness
constraint and t ≤ |Pi| < 2t.

Proof. Let p = m × t + r with 0 ≤ r < t. Then,
the fairness constraints ensures that there are at most
m elements of each color. Consider the partitioning
obtained through the following process: consider an
ordering of elements where points of the same color are
in consecutive places, assign points to sets P1, . . . , Pm

in a round-robin fashion. So each set Pi gets at least t
elements and at most t+ r < 2t elements assigned to it.
Since there are at most m elements of each color, each
set gets at most one point of any color and hence all
sets satisfy the fairness constraint as 1 ≤ 1

t · |Pi|.

Theorem 4.10. For α = 1/t, given an γ-
approximation algorithm for fairlet decomposition with
median cost, there is an O(tγ)-approximation algorithm
for fair correlation clustering.

5 Experiments

In this section we present our experiments demonstrat-
ing that our algorithm solves the correlation clustering
problem with fairness constraints with only a limited
loss in the cost when compared to the vanilla (unfair)
solution. We describe the datasets used, the algorithms
evaluated, the quality measures, and our results. Our
code is available open source (Ahmadian et al., 2020).

Datasets. We use publicly-available datasets from the
UCI Repository3 and from the SNAP Datasets4.

The datasets represent complete signed graphs from
different domains, including both co-purchasing rela-
tionships among products, and semantic similarities
among texts learned with embedding methods. The
graphs are represented by complete signed matrices up
to 1600x1600 in size, up to 0.9 million positive edges,

3archive.ics.uci.edu/ml
4snap.stanford.edu/data/
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Dataset Unfair Alg.
Error

Unfair Alg.
Imbalance Fair Alg. Error

Local Pivot Local Pivot Match +
Local Single Rand

amazon 0.010 0.011 0.40 0.39 0.064 0.786 0.215
reuters, θ = 0.25 0.096 0.161 0.64 0.59 0.230 0.754 0.255
reuters, θ = 0.50 0.181 0.231 0.50 0.40 0.350 0.504 0.502
reuters, θ = 0.75 0.188 0.241 0.15 0.25 0.199 0.252 0.746
victorian, θ = 0.25 0.109 0.158 0.53 0.46 0.212 0.753 0.251
victorian, θ = 0.50 0.183 0.268 0.31 0.23 0.348 0.502 0.499
victorian, θ = 0.75 0.203 0.280 0.12 0.12 0.237 0.251 0.747

mean over datasets 0.139 0.193 0.38 0.35 0.234 0.459 0.543

Table 1: Error and Imbalance in C = 2 color case for various datasets and different threshold θ for the quantile
used for positive edges. Notice how our algorithm Match + Local has cost comparable to Pivot and not much
higher than Local while reducing the imbalance from the up 65% of the unfair algorithms to 0.

and up to C = 16 colors. Here we only briefly describe
the datasets; for details see Supplementary Material.

amazon: Vertices represent products on Amazon
(Leskovec et al., 2007), the color is the item category,
and two co-reviewed items have a +1 weight edge (all
non-co-reviewed items have −1 weights). We use 1000
vertices equally distributed in two popular categories.

reuters and victorian: These are extracted from text
data used in previous fair clustering work (Ahmadian
et al., 2019). The datasets include between 50 and
100 English language texts from each of up to 16 au-
thors.5 Each vertex represents a text and the color
represents the author. For each text we obtain a se-
mantic embedding vector with standard methods. We
use a threshold on the dot product of the embedding
vectors for the edges. Through this operation, we set
the top θ ∈ {0.25, 0.50, 0.75} fraction of edges via dot
products as +1, and the remaining edges as −1.

Algorithms. We evaluate Algorithm 1 in two fairness
scenarios: with an upper bound of α = 1/2 of the
vertices for each color, and with α = 1/C for equal
color representation (for the two-color case, the two are
equivalent). For the α = 1/2 case, in our experiments
we simplify the algorithm of Section 4.2.2 to compute
a minimum-cost perfect matching (1-factor) instead of
a 2-factor decomposition. This can be formally shown
to be sufficient for the C = 2 case, or when all optimal
clusters are even sized, and we observe it works well
in practice in our experiments. For α = 1/C, we
implement the repeated matching algorithm in 4.2.2 to
obtain the fairlets in a similar fashion. After finding
the fairlets, we use an in-house correlation clustering
solver based on local search (Local). We refer to our
algorithms as Match + Local for the α = 1/2 case

5The datasets are available at archive.ics.uci.edu/
ml/datasets/Reuter_50_50 and archive.ics.uci.edu/
ml/datasets/Victorian+Era+Authorship+Attribution

Algorithm Error Imbalance Imbalance
for 1/2 for equality

Local 0.249 0.011 0.218
Pivot 0.345 0.008 0.191

Match + Local 0.255 0 0.180
Rep. Match +

Local 0.321 0 0
Single 0.5 0 0
Rand 0.5 0 0

Table 2: Results for victorian, θ = 0.50, C = 8 colors.

and as Rep. Match + Local for the α = 1/C case.

We also consider the following (unfair) baseline algo-
rithms: the standard Pivot algorithm of Ailon et al.
(2008) for correlation clustering (for Pivot, we repeat
the randomized algorithm 10 times and use the best
result), and the (unfair) local search heuristic Local
used as part of our algorithm. In addition, as no prior
work has addressed the fair correlation clustering prob-
lem, we compare our algorithm with two simple fair
baselines: the whole graph as one cluster Single, and
a random fairlet decomposition Rand.

Quality measures. For each algorithm, we report
the following measures. The Error of the correlation
cost of the clustering obtained by the algorithm, pre-
sented as the ratio of the edges of the graph that are
in disagreement with the clustering (i.e., inter-cluster
positive edges and intra-cluster negative edges) over
the number of edges (i.e., 0 corresponds to a perfect
solution, whereas 1 corresponds to a completely incor-
rect solution). For fairness, we report the Imbalance
as the total fraction of vertices that violate the α color
representation constraint, i.e., vertices for each cluster
and color that are above the α fraction for the size of
the cluster (Ahmadian et al., 2019). More precisely,
let P be a cluster in the solution of an α-color con-
straint instance. The maximum allowed number of
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points of a certain color in the cluster P is b|P |αc.
Let Vc be the vertices of color c on the graph and
∆P =

∑
P,c max(|P ∩ Vc| − b|P |αc, 0) be the vertices

violating the constraint in P . We report
∑

P ∆P /|V |
as the Imbalance for α ∈ {1/2, 1/C} (i.e., 0 corre-
sponds to no imbalance, and 1 corresponds to complete
imbalance). We repeat all algorithms 10 times and
report the mean results for all measures.

5.1 Results for C = 2

Table 1 shows the results for the C = 2 color case with
α = 1/2, i.e., equal representation over the various
datasets. We use the Match + Local as a fair algo-
rithm, which has an Imbalance of 0 by construction.

The table shows clearly that our algorithm Match +
Local obtains clusters that are fair and has costs com-
parable to the unfair Pivot baseline (and sometimes
better) and slightly worse than the Local baseline. On
average, over all datasets, our algorithm has an average
cost of 0.234 vs 0.193 for Pivot and 0.139 for Local.
On the other hand, our algorithm is significantly better
than both Single and Rand, which, while satisfying
fairness, have exorbitantly high costs.

Notice how the Local and the Pivot baselines have
very high Imbalance values of up to 65% of the ver-
tices (as they are oblivious to colors), showing the
importance of developing novel algorithms for the prob-
lem. This result is not surprising. If pairs of vertices
of the same color are more likely to be similar, it is ex-
pected that many clusters will contain vast majorities
of points with a single color.

5.2 Results for C > 2

Here, we study the behavior of our algorithm in the
case when more than two colors are present in the
dataset. We use Match + Local to obtain a α = 1/2
fair solution and Rep. Match + Local to obtain a
α = 1/C (equal representation) solution.

We report an overview of our experimental results in
Table 2 for the dataset victorian with threshold θ =
0.50 and C = 8 colors (note that this is a different
graph than that produced with the previous C = 2
dataset). More experimental results are available in
Supplementary Material.

It is easy to see that all the earlier trends continue to
hold. Notice how the algorithm for the 1/2 case Match
+ Local is only marginally worse than the best un-
fair solution Local and much better than all other
baselines. Our algorithm for the more difficult equal
representation case is again better than the Pivot base-
line. Notice how all unfair algorithms are significantly
far from being equally balanced. However, the presence
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Figure 1: Error of our algorithms over that of the
unfair Local algorithms for α = 1/2 and α = 1/C, on
a series of graphs from victorian, θ = 0.50, and using
C = 2 to C = 16 colors.

.

of many colors makes it easier to get closer to the 1/2
threshold.

We confirm this observation in Figure 1. The figure
shows a comparison of the Error for our algorithms
for α = 1/2 and α = 1/C vs the Error for the vanilla
Local algorithms as the number of colors goes from
C = 2 to C = 16. We report the ratio of Match
+ Local over Local as a solid line, and the ratio
for Rep. Match + Local as a dashed line. Notice
how the error for our algorithm for the α = 1/2 case
gets closer and closer to the Local output error for
more colors. Again, this result is obtained because the
presence of many colors makes the problem easier for
the α = 1/2 case. The performance of the algorithm
for the α = 1/C case has a less stable pattern, but it
confirms that the algorithm is quite competitive with
the unfair solution (between 30−80% higher error) even
for quite a few colors. These results are significantly
better than what is expected from a worst-case analysis.

Finally, we report having observed that using just
Match or Rep. Match fairlets without the re-
clustering part of the algorithm is not sufficient for ob-
taining good results, as the re-clustering step is needed
for obtaining clusters that do not have large errors.

6 Conclusions

In this paper we initiated the study of correlation clus-
tering with fairness constraints. We showed a reduction
to the fairlet decomposition problem with a standard
median cost function, for a carefully chosen distance
function. Using this, and old and new results on the fair-
let decomposition problem with a median cost function,
we obtained provable constant-factor approximation
algorithms for fair correlation clustering for various
notions of fairness. Our experimental evaluation shows
that these algorithms perform well not only in theory
but also in practice.
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