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Abstract

We propose a novel second-order ODE as the
continuous-time limit of a Riemannian accel-
erated gradient-based method on a manifold
with curvature bounded from below. This
ODE can be seen as a generalization of the
ODE derived for Euclidean spaces, and can
also serve as an analysis tool. We study the
convergence behavior of this ODE for differ-
ent classes of functions, such as geodesically
convex, strongly-convex and weakly-quasi-
convex. We demonstrate how such an ODE
can be discretized using a semi-implicit and
Nesterov-inspired numerical integrator, that
empirically yields stable algorithms which are
faithful to the continuous-time analysis and
exhibit accelerated convergence.

1 Introduction

A core problem in machine learning is finding a min-
imum of a function f : H → R. In the vast majority
of machine learning applications, H represents either
a Euclidean space or a Riemannian manifold. Among
the most popular types of methods to optimize f are
first-order methods, such as gradient descent which
simply updates a sequence of iterates {xk} by step-
ping in the opposite direction of the gradient ∇f(xk).
In the case H = Rn, gradient descent as a first-order
method has been shown to achieve a suboptimal con-
vergence rate. In a seminal paper (Nesterov, 1983),
Nesterov showed that one can construct an optimal
– a.k.a. accelerated – algorithm that achieves faster
rates of convergence for both convex and strongly-
convex functions. The convergence analysis of this
algorithm relies heavily on the linear structure of the
space H and it is not until recently that a first adapta-
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tion to Riemannian spaces has been derived in (Zhang
and Sra, 2018). Their algorithm is shown to ob-
tain an accelerated rate of convergence for geodesically
strongly-convex functions. These functions are of par-
ticular interest as they are non-convex in the Euclidean
sense and they occur in some fundamental problems,
see e.g. (Zhang and Sra, 2016, 2018).

In this manuscript, we take a different direction from
previous works that have focused on analyzing the
discrete-time form of Nesterov acceleration. We in-
stead derive a continuous-time model that generalizes
the work of Su et al. (2014) to non-Euclidean spaces.
The resulting second-order ODE is shown to exhibit
an approximate equivalence to Nesterov acceleration,
and can therefore be used as an analysis tool. We
prove theoretically that the continuous-time process
corresponding to the derived differential equation has
an accelerated rate of convergence for various types of
functions. As in (Su et al., 2014), one can also obtain
different discrete-time algorithms from such an ODE.
We here focus on a discretization scheme that we show
empirically to yield an accelerated rate of convergence.

In summary, our main contributions are:

• We derive a second-order differential equation
that can serve as an analysis tool for a Rieman-
nian variant of accelerated gradient descent.

• We analyze the convergence behavior of this ODE
for three different types of functions: geodesically
convex, strongly-convex and weakly-quasi-convex.

• As a byproduct of our convergence analysis, we es-
tablish some new technical results about the Hes-
sian of the Riemannian distance function. These
results could be of general interest.

• We prove that in the case of Riemannian gradi-
ent descent applied to geodesically strongly con-
vex functions, the discrete and continuous trajec-
tories remain close. The extension of this result
to an accelerated method is however non-trivial.

• We provide empirical results on several problems
of interest in order to confirm the validity of our
theoretical analysis and discretization scheme.
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2 Related work

Accelerated Gradient Descent/Flow. The first
practical accelerated algorithm in a vector space is due
to (Nesterov, 1983). Since then, the community has
shown a deep interest in understanding the mecha-
nism underlying acceleration. A recent trend has been
to look at acceleration from a continuous-time view-
point. In such a framework, accelerated gradient de-
scent is seen as the discretization of a second-order
ODE. In (Su et al., 2014), a second order differen-
tial equation to capture the dynamics of the classical
algorithm from Nesterov in the convex case is formu-
lated. In (Wibisono et al., 2016), study continuous
accelerated dynamics introducing the concept of Breg-
man Lagrangian. In (Wilson et al., 2016), substitute
the classical estimate sequences technique by a family
of Lyapunov functions in both discrete and continu-
ous time. In (Shi et al., 2018), Shi et al. show that
differential equations are rough approximators of real
learning dynamics, i.e. a given algorithm can generate
many continuous models. Finally, the same authors
showed in (Shi et al., 2019) that symplectic integration
(see (Hairer et al., 2006)) has deep links to Nesterov’s
method.

Riemannian optimization. Research in the field
of Riemannian optimization has recently encountered
a lot of interest. A seminal book in the field is (Ab-
sil et al., 2009) who gives a comprehensive review of
many standard optimization methods except acceler-
ated methods. More recently, Zhang and Sra (2016)
proved convergence rates for Riemannian gradient de-
scent applied to the class of geodesically convex func-
tions. Acceleration in a Riemannian framework was
discussed by Liu et al. (2017) who claimed to have
designed Riemannian accelerated methods with guar-
anteed convergence rates but as discussed in (Zhang
and Sra, 2018), their method relies on finding the ex-
act solution to a nonlinear equation and it is not clear
how difficult this problem is. Subsequently, Zhang
and Sra (2018) developed the first computationally
tractable accelerated algorithm on a Riemannian man-
ifold, but their approach only has provable conver-
gence for geodesically strongly-convex objectives. In
contrast, we here address the problem of achieving ac-
celeration for the weaker class of weakly-quasi-convex
objective functions.

3 Background

We review some basic notions from Riemannian ge-
ometry that are required in our analysis. For a full
review, we refer the reader to a classical textbook, for
instance (Spivak, 1979).

Manifolds. A differentiable manifold M is a topo-
logical space that is locally Euclidean. This means

that for any point x ∈ M , we can find a neighbor-
hood that is diffeomorphic to an open subset of some
Euclidean space. This Euclidean space can be proved
to have the same dimension, regardless of the chosen
point, called the dimension of the manifold. A Rie-
mannian manifold (M, g) is a differentiable manifold
equipped with a Riemannian metric gx, i.e. an inner
product for each tangent space TxM at x ∈ M . We
denote the inner product of u, v ∈ TxM with 〈u, v〉x
or just 〈u, v〉 when the tangent space is obvious from
context. Similarly we consider the norm as the one
induced by the inner product at each tangent space.

Geodesics Geodesics are curves γ : [0, 1] → M of
constant speed and of (locally) minimum length. They
can be thought of as the Riemannian generalization of
straight lines in Euclidean spaces. Geodesics are used
to construct the exponential map expx : TxM → M ,
defined by expx(v) = γ(1), where γ is the unique
geodesic such that γ(0) = x and γ̇(0) = v. The expo-
nential map is locally a diffeomorphism. Using the no-
tion of geodesics, we can define an intrinsic distance d
between two points in the Riemannian manifold M , as
the infimum of lengths of geodesics that connect these
two points. Geodesics also provide a way to transport
vectors from one tangent space to another. This op-
eration called parallel transport is usually denoted by
Γyx : TxM → TyM . Closely linked to geodesics is the
notion of injectivity radius. Given a point x ∈ M , we
define the injectivity radius at x (denoted inj(x)), the
radius of the biggest ball around x, where the expo-
nential map expx is a diffeomorphism. We denote the
inverse of the exponential map inside this ball by logx.

Vector fields and covariant derivative. The cor-
rect notion to capture second order changes on a Rie-
mannian manifold is called covariant differentiation
and it is induced by the fundamental property of Rie-
mannian manifolds to be equipped with a connection.
The fact that a connection can always be defined in a
Riemannian manifold is the subject of the fundamental
theorem of Riemannian geometry. We are interested
in a specific type of connection, called the Levi-Civita
connection, which induces a specific type of covariant
derivative. For our purpose, it will however be suffi-
cient to define the notion of covariant derivative using
the (simpler) notion of parallel transport. First, we
state the definition of a vector field on a Riemannian
manifold.

Definition 1. Let M be a Riemannian manifold. A
vector field X in M is a smooth map X : M → TM ,
where TM is the tangent bundle, i.e. the collection
of all tangent vectors in all tangent spaces of M , such
that p◦X is the identity (p is the projection from TM
to M).

One can see a vector field as an infinite collection of
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imaginary curves, the so-called integral curves (for-
mally they are solutions of first-order differential equa-
tions on M).

Definition 2. Given two vector fields X,Y in a Rie-
mannian manifold M , we define the covariant deriva-
tive of B along A to be

∇XY (p) := lim
h→0

Γ
γ(0)
γ(h)Y (γ(h))− Y (p)

h
,

with γ the unique integral curve of A passing from p.

Geodesic convexity. We remind the reader of the
basic definitions needed in Riemannian optimization.

Definition 3. A subset A ⊆M of a Riemannian man-
ifold M is called geodesically uniquely convex, if every
two points in A are connected by a unique geodesic.

Definition 4. A function f : M → R is called geodesi-
cally convex, if f(γ(t)) ≤ (1 − t)f(p) + tf(q), for
t ∈ [0, 1], where γ is any geodesic connecting p, q ∈M .

Given a function f : M → R, the notions of differential
and (Riemannian) inner product allow us to define the
Riemannian gradient of f at x ∈M , which is a tangent
vector belonging to the tangent space based at x, TxM .

Definition 5. The Riemannian gradient gradf of a
(real-valued) function f : M → R at a point x ∈ M ,
is the tangent vector at x, such that 〈gradf(x), u〉 =
df(x)u 1, for any u ∈ TxM .

Given the notion of Riemannian gradient and covari-
ant derivative we can define the notion of Riemannian
Hessian.

Definition 6. Given vector fields A,B in M , we de-
fine the Hessian operator of f to be

Hess(f)(A,B) := 〈∇A grad f,B 〉.

Using the Riemannian inner product and the Rieman-
nian gradient, we can formulate an equivalent defini-
tion for geodesic convexity for a smooth function f
defined in a geodesically uniquely convex domain A
(the inverse of the exponential map is well-defined).

Proposition 1. Let a smooth, geodesically convex
function f : A→ R. Then, for any x, y ∈ A,

f(x)− f(y) ≥ 〈gradf(y), logy(x)〉.

As in the Euclidean case, any local minimum of a
geodesically convex function is a global minimum.
In a similar manner we can define geodesic strong con-
vexity.

1df denotes the differential of f , i.e. df(x)[u] =

limt→0
f(c(t))−f(x)

t
, where c : I → M is a smooth curve

such that c(0) = x and ċ(0) = u.

Definition 7. A smooth function f : A→ R is called
geodesically µ-strongly convex, µ > 0, if ∀x, y ∈ A

f(x)− f(y) ≥ 〈gradf(y), logy(x)〉+
µ

2
‖ logy(x)‖2.

If a function f is geodesically strongly convex with a
non-empty set of minima, then there is only one min-
imum and it is global.
We now generalize the well-known notion of Euclidean
weak-quasi-convexity (see (Guminov and Gasnikov,
2017)) to Riemannian manifolds.

Definition 8. A function f : A→ R is called geodesi-
cally α-weakly-quasi-convex with respect to c ∈M , if

α(f(x)− f(c)) ≤ −〈gradf(x), logx(c)〉

for some fixed α ∈ (0, 1] and any x ∈M .

It is easy to see that weak-quasi-convexity implies that
any local minimum of f is also a global minimum.
Using the notion of parallel transport we can define
when f is geodesically L-smooth, i.e. has Lipschitz
continuous gradient in a suitable differential-geometric
way.

Definition 9. A function f : M → R is called L-
smooth if ∀x, y ∈M and geodesic γ connecting them

‖gradf(x)− Γxygradf(y)‖ ≤ Ll(γ),

where Γ is the parallel transport along γ and l(γ) the
length of γ.

Geodesic L-smoothness has similar properties to its
Euclidean analogue. Namely, a two times differen-
tiable function is L-smooth, if and only if the norm
of its Riemannian Hessian is bounded by L.

Curvature. In this paper, we make the standard
assumption that the input space is not ”infinitely
curved”. In order to make this statement rigorous,
we need the notion of sectional curvature K, which
is a measure of how sharply the manifold is curved
(or how ”far” from being flat our manifold is), ”two-
dimensionally”.

4 Hessian of the distance function

Before discussing the design and analysis of acceler-
ated flows on manifolds, it is necessary to derive a cru-
cial geometric result. During a first read, the reader
may skip this section or return to it later to understand
some of the technicalities in Section 5.

In Euclidean spaces, the law of cosines relates the
lengths of the sides of a triangle to the cosine of one of
its angles. One can also adapt this result to non-linear
spaces as we will demonstrate next. We first derive
a lemma that provides a bound on the Hessian of a
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variant of the the Riemannian squared distance func-
tion − 1

2d(X, p)2 for the curve X : I →M and p ∈M .
Alternatively, the Hessian of − 1

2d(X, p)2 can be seen
as the covariant derivative of logX(t)(p).

Lemma 2. For a Riemannian manifold M with cur-
vature bounded above by Kmax and below by Kmin and

diam(M) ≤ D <

{
π√
Kmax

,Kmax > 0

∞ ,Kmax ≤ 0
, we have that

δ‖Ẋ‖2 ≤ 〈∇Ẋ logX(p),−Ẋ〉 ≤ ζ‖Ẋ‖2,

where

δ :=

{
1 ,Kmax ≤ 0√
Kmaxd(X, p) cot(

√
Kmaxd(X, p)) ,Kmax > 0

and

ζ :=

{√
−Kmind(X, p) coth(

√
−Kmind(X, p)) ,Kmin < 0

1 ,Kmin ≥ 0
.

Corollary 2.1. Let a geodesic triangle ∆abc in a Rie-
mannian manifold M of curvature bounded above by
Kmax and diam(M) ≤ D. We denote be B the angle
between the edges ab and bc. If Kmax > 0, we assume
in addition that D < π√

Kmax
. Then

(ac)2 ≥ δ(bc)2 + (ab)2 − 2(ab)(bc) cos(B)

where δ is defined as

δ =

{
1 ,Kmax ≤ 0√
Kmaxd(q, a) cot(

√
Kmaxd(q, a)) ,Kmax > 0

for some q ∈M along the edge bc.

Note that one can also recover Lemma 5 in (Zhang and
Sra, 2016) as a corollary of Lemma 2.

Properties of the cost as function of curvature.
Given a geodesically uniquely convex subset A ⊂ M
and p ∈ A, we consider two points x, y ∈ A. We
are interested in bounding distances in the geodesic
triangle ∆xyp. Corollary 2.1 states that

d(x, p)2 ≥ δd(x, y)2 + d(y, p)2 − 2〈logy(p), logy(x)〉

Taking into consideration that the gradient of the func-
tion f(x) = d(x, p)2 is gradf(x) = −2logx(p), the last
inequality is equivalent to

f(x) ≥ f(y) + 〈gradf(y), logy(x)〉+
2δ

2
‖logx(y)‖2

As shown in the appendix, this inequality is tight in
the spherical case. This inequality also means that f
is either geodesically 2δ-strongly convex, convex (but
not strongly-convex) or not convex, if δ > 0, δ = 0,
or δ < 0 respectively. The first case happens, when

d(x, p) < π
2
√
Kmax

, the second when d(x, p) = π
2
√
Kmax

and the third when π
2
√
Kmax

< d(x, p) < π√
Kmax

.

However, note that the function f is always 1-weakly-
quasi-convex with respect to its global minimizer p.
Indeed, from the definition f(x) = d(x, p)2, we have
f(x) − f(p) = ‖logx(p)‖2 and −〈gradf(x), logx(p)〉 =
2〈logx(p), logx(p)〉 = 2‖logx(p)‖2, which combined
gives us f(x)− f(p) ≤ −〈gradf(x), logx(p)〉.
Example for a sphere. Consider a manifold M as
a sphere with constant curvature K. As a geodesically
uniquely convex domain A, we take the ball Br(p)
centered at p ∈ A and with radius r. If r < π

2
√
K

,

then δ > 0, while if r = π
2
√
K

(i.e. A is an open

hemisphere), then δ = 0. The problem of minimiz-
ing f(x) = d(x, p)2 is therefore either geodesically
strongly-convex or geodesically convex depending on
the value of r. Alternatively, if we choose to construct
our geodesically uniquely convex domain A as an open
hemisphere with p ∈ A not at the center, then there
are points with distance from p more than π

2
√
K

. Thus

δ is negative and f is not geodesically convex. Given
that f(x) = d(x, p)2 is always 1-weakly-quasi-convex,
the problem of minimizing f is weakly-quasi-convex
but not convex.

Duality smoothness/convexity. Lemma 5 in
(Zhang and Sra, 2016) states that the function f(x) =
d(x, p)2 is 2ζ-smooth. This shows that there is some
sort of duality between convexity and smoothness with
respect to the curvature of the manifold. For a given
function d(x, p)2, a smaller curvature makes the func-
tion more convex while also making it less smooth.

5 Accelerated flows

Recall that the problem that we investigate is min-
imizing a function f : M → R. A fundamental
algorithm to solve this problem is Riemannian gra-
dient descent (RGD), which takes the form xk+1 =
expxk(−ηgradf(xk)), where η > 0 is the so-called
learning rate. The convergence properties of this
method, extensively explored in (Zhang and Sra,
2016), can be successfully studied (see (Munier, 2007)
and the appendix) by the means of its continuous-time
limit Ẋ + gradf(X) = 0.

In contrast, we are not aware of any prior work in-
vestigating the continuous-time formulation of an ac-
celerated method. Hence, taking inspiration from the
seminal work of Su et al. (2014), we consider the fol-
lowing differential equation to model acceleration:

∇Ẋ + cẊ + gradf(X) = 0 (RNAG-ODE)

For the convex and weakly-quasi-convex cases, we
choose c := c(t) = v

t , where v is a constant to be
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determined later. From now on, we define ζ as

ζ :=

{√
−KminD coth(

√
−KminD) ,Kmin < 0

1 ,Kmin ≥ 0

where D is an upper bound for the working domain.
Next, following (Zhang and Sra, 2018), we make the
following set of assumptions, which we will keep for
the rest of the paper.

Assumptions Given A ⊆M , and f : M → R,
1. The sectional curvature K inside A is bounded

from below, i.e. K ≥ Kmin.

2. M is a complete manifold, such that any two
points are connected by some geodesic.

3. A is a geodesically uniquely convex subset of M ,
such that diam(A) ≤ D. The exponential map is
globally a diffeomorphism.

4. f is geodesically L-smooth and all its minima are
inside A.

5. We have granted access to oracles which compute
the exponential and logarithmic maps as well as
the Riemannian gradient of f efficiently.

6. All the solutions of our derived differential equa-
tions remain inside A.

Note that the first four assumptions are standard
in Riemmanian optimization (see, ((Munier, 2007;
Zhang and Sra, 2016, 2018))). The fifth assumption is
mostly required for computational purpose. The last
assumption could potentially be relaxed by relying on
a barrier function or a projection step.

5.1 Existence of a solution

For strongly-convex functions, we will choose c(t) to
be constant, in which case existence and uniqueness
of the solution can be shown to hold globally due to
completeness of M .
When c(t) = v

t , the proof is not as simple and involves
the use of the Arzela-Ascoli theorem for sequences of
curves on Riemannian manifolds, in a similar vein as
in (Su et al., 2014). However, we cannot guarantee the
uniqueness of the solution. The proof is provided in
the appendix.
Lemma 3. The differential equation

∇Ẋ +
v

t
Ẋ + gradf(X) = 0 (1)

where v is a positive constant, has a global solution
X : [0,∞) → M under the initial conditions X(0) =
x0 ∈ A and Ẋ(0) = 0.

The proof relies on the following result that might be of
independent interest and is close to the fundamental
theorem of calculus for vector fields on Riemannian
manifolds.

Lemma 4. Consider a vector field A along the smooth
curve X : [a, b] → M in a Riemannian manifold M .
Then

Γ
X(a)
X(b)A(b)−A(a) =

∫ b

a

Γ
X(a)
X(t)∇A(t)dt

where Γ is the parallel transport along the curve X.

5.2 The convex case

Now we are ready to analyze the convergence rate of
the solutions of Eq. 1, starting from a point X(0) ∈ A,
to a minimizer x∗ of a geodesically convex function f .

Theorem 5. Let f be a geodesically convex function.
Any solution of the differential equation

∇Ẋ +
1 + 2ζ

t
Ẋ + gradf(X) = 0 (2)

converges to a minimizer x∗ of f with rate

f(X)− f(x∗) ≤
2ζ‖logx0

(x∗)‖2

t2
(t > 0).

Proof sketch. The proof is done by showing that the
following Lyapunov function is decreasing:

ε(t) = t2(f(X)− f(x∗)) + 2‖ − logX(x∗) +
t

2
Ẋ‖2

+2(ζ − 1)‖logX(x∗)‖2.

The novelty compared to (Su et al., 2014) is the last
curvature-dependent summand. Complete proof in the
appendix.

5.3 The weakly-quasi-convex case

For α-weakly-quasi convex functions, we have the fol-
lowing result.

Theorem 6. Let f be a geodesically α-weakly-quasi-
convex function. Any solution of the differential equa-
tion

∇Ẋ +
1 + 2

αζ

t
Ẋ + gradf(X) = 0 (3)

converges to a minimizer x∗ of f with rate

f(X)− f∗ ≤
2ζ‖logx0

(x∗)‖2

α2t2
(t > 0).

The proof is similar to the one of the convex case and
can be found in the appendix. Note here that α can
be larger than 1. An important specific case is the
Riemannian squared distance d(x, p)2, where α = 2.

5.4 The strongly-convex case

Recall that we have a constant friction term for
strongly-convex functions, which yields an ODE simi-
lar to Equation 7 in (Wilson et al., 2016) for the Eu-
clidean case.
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Theorem 7. Let f be a geodesically µ-strongly convex
function. The solution of the differential equation

∇Ẋ +

(
1√
ζ

+
√
ζ

)
√
µẊ + gradf(X) = 0 (4)

converges to a minimizer x∗ of f with rate

f(X)− f∗ ≤
µ
2 ‖logx0

(x)‖2 + f(x0)− f∗

e
√

µ
ζ t

(t > 0).

Proof sketch. The proof (see appendix) shows that the
following energy function is monotically decreasing:

ε(t) = e
√

µ
ζ t
( µ

2ζ
‖ − logX(x∗) +

√
ζ/µẊ‖2

f(X)− f∗ +
µ(ζ − 1)

2ζ
‖logX(x∗)‖2

)
.

Note that the constant
√
ζ + 1√

ζ
is always greater or

equal than 2 and equality holds only when ζ = 1, in
which case we recover the Euclidean formulation.

5.5 Comparison to the Euclidean case

Compared to the ODE of (Su et al., 2014), the second
derivative of the curve X has been substituted with
the covariant derivative of the vector field Ẋ. This is
the usual intrinsic way to capture second order changes
on manifolds. The Lyapunov functions chosen in the
analysis are such that the covariant derivative arises
when taking its derivative, which explains why the re-
sults derived in Section 4 are needed in our analysis.
Also interesting is the effect of the curvature: we note
that it is involved in both the friction term of the ODE
and in the convergence rates. The positive-curvature
case matches the Euclidean one, while the negative-
curvature case yields worse constants in terms of theo-
retical guarantees. This seems to validate the intuition
that convergence is easier in spaces with larger curva-
ture, which is also consistent with the results of (Zhang
and Sra, 2016).

6 Discretization

We now design and test a Nesterov-inspired semi-
implicit integration scheme that translates the ODEs
above into implementable accelerated optimization
methods. Starting from the ODE ∇Ẋ + α(t)Ẋ +
gradf(X) = 0 and following the Euclidean modus
operandi of (Shi et al., 2019; Betancourt et al., 2018),
our first step is to introduce a velocity variable V = Ẋ.
Hence, we can write ∇V = −α(t)V − gradf(X).

The semi-implicit Euler method in Euclidean spaces is
a numerical integrator tailored to second-order ODEs,
which leverages on the velocity/position decomposi-
tion and is widely used in physics because of its energy

and volume conservation properties, that in turn im-
ply good stability and small integration errors, (Hairer
et al., 2006). This scheme consists of a standard
forward-Euler update on the velocity variable vk, fol-
lowed by an update on the position variable xk us-
ing the just updated value of the velocity, i.e. vk+1.
Namely, if M = Rd, we have{

vk+1 = βkvk − h∇f(xk)

xk+1 = xk + hvk+1

(5)

where βk := 1 − hα(kh) is the momentum parame-
ter and h is the integration step-size which, if small
enough, guarantees 2 X(kh) u xk. Inspired from the
recent success of similar integrators in yielding accel-
erated algorithms (Shi et al., 2019; Maddison et al.,
2018), we next provide a simple adaptation of the semi-
implicit method to the Riemannian setting.

Algorithm 1 SIRNAG

1: x0 ← random point on M ;
2: v0 ← 0 ∈ Tx0

M ;
3: h ← some small number > 0 (integration step);
4: if geod. strongly-convexity then

5: βk ← 1− h (1+ζ)
√
µ√

ζ
;

6: else if geod. weak-quasi-convexity then
7: βk ← k−1

k+2ζ/α ;

8: end if
9: for k ≥ 0 do

10: Option I: ak ← βkvk − hgradf(xk);
11: Option II: ak ← βkvk−hgradf(expxk(hβkvk))
12: xk+1 ← expxk(hak);
13: vk+1 ← Γ

xk+1
xk ak;

14: end for

We start by noting that, since we require vk ∈ TxkM
for all k, our method will have to include parallel trans-
port of velocity vectors along the geodesics of the man-
ifold. However, we can postpone this operation to the
very end: indeed, if we let ak := βkvk − hgradf(xk),
then ak ∈ TxkM and we can update the position di-
rectly using a forward-Euler step: xk+1 = expxk(hak).
To conclude, we need to transport the just used veloc-
ity ak to Txk+1

M : vk+1 = Γ
xk+1
xk ak.

We summarize the content of the last lines in Algo-
rithm 1 (with Option I) and provide a variant (Op-
tion II), inspired by the reformulation of Nesterov’s
method provided by Sutskever et al. (2013). The
latter shows that Equation (5) is exactly Nesterov’s
method (Nesterov, 2018) once we replace ∇f(xk) with

2For a fixed interval [0, T ] with T = Kh (K ∈ N), we
have ‖X(kh)−xk‖ = O(h) for all 0 ≤ k ≤ K (Hairer et al.,
2006). However, the notation hides an exponential depen-
dency on T : i.e., does not imply shadowing (see Section
7).
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Figure 1: Dynamics of SIRNAG (h = 0.1) and RGD
(η = h2, see footnote 5) on a subset of diameter D =
1 of the hyperbolic space M = H2 (K = −1, hence
ζ = coth(1) u 1.313) equipped with the convex (actually,
strongly convex) toy function f(x) = 1

2
d(x, p)2 for p ∈ M .

Plotted is also the bound found in Theorem 5, discretized.

∇f(xk + hβkvk) (the so-called corrected gradient). In
our setting, we can similarly use gradf(expxk(hβkvk)).
As a result, Algorithm 1 with Option II reduces
to Nesterov’s method when M = Rd.
Experiments. Inspired by the relevance of hyper-
bolic geometry in machine learning (Zhang et al., 2018;
Sra and Hosseini, 2015), we start our empirical study
by illustrating some properties of SIRNAG on mani-
folds with constant negative curvature. Fig. 1 shows
that our integrator is stable and can achieve, on simple
functions, a rate that is actually faster than the pre-
diction of Theorem 5, in perfect agreement with pre-
vious observations for similar costs in the Euclidean
setting (Zhang et al., 2018; Betancourt et al., 2018).
Moreover, as expected, Option II provides a speed-
up3 over Option I because it is closer to the original
Nesterov’s method. Next, to test the tightness of the
oracle bound provided by Theorem 5, we use our al-
gorithm to solve a high-dimensional eigenvalue prob-
lem. Indeed, the leading unit eigenvector of a symmet-
ric matrix Q ∈ Rm×m maximizes xTQx over the unit
sphere M = Sm−1 (constant positive curvature). It is
well known (Dieuleveut et al., 2017) that such objec-
tives, when M = Rm, are hard to optimize if Q is high-
dimensional and ill-conditioned, and are therefore able
to truly showcase the acceleration phenomenon4 for
convex but not necessarily strongly convex functions.
Fig. 2 shows that this fact translates to the manifold
setting: indeed, the suboptimality of SIRNAG decays
as 1/k2 — as predicted by our continuous-time analy-
sis — in contrast to RGD5 which behaves like O(1/k).

3Actually Option II in the geodesically strongly-convex
case seems a bit slower. This happens because f is of a
very particular form, and is well known in the Euclidean
literature (see e.g. Proposition 1 in (Lessard et al., 2016)).

4Indeed, high dimensional quadratics are used to build
lower bounds in convex optimization (Nesterov, 2018).

5For RGD we used a stepsize (i.e. a gradient multi-
plication factor) η ≤ 1/λmax(Q), where λmax(Q) is the
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Figure 2: Performance of SIRNAG (convex, i.e. βk =
k−1
k+2ζ

) against RGD in finding the maximum eigenvalue of

a 5-thousand dimensional ill-conditioned matrix. Plotted
is also the bound found in Theorem 5, discretized.

Figure 3: Convergence of SIRNAG (Option I) to the so-
lution of Equation (1), same settings as Fig. 1. Solution to
the ODE approximated by SIRNAG (Option I) with an ex-
tremely small integration step: h = 10−5. The error peak
is proportional to the step-size (see next section).

To conclude, as an ultimate test for our discretization
procedure, we verify the convergence of SIRNAG to
NAG-ODE as h → 0 in Fig. 3. Finally, the code to
reproduce the experiments above is available online6.

7 Shadowing in model spaces

So far, we have shown that the discretization of our
second-order ODE empirically exhibits an accelerated
rate of convergence and follows the continuous-time
limit. The reader might wonder whether any theoret-
ical guarantee can be established to bound the error
between the continuous-time and discrete-time process
(i.e. predict the results of Fig. 3). In the following, we
will show that such guarantees can be obtained for a
descent method such as RGD when compared to its
limiting ODE (studied in (Munier, 2007)). Further,
in the next section, we discuss why the extension to
accelerated methods is non-trivial. We will rely on the

maximum eigenvalue of Q. This is the standard choice
in the Euclidean setting, also motivated by the results
in (Zhang and Sra, 2016). To get the same gradient
multiplication factor and correspondence with the optimal
parameters is Nesterov’s method, in SIRNAG we choose
h =

√
1/λmax(Q). For further details, we direct the reader

to the first few pages of (Su et al., 2014).
6
https://github.com/aorvieto/riemann-continuous.git

https://github.com/aorvieto/riemann-continuous.git
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shadowing lemma for metric spaces (Ombach, 1993;
Brin and Stuck, 2002) and use the contraction prop-
erty of RGD, as well as common concepts from the
theory of dynamical systems (Brin and Stuck, 2002).
We briefly review the required definitions and we refer
the reader to (Orvieto and Lucchi, 2019b) for detailed
explanations. We consider a dynamical system on a
Riemannian manifold M , i.e. a map Ψ : M →M .

Definition 10. A sequence (xk)∞k=0 is an orbit of Ψ
if, for all k ∈ N, xk+1 = Ψ(xk).

Definition 11. A sequence (yk)∞k=0 is a δ−pseudo-
orbit of Ψ if, for all k ∈ N, d(yk+1,Ψ(yk)) ≤ δ.
Definition 12. A pseudo-orbit (yk)∞k=0 of Ψ is
ε−shadowed if there exists an orbit (xk)∞k=0 of Ψ such
that, for all k ∈ N, d(xk, yk) ≤ ε.

In this section, we pick Ψ to be the dynamical system
associated with Riemannian gradient descent, which
maps x to expx(−hgradf(x)). Its orbit (xk)∞k=0 is a
sequence of iterates returned by RGD. As a candi-
date pseudo-orbit, we pick (yk)∞k=0 to the sequence of
points derived from the iterative application of ϕh —
the time-h flow of the ODE ẏ = −gradf(y), y(0) =
y0 ∈ M), which is itself a dynamical system. The
latter sequence represents our ODE approximation of
the algorithm Ψ. Our goal in this subsection is to show
that, under some conditions, the sequence (yk)∞k=0 is
close to an orbit of Ψ, uniformly in k — i.e. that it
is shadowed by Ψ. To prove this result, we need a
fundamental lemma.

Lemma 8. (Contraction map shadowing (Ombach,
1993)) Assume that Ψ is uniformly contracting with
constant 0 < ρ < 1. Then, for every ε > 0, there
exists δ > 0 such that every δ-pseudo-orbit (yk)∞k=0 of
Ψ is ε-shadowed by the orbit (xk)∞k=0 of Ψ starting at
x0 = y0. Moreover, δ ≤ (1− ρ)ε.

To use this result, we first need to prove that the ODE
orbit (yk)∞k=0 is actually a pseudo-orbit of Ψ. This
result is standard in numerical analysis, and can be
also found (in a less general form) as Proposition 2
in (Absil and Malick, 2012). We assume, in analogy
with (Orvieto and Lucchi, 2019b), that f : M → R
is a C2 function such that7 for all points on the ODE
solution, ‖gradf(x)‖ ≤ ` and µ ≤ ‖Hessf(x)‖ ≤ L.

Proposition 9. There exists a constant C, indepen-
dent of h but dependent on `, L and the Riemannian
structure of M , such that, for any y0 ∈M and k ∈ N,

d(yk+1, expyk(−hgradf(yk))) ≤ Ch2.

Last, we need to prove that Ψ is uniformly contracting.
We state the result for manifolds of constant curvature

7This easily holds if f is geodesically µ-strongly con-
vex and L-smooth. In this case, ` depends on the initial
condition y0 and on L.

K and note that passing to the bounded-curvature
case can be done easily by Rauch comparison theo-
rems. We start by defining the following quantities:

ζ :=

{
1 ,K ≥ 0√
−KD coth(

√
−KD) ,K < 0

λ :=

{
1 ,K ≥ 0

sinh(
√
−KD)/(

√
−KD) ,K < 0

Lemma 10. Let x1, x2 ∈ M , where M is a
Riemannian manifold of constant curvature K and
diam(M) ≤ D. If K > 0 we further assume that
D < π√

K
. Then, for ξ := λ(ζ − hµ) we have

d(expx1(−hgradf(x1)), expx2(−hgradf(x2))) ≤ ξd(x1, x2),

Note that, in the positive curvature case, we recover
ξ = 1− hµ, in analogy with the result of (Orvieto and
Lucchi, 2019b). Finally we can state our shadowing
result, which is now simple application of the contrac-
tion map shadowing Lemma.

Theorem 11. Let ε > 4C(λζ−1)
λ2µ2 . Any orbit (yk)∞k=0

of Riemannian gradient flow is ε-shadowed by an or-
bit (xk)∞k=0 of Riemannian gradient descent, given that

µ > λζ−1
λh and

h ≤ min

{(
λµ

2C
+

√
λ2µ2

4C2
− λζ − 1

Cε

)
ε,

1

L

}
.

In the flat and positive-curvature case λ = ζ = 1 and
we recover Theorem 3 in (Orvieto and Lucchi, 2019b).

8 Discussion

We proposed a second-order ODE which gives rise to a
family of accelerated methods for weakly-quasi-convex
and strongly-convex optimization. Using a modified
semi-implicit integration scheme, we derived a cheap
iterative Nesterov-inspired algorithm which is numer-
ically stable and empirically achieves an accelerated
rate of convergence for optimization problems defined
over manifolds, under both positive and negative cur-
vature. As future work, it would be desirable to es-
tablish a general shadowing theory for the second-
order ODE we studied, in order to guarantee that the
discretization error can be provably kept under con-
trol. As a first step towards such an ambitious goal,
we derived a shadowing result for Riemannian gradi-
ent descent. We note that, as also noted by Orvieto
and Lucchi (2019b), the main difficulty in the con-
struction of such a result for accelerated algorithms
is the mysterious lack of contraction of momentum
methods, which are notoriously non-descending and
heavily oscillating. Finally, the continuous-time rep-
resentation derived in this manuscript might serve for
other applications, such as analyzing the escape speed
from saddle points (Criscitiello and Boumal, 2019; Sun
et al., 2019) or for speeding-up the optimization of non-
convex functions as in (Carmon et al., 2017).
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P-A Absil and Jérôme Malick. Projection-like retrac-
tions on matrix manifolds. SIAM Journal on Opti-
mization, 22(1):135–158, 2012.

P-A Absil, Robert Mahony, and Rodolphe Sepul-
chre. Optimization algorithms on matrix manifolds.
Princeton University Press, 2009.

Michael Betancourt, Michael I Jordan, and Ashia C
Wilson. On symplectic optimization. arXiv preprint
arXiv:1802.03653, 2018.

Michael Brin and Garrett Stuck. Introduction to dy-
namical systems. Cambridge university press, 2002.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron
Sidford. Convex until proven guilty: Dimension-
free acceleration of gradient descent on non-convex
functions. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages
654–663. JMLR. org, 2017.

Christopher Criscitiello and Nicolas Boumal. Effi-
ciently escaping saddle points on manifolds. In Ad-
vances in Neural Information Processing Systems,
pages 5985–5995, 2019.

Aymeric Dieuleveut, Nicolas Flammarion, and Francis
Bach. Harder, better, faster, stronger convergence
rates for least-squares regression. The Journal of
Machine Learning Research, 18(1):3520–3570, 2017.

William Fulton. Eigenvalues of sums of hermitian ma-
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Appendix

A Derivative of Riemannian squared distance

Lemma 12. Let M be a Riemannian manifold and X : I →M a smooth curve and p ∈M . Then

d

dt
d(X, p)2 =

d

dt
‖logX(p)‖2 = 2〈logX(p),−Ẋ〉.

Proof. We prove firstly that if a, b ∈M , then

d(expa)(loga(b))(loga(b)) = −logb(a).

For this purpose, we consider two different parametrizations of the geodesic connecting a and b, one starting from
a, α(t) = expa(tloga(b)), and one starting from b, β(t) = expb(tlogb(a)). Obviously α(t) = β(1−t). Differentiating
the last equation we get d(expa)(tloga(b))(loga(b)) = −d(expb)((1− t)logb(a))(logb(a)). Evaluating this at t = 1
and using that the differential of the exponential map at 0 is the identity, the result follows. Using this result
and Gauss lemma we can prove the desired result.
Consider a curve X : I →M , a point p ∈M and the identity

expp(logp(X)) = X.

Differentiating it, we get

d(expp)(logp(X))(
d

dt
logp(X)) = Ẋ.

Now we have

d

dt
d(X, p)2 =

d

dt
‖logp(X)‖2 = 2〈logp(X),

d

dt
logp(X)〉 =

2〈d(expp)(logp(X))logp(X), d(expp)(logp(X))
d

dt
logp(X)〉 = 〈−logX(p), Ẋ〉.

The third equality follows from the fact that d(expp)(logp(X)) is a radial isometry, by Gauss lemma, and the
fourth by our preliminary result.

A.1 Gradient flow

Munier proved in (Munier, 2007) (Theorem 1) that the differential equation

Ẋ = −gradf(X), X(0) = x0

has a global solution X : [0,∞)→M , given that the manifold M is complete.

A.1.1 The convex case

Theorem 13. The solution X : [0,∞)→ R of the gradient flow ODE satisfies the inequality

f(X)− f(x∗) ≤
‖logx0

(x∗)‖2

2t
,

for t > 0.

Proof. Consider the Lyapunov function

ε(t) = t(f(X)− f(x∗)) +
1

2
‖logX(x∗)‖2.
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We have that

ε̇(t) = f(X)− f(x∗) + t〈gradf(X), Ẋ〉+ 〈logX(x∗),−Ẋ〉
= f(X)− f(x∗) + t〈gradf(X),−gradf(X)〉+ 〈logX(x∗), gradf(X)〉
= (f(X)− f(x∗) + 〈−logX(x∗), gradf(X)〉)− t‖gradf(X)‖2 ≤ 0,

where the first equality holds due to Lemma 12 and the last inequality due to geodesic convexity. Thus,

t(f(X)− f(x∗)) ≤ ε(t) ≤ ε(0) =
1

2
‖logx0

(x∗)‖2.

and the result follows.

A.1.2 The weakly-quasi-convex-case

Theorem 14. If a function f is geodesically α-weakly-quasi-convex, then the global gradient flow trajectory
X : [0,∞)→M satisfies

f(X)− f∗ ≤
‖logx0

(x∗)‖2

2αt
,

for t > 0.

Proof. Consider the Lyapunov function

ε(t) = αt(f(X)− f∗) +
1

2
d(X,x∗)2.

which is inspired by the Lyapunov function in (Orvieto and Lucchi, 2019a) (end of page 22). Differentiating,
using Lemma 12 and α-weakly-quasi-convexity, we get the result.

A.1.3 The strongly convex case

Theorem 15. If a function f is µ-strongly convex, then the gradient flow trajectory minimizes it with rate

f(X)− f∗ ≤ e−2µt(f(x0)− f∗),

for t > 0.

Proof. We just differentiate the quantity f(X)− f∗:

d

dt
(f(X)− f∗) = −‖gradf(X)‖2 ≤ −2µ(f(X)− f∗).

where the inequality is an important property of strong convexity, called Polyak-Lojasiewicz condition. Now we
use Gronwall’s lemma and the result follows.

B Proofs for ∇log and trigonometric distance bound

Lemma 2. For a Riemannian manifold M with curvature bounded above by Kmax and below by Kmin and

diam(M) ≤ D <

{
π√
Kmax

,Kmax > 0

∞ ,Kmax ≤ 0
, we have that

δ‖Ẋ‖2 ≤ 〈∇Ẋ logX(p),−Ẋ〉 ≤ ζ‖Ẋ‖2,

where
δ :=

{
1 ,Kmax ≤ 0√
Kmaxd(X, p) cot(

√
Kmaxd(X, p)) ,Kmax > 0

and
ζ :=

{√
−Kmind(X, p) coth(

√
−Kmind(X, p)) ,Kmin < 0

1 ,Kmin ≥ 0
.
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Proof. We have that logX(p) = gradf, where f = − 1
2d(X, p)2. Indeed choose γ smooth curve passing from X in

the direction of a tangent vector a ∈ TXM :

d(d2(p,X))a =
d

dt
d2(p, γ)|t=0 = 〈2logγ(0)(p),−γ̇(0)〉 = 〈−2logX(p), a〉.

The second equality follows from Lemma 12. Thus we are interested in ∇Ẋ logX(p) = ∇(gradf). It is convenient
to view Af = ∇gradf as an endomorphism which acts on vector fields. Namely Af (B) = ∇Bgradf and we care

for Af (Ẋ). We have that

Af = ∇ grad(− 1
2r

2) = ∇(−r grad r) = − grad r ⊗ dr − r∇ grad r = − grad r ⊗ dr − rAr.

where r = d(p, ; ) and ⊗ is the tensor product between two vector fields. This formulation leads us to split the
vector field Ẋ in one part parallel to gradr and one orthogonal (name it Y ). Thus

Ẋ = mgradr + Y

and we have that (grad r⊗dr)(gradr) = gradr, Ar(gradr) = 0 (because the integral curves of gradr are geodesics,
so ∇gradrgradr = 0), (grad r⊗ dr)(Y ) = 0, thus we have to evaluate the action of Ar to Y . We know that in the
case where the sectional curvature is constant and equal to K, we have that
Ar(Y ) = gr(K)‖Y ‖2, where

gr(K) =


1/r, K = 0,

(1/R) cot(r/R), K = 1/R2 > 0,

(1/R) coth(r/R), K = −1/R2 < 0.

Applying some comparison theory we can show that 〈Ar(Y ), Y 〉 ≥ gr(Kmax)|Y |2 and 〈Ar(Y ), Y 〉 ≤ gr(Kmin)|Y |2,
for Kmin ≤ K ≤ Kmax (check (Petersen, 2006), Proposition 25 in page 173 for Riccati comparison theory, and
(Lee, 2018), chapter 11). Now we have that

〈Af (Ẋ),−Ẋ〉 = 〈−mgradr− rAr(Y ),−mgradr− Y 〉
= ‖mgradr‖2 +m〈gradr, Y 〉+mr〈gradr, Ar(Y )〉+ r〈Ar(Y ), Y 〉.

We have that 〈gradr, Y 〉 = 0, because Y and gradr have been assumed to be orthogonal. Also, by the fundamental
theorem of Riemannian geometry, the Levi-Civita connection satisfies

d

dY
〈gradr, gradr〉 = 〈∇Y gradr, gradr〉+ 〈gradr,∇Y gradr〉 = 2〈∇Y gradr, gradr〉,

where d
dY is the derivative in the direction of the vector field Y . Now using that gradr = grad(r2)

1
2 , we

can prove that gradr = − logX(p)
d(X,p) , thus ‖gradr‖2 = 1, which means that 〈Ar(Y ), gradr〉 = 〈∇Y gradr, gradr〉 =

1
2
d
dY ‖gradr‖2=0. Thus

〈Af (Ẋ),−Ẋ〉 = ‖mgradr‖2 + r〈Ar(Y ), Y 〉 = m2 + r〈Ar(Y ), Y 〉

and

‖Ẋ‖2 = 〈mgradr + Y,mgradr + Y 〉 = ‖mgradr‖2 + 2〈mgradr, Y 〉+ ‖Y ‖2 = m2 + ‖Y ‖2.

Using the previous comparison results we get

rgr(Kmax)‖Y ‖2 ≤ r〈Ar(Y ), Y 〉 ≤ rgr(Kmin)‖Y ‖2;

and equivalently
rgr(Kmax)(‖Ẋ‖2 −m2) ≤ r〈Ar(Y ), Y 〉 ≤ rgr(Kmin)(‖Ẋ‖2 −m2)

and
m2 + rgr(Kmax)(‖Ẋ‖2 −m2) ≤ 〈Af (Ẋ), Ẋ〉 ≤ m2 + rgr(Kmin)(‖Ẋ‖2 −m2).
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Thus,

(1− rgr(Kmax))m2 + rgr(Kmax)‖Ẋ‖2 ≤ 〈Af (Ẋ), Ẋ〉 ≤ (1− rgr(Kmin))m2 + rgr(Kmin)‖Ẋ‖2.

Now we have to evaluate m. It arises when projecting Ẋ to gradr, so we can compute it by basic linear algebra.
Namely

m =
〈Ẋ, gradr〉
‖gradr‖

= 〈Ẋ, gradr〉 = 〈Ẋ,− logX(p)

‖logX(p)‖
〉 =

1

‖logX(p)‖
〈logX(p),−Ẋ〉

and

0 ≤ m2 =
1

‖logX(p)‖2
〈logX(p),−Ẋ〉2 ≤ ‖Ẋ‖2

by Cauchy-Schwarz inequality.

If Kmax > 0, then rgr(Kmax) < 1, so

(1− rgr(Kmax))m2 ≥ 0 and (1− rgr(Kmax))m2 + rgr(Kmax)‖Ẋ‖2 ≥ rgr(Kmax)‖Ẋ‖2.

If Kmax ≤ 0, then rgr(Kmax) ≥ 1, so

(1− rgr(Kmax))m2 + rgr(Kmax)‖Ẋ‖2 ≥ (1− rgr(Kmax))‖Ẋ‖2 + rgr(Kmax)‖Ẋ‖2 = ‖Ẋ‖2.

Thus we have overall that
〈∇Ẋ logX(p),−Ẋ〉 ≥ δ‖Ẋ‖2,

because the function x cot(x) is decreasing for x ≥ 0 and r ≤ D.

Now we proceed to the other direction.

If Kmin > 0, then rgr(Kmin) < 1, so

(1− rgr(Kmin))m2 ≤ (1− rgr(Kmin))‖Ẋ‖2 and (1− rgr(Kmax))m2 + rgr(Kmax)‖Ẋ‖2 ≤ ‖Ẋ‖2.

If Kmin ≤ 0, then rgr(Kmin) ≥ 1, thus

(1− rgr(Kmin))m2 + rgr(Kmin)‖Ẋ‖2 ≤ rgr(Kmin)‖Ẋ‖2.

Thus we have overall that
〈∇Ẋ logX(p),−Ẋ〉 ≤ ζ‖Ẋ‖2,

because r(t) = d(X(t), p). Combining these inequalities, the result follows.

Of course the inequalities of Lemma 2 hold independently if we bound the curvature only in one direction.

Corollary 2.1. Let a geodesic triangle ∆abc in a Riemannian manifold M of curvature bounded above by Kmax

and diam(M) ≤ D. We denote be B the angle between the edges ab and bc. If Kmax > 0, we assume in addition
that D < π√

Kmax
. Then

(ac)2 ≥ δ(bc)2 + (ab)2 − 2(ab)(bc) cos(B)

where δ is defined as

δ =

{
1 ,Kmax ≤ 0√
Kmaxd(q, a) cot(

√
Kmaxd(q, a)) ,Kmax > 0

for some q ∈M along the edge bc.

Proof. Let X be the side of ∆abc connecting b = X(0) and c = X(1). Consider the function w : R+ → R, given
by

w(t) = ‖logX(t)(a)‖2TX(t)M
.
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By Taylor’s theorem we have that

‖logc(a)‖2 − ‖logb(a)‖2 = ‖logX(1)(a)‖2 − ‖logX(0)(a)‖2 = ẇ(0) +
1

2
ẅ(ξ),

for some ξ ∈ (0, 1). We have by Lemma 12 that ẇ = 2〈logX(a),−Ẋ〉, so
ẅ = 2〈∇logX(a),−Ẋ〉 + 2〈logX(a),−∇Ẋ〉 = 2〈∇logX(a),−Ẋ〉, because X is a geodesic, which implies that
∇Ẋ = 0. Thus,

‖logb(a)‖2 − ‖logc(a)‖2 = 2〈logX(0)(a),−logb(c)〉+ 〈∇logX(ξ)(a),−Ẋ(ξ)〉

≤ 2〈logb(a),−logb(c)〉+ 〈∇logX(ξ)(a),−Ẋ(ξ)〉.

By Lemma 2, we know that
〈∇logX(ξ)(a),−Ẋ(ξ)〉 ≥ δ(ξ)‖Ẋ(ξ)‖2.

Using again that X is a geodesic, we have

d

dt
‖Ẋ‖2 = 2〈Ẋ,∇Ẋ〉 = 0

which means that ‖Ẋ‖2TXM is constant, thus ‖Ẋ(ξ)‖2TX(ξ)M
= ‖Ẋ(0)‖2TX(0)M

= ‖logb(c)‖2.

Thus

‖logc(a)‖2 − ‖logb(a)‖2 ≥ 2〈logb(a),−logb(c)〉+ δ(ξ)‖logb(c)‖2

and equivalently

‖logc(a)‖2 ≥ 2〈logb(a),−logb(c)〉+ δ(ξ)‖logb(c)‖2 + ‖logb(a)‖2.

Thus, the result follows for q = X(ξ) ∈ bc.

According to the proofs of the last results, in the case that our manifold is a sphere, the inequality is tight.
Namely, it holds as an equality if the geodesic X = (bc) satisfies

logX(a)⊥Ẋ.

We can always choose a geodesic triangle with this property in the sphere, thus our inequality is tight in the
spherical case.

C Proof of existence of a solution

Lemma 3. The differential equation

∇Ẋ +
v

t
Ẋ + gradf(X) = 0 (1)

where v is a positive constant, has a global solution X : [0,∞)→M under the initial conditions X(0) = x0 ∈ A
and Ẋ(0) = 0.

Proof. The proof will be similar to the relevant result in (Su et al., 2014)(Appendix A). We start by modifying the
equation in order to be defined at 0. So, we get a family of equations of the form ∇Ẋ+ v

max(δ,t)Ẋ+gradf(X) = 0,

where δ is a positive real number and X, Ẋ continue to satisfy the same initial conditions. Since we have assumed
that exp and log are defined globally on M , we can choose geodesically normal coordinates φ = ψ−1 around x0
defined globally on M and put c = φ ◦X. The equation in geodesically normal coordinates is

c̈k +

m∑
i,j=1

Γkij(c)ċ
iċj +

v

max(δ, t)
ċk +

m∑
i=1

gik
∂(foψ)

∂xi
(c) = 0,

for k = 1, ...,m, where c(0)=φ(x0) = 0 and ċ(0) = dφ(x0)Ẋ(0) = 0. Since f is of class C2, we have that∑m
i=1 g

ik ∂(foψ)
∂xi (c) is smooth, thus also locally Lipschitz. Substituting u = ċ we get a system of first order ODEs,
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which defines a local representation for a vector field in the tangent bundle of M . The solution of such an ODE
in local coordinates corresponds to an integral curve of this vector field in TM . Since an integral curve exists
always locally (TM is itself a manifold) and it is unique up to an initial condition, we conclude that our initial
smoothed ODE ∇Ẋ + v

max(δ,t)Ẋ + gradf(X) = 0 has a unique solution locally around 0. For more details in

the correspondence of second order ODEs on a manifold M with integral curves on TM see (Lang, 1999) (pages
96-99). Let [0, T ), T > 0 be the maximal existence interval of the solution Xδ. We prove that this solution can
actually be extended until infinity following an argument in (Munier, 2007) (Theorem 1). Assume that T <∞.
We differentiate the function f(Xδ):

d

dt
(f(Xδ(t))) = 〈gradf(Xδ), Ẋδ〉 = 〈−∇Ẋδ −

v

max(δ, t)
Ẋδ, Ẋδ〉

= −〈∇Ẋδ, Ẋδ〉 −
v

max(δ, t)
〈Ẋδ, Ẋδ〉 = −1

2

d

dt
‖Ẋδ‖2 −

v

max(δ, t)
‖Ẋδ‖2.

Integrating each side and using Cauchy-Schwarz inequality for integrals, we get∫ T

0

√
v

max(δ, t)
‖Ẋδ‖dt ≤

√
T (f(x0)− inf

M
f +

1

2
(‖Ẋδ(0)‖2 − inf

[0,T )
‖Ẋδ(t)‖2)) <∞.

This is because f has been assumed to be geodesically convex, thus bounded from below.

But we can split the integral in the left hand side as
∫ δ
0

√
v
δ ‖Ẋδ‖dt +

∫ T
δ

√
v
t ‖Ẋδ‖dt. If 0 < δ < T , the first

integral in the sum is finite, so the second is also finite. If δ ≥ T we can proceed directly without splitting and

get that
∫ T
0

√
v
δ ‖Ẋδ‖dt is finite. Thus, we have that

√
v
t0
Ẋδ : [δ, T ) → M (for some t0 ∈ (δ, T ) by the mean

value theorem) and
√

v
δ Ẋδ : [0, T )→ M are integrable for each case respectively. This means that in each case

the limit it of Xδ(t) exists, since ‖
∫ T
a
Ẋδdt‖ ≤

∫ T
a
‖Ẋδ‖dt < ∞, for a = 0 or δ, and in general belongs in the

completion of M . Since M is complete, the limit is in M . Thus we can extend the maximal existence interval.
So, we have a contradiction. Thus we can find an Xδ : [0,∞) → M to be a solution of the initial smoothed
ODE and Xδ : [0,∞) → Rm its corresponding solution in local coordinates. Note that ∇Ẋδ is well-defined at
0. Our purpose is to apply Arzela-Ascoli theorem in the family of the obtained solutions to get a solution for
the initial ODE ∇Ẋ + v

t Ẋ + gradf(X) = 0. There are two types of parallel transport appearing in the proof,

Γ for the parallel transport along Xδ and Γ̃ for the one along some geodesic connecting the two points. When
we have a covariant derivative, it refers to the first, while geodesic L-smoothness to the second. Their common
characteristic is that they are both orthogonal transformations, thus they preserve lengths of vectors.
Now we proceed as follows:

1. We define

Mδ(t) = sup

{
‖Ẋδ(u)‖

u
, u ∈ (0, t]

}
,

and note that it is finite, because

‖Ẋδ(u)‖
u

=
‖ΓXδ(0)Xδ(u)

Ẋδ(u)− Ẋδ(0)‖
u

= ‖∇Ẋδ(0)‖+ o(1)

for small u.

2. We have that ‖gradf(Xδ(u)) − Γ̃
Xδ(u)
x0 gradf(x0)‖ ≤ 1

2LMδ(u)u2. Indeed, by Lipschitz assumption about f ,
we have that

‖gradf(Xδ(u))− Γ̃Xδ(u)x0
gradf(x0)‖

≤ Ld(Xδ(u), x0) ≤ L
∫ u

0

‖Ẋδ(s)‖ds = L

∫ u

0

s
‖Ẋδ(s)‖

s
ds ≤ 1

2
LMδ(u)u2.
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3. For δ <
√

6
L , we have that

Mδ(δ) ≤
‖gradf(x0)‖

1− Lδ2

6

.

Indeed for 0 < t ≤ δ, we have

∇Ẋδ +
v

δ
Ẋδ + gradf(Xδ) = 0.

This equation can be written as

∇(Ẋδ(t)e
vt
δ ) = −gradf(Xδ)e

vt
δ .

By Lemma 4 we have

Γx0

Xδ(t)
Ẋδ(t)e

vt
δ

= −
∫ t

0

(Γx0

Xδ(u)
gradf(Xδ(u))− Γx0

Xδ(u)
Γ̃Xδ(u)x0

gradf(x0))e
vt
δ du−

∫ t

0

Γx0

Xδ(u)
Γ̃Xδ(u)x0

gradf(x0))e
vt
δ du.

Using point 2 and the fact that parallel transports Γ, Γ̃ are orthogonal transformations, thus they preserve
lengths, we can follow the proof of Lemma 15 in (Su et al., 2014).

4. For δ <
√

6
L and δ < t <

√
2(v+3)
L , we have

Mδ(t) ≤
(v + 2− Lδ2

6 )‖gradf(x0)‖
(v + 1)(1− Lδ2

6 )(1− Lt2

2(v+3) )
.

Indeed for t > δ the smoothed ODE is

∇Ẋδ +
v

t
Ẋδ + gradf(Xδ) = 0.

This equation is equivalent to

d(tvẊδ(t))

dt
= −tvgradf(Xδ(t))

and using again Lemma 4, we get

Γ
Xδ(δ)
Xδ(t)

tvẊδ(t)− δvẊδ(δ) =

−
∫ t

δ

(Γ
Xδ(δ)
Xδ(u)

gradf(Xδ(u))− Γ
Xδ(δ)
Xδ(u)

Γ̃Xδ(u)x0
gradf(x0))uvdu−

∫ t

δ

Γ
Xδ(δ)
Xδ(u)

Γ̃Xδ(u)x0
gradf(x0)uvdu.

Rearranging, putting norms and dividing by tv+1, we get

‖Ẋδ(t)‖
t

≤ tv+1 − δv+1

(v + 1)tv+1
‖gradf(x0)‖+

1

tv+1

∫ t

δ

1

2
LMδ(u)uv+2du+

δv+1

tv+1

‖Ẋδ(δ)‖
δ

≤ 1

v + 1
‖gradf(x0)‖+

1

2(v + 3)
LMδ(t)t

2 +
‖gradf(x0)‖

1− Lδ2

6

,

using again that parallel transport preserve lengths. The last expression is an increasing function of t, thus
for any t′ ∈ (δ, t) we have

‖Ẋδ(t
′)‖

t′
≤ 1

v + 1
‖gradf(x0)‖+

1

2(v + 3)
LMδ(t)t

2 +
‖gradf(x0)‖

1− Lδ2

6

.

Taking the supremum over all t′ ∈ (0, t) and rearranging, we get the result.
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5. The family A := {Xδ : [0,
√

v+3
L ]→ R/δ =

√
3
L

2n , n = 0, 1, ...} is uniformly bounded and equicontinuous. By

the definition of Mδ we have that ‖Ẋδ‖ ≤
√

v+3
L Mδ(

√
v+3
L ). For t ∈ [0,

√
v+3
L ] and δ ∈ (0,

√
3
L ), we get a

uniform bound for ‖Ẋδ‖:

‖Ẋδ‖ ≤
√
v + 3

L
max

{
‖gradf(x0)‖

1− 1
2

,
(v + 2− 1

2 )‖gradf(x0)‖
(v + 1)(1− 1

2 )(1− 1
2 )

}
.

This implies that A is equicontinuous. In addition,

d(Xδ(t), Xδ(0)) ≤
∫ t

0

‖Ẋδ(u)‖du ≤ v + 3

L
max

{
‖gradf(x0)‖

1− 1
2

,
(v + 2− 1

2 )‖gradf(x0)‖
(v + 1)(1− 1

2 )(1− 1
2 )

}
.

Thus A is also uniformly bounded.
Finally we are ready to apply the Arzela-Ascoli theorem. We use a version which can be applied to Rieman-
nian manifolds, see (Kelley, 1975) (Theorem 17, page 233). We also make use of the fact that our manifold
has been assumed to be complete to guarantee point (b) of the theorem.

It implies that A contains a subsequence, which converges uniformly on [0,
√

v+3
L ]. Let {Xδmi

} be this

convergent subsequence and w the limit. Pick a point t0 ∈ (0,
√

v+3
L ). Since ‖Ẋδ(t0)‖ is bounded, it has a

convergent subsequence, which can be assumed without loss of generality to be the whole sequence. Denote
by s the local solution of our smoothed differential equation, such that s(t0) = w(t0) and ṡ(t0) = Ẋδmi

(t0),
if δmi < t0. We conclude that there exists ε0 > 0, such that sup{‖Xδmi

(t)−s(t)‖/t0−ε0 < t < t0 +ε0} tends
to 0, when i goes to ∞. By definition of w, we have the same convergence for w in the place of s. Thus
s ≡ w in (t0− ε0, t0 + ε0), thus they coincide also at t0, therefore w is a solution of the (non-smoothed) ODE

at t0. But t0 was arbitrary, so w is a solution of the (non-smoothed) ODE on (0,
√

v+3
L ). We can extend

w until ∞ to get a global solution. Now it remains to verify the initial conditions. Since Xδmi
(0) = x0 and

Xδmi
(0) → w(0), we get easily that w(0) = x0. For the condition of the initial velocity, we pick a small

t > 0 and consider

d(w(t), w(0))

t
= lim
i→∞

d(Xδmi
(t), Xδmi

(0))

t
≤ lim
i→∞

1

t

∫ t

0

‖Ẋδmi
(u)‖du = lim

i→∞
‖Ẋδmi

(li)‖,

where li ∈ (0, t) is obtained by the mean value theorem. By the definition of Mδ, we get that the left hand
side is less or equal than

lim sup
i→∞

tMδmi
(t) ≤ t

√
v + 3

L
max

{
‖gradf(x0)‖

1− 1
2

,
(v + 2− 1

2 )‖gradf(x0)‖
(v + 1)(1− 1

2 )(1− 1
2 )

}
.

Sending t to 0, we get ẇ(0) = 0 and we are done.

Lemma 4. Consider a vector field A along the smooth curve X : [a, b] → M in a Riemannian manifold M .
Then

Γ
X(a)
X(b)A(b)−A(a) =

∫ b

a

Γ
X(a)
X(t)∇A(t)dt

where Γ is the parallel transport along the curve X.

Proof. Consider the function g : [a, b]→ TX(a)M , defined by

g(t) = Γ
X(a)
X(t)A(t).

TX(a)M is a linear space, and we have

g(b)− g(a) =

∫ b

a

ġ(t)dt.
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We have that g(b) = Γ
X(a)
X(b)A(b), g(a) = A(a) and

ġ(t) = lim
s→t

g(s)− g(t)

s− t
= lim
s→t

Γ
X(a)
X(s)A(s)− Γ

X(a)
X(t)A(t)

s− t
= Γ

X(a)
X(t) lim

s→t

Γ
X(t)
X(a)Γ

X(a)
X(s)A(s)−A(t)

s− t

= Γ
X(a)
X(t) lim

s→t

Γ
X(t)
X(s)A(s)−A(t)

s− t
= Γ

X(a)
X(t)∇A(t).

We can subtract Γ
X(a)
X(t) from the limit, because it is independent of s. We can write Γ

X(t)
X(a)Γ

X(a)
X(s) = Γ

X(t)
X(s), because

all the parallel transports are along the same curve X. Putting all together, we get the result.

D Proofs of convergence

D.1 The convex case

Theorem 5. Let f be a geodesically convex function. Any solution of the differential equation

∇Ẋ +
1 + 2ζ

t
Ẋ + gradf(X) = 0 (2)

converges to a minimizer x∗ of f with rate

f(X)− f(x∗) ≤
2ζ‖logx0

(x∗)‖2

t2
(t > 0).

Proof. Consider the Lyapunov function

ε(t) = t2(f(X)− f(x∗)) + 2‖ − logX(x∗) +
t

2
Ẋ‖2 + 2(ζ − 1)‖logX(x∗)‖2.

We have that

ε̇(t) = 2t(f(X)− f(x∗)) + t2〈gradf(X), Ẋ〉

+ 4〈−logX(x∗) +
t

2
Ẋ,−∇logX(x∗) +

1

2
Ẋ +

t

2
∇Ẋ〉+ 4(ζ − 1)〈−Ẋ, logX(x∗)〉

= 2t(f(X)− f(x∗)) + t2〈gradf(X), Ẋ〉

+ 4〈−logX(x∗) +
t

2
Ẋ,−∇logX(x∗)− ζẊ + ζẊ +

1

2
Ẋ +

t

2
∇Ẋ〉+ 4(ζ − 1)〈−Ẋ, logX(x∗)〉

= 2t(f(X)− f(x∗)) + t2〈gradf(X), Ẋ〉

+ 4〈−logX(x∗) +
t

2
Ẋ,−∇logX(x∗)− ζẊ − t

2
gradf(X)〉+ 4(ζ − 1)〈−Ẋ, logX(x∗)〉

= 2t(f(X)− f(x∗))− 2t〈−logX(x∗), gradf(X)〉+ t2〈gradf(X), Ẋ〉 − t2〈gradf(X), Ẋ〉

+ 4〈−logX(x∗) +
t

2
Ẋ,−∇logX(x∗)− ζẊ〉+ 4(ζ − 1)〈−Ẋ, logX(x∗)〉

≤ 4〈−logX(x∗) +
t

2
Ẋ,−∇logX(x∗)− ζẊ〉+ 4(ζ − 1)〈−Ẋ, logX(x∗)〉,

by geodesic convexity.

The last expression can be written as

4〈logX(x∗),∇logX(x∗)〉+ 4ζ〈logX(x∗), Ẋ〉+ 4(ζ − 1)〈−Ẋ, logX(x∗)〉+ 2t(〈∇logX(x∗),−Ẋ〉 − ζ‖Ẋ‖2)

= 2
d

dt
d(X,x∗)2 − 2ζ

d

dt
d(X,x∗)2 + 2(ζ − 1)

d

dt
d(X,x∗)2 + 2t(〈∇logX(x∗),−Ẋ〉 − ζ‖Ẋ‖2)

= 2t(〈∇logX(x∗),−Ẋ〉 − ζ‖Ẋ‖2) ≤ 0

by Lemma 2. Thus

t2(f(X)− f(x∗)) ≤ ε(t) ≤ ε(0) = 2ζ‖logx0
(x∗)‖2,

and the result follows.
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D.2 The weakly-quasi-convex case

Theorem 6. Let f be a geodesically α-weakly-quasi-convex function. Any solution of the differential equation

∇Ẋ +
1 + 2

αζ

t
Ẋ + gradf(X) = 0 (3)

converges to a minimizer x∗ of f with rate

f(X)− f∗ ≤
2ζ‖logx0

(x∗)‖2

α2t2
(t > 0).

Proof. Consider the Lyapunov function

ε(t) = α2t2(f(X)− f(x∗)) + 2‖ − logX(x∗) +
αt

2
Ẋ‖2 + 2(ζ − 1)‖logX(x∗)‖2.

We have that

ε̇(t) = 2α2t(f(X)− f(x∗)) + α2t2〈gradf(X), Ẋ〉

+ 4〈−logX(x∗) +
αt

2
Ẋ,−∇logX(x∗) +

α

2
Ẋ +

αt

2
∇Ẋ〉+ 4(ζ − 1)〈−Ẋ, logX(x∗)〉

= 2α2t(f(X)− f(x∗)) + α2t2〈gradf(X), Ẋ〉

+ 4〈−logX(x∗) +
αt

2
Ẋ,−∇logX(x∗)− ζẊ + ζẊ +

α

2
Ẋ +

αt

2
∇Ẋ〉+ 4(ζ − 1)〈−Ẋ, logX(x∗)〉

= 2α2t(f(X)− f(x∗)) + α2t2〈gradf(X), Ẋ〉

+ 4〈−logX(x∗) +
αt

2
Ẋ,−∇logX(x∗)− ζẊ − αt

2
gradf(X)〉+ 4(ζ − 1)〈−Ẋ, logX(x∗)〉

= 2α2t(f(X)− f(x∗))− 2αt〈−logX(x∗), gradf(X)〉+ α2t2〈gradf(X), Ẋ〉 − α2t2〈gradf(X), Ẋ〉

+ 4〈−logX(x∗) +
αt

2
Ẋ,−∇logX(x∗)− ζẊ〉+ 4(ζ − 1)〈−Ẋ, logX(x∗)〉

≤ 4〈−logX(x∗) +
αt

2
Ẋ,−∇logX(x∗)− ζẊ〉+ 4(ζ − 1)〈−Ẋ, logX(x∗)〉

by geodesic α-weak-quasi-convexity. The last expression can be written as

4〈logX(x∗),∇logX(x∗)〉+ 4ζ〈logX(x∗), Ẋ〉+ 4(ζ − 1)〈−Ẋ, logX(x∗)〉+ 2αt(〈∇logX(x∗),−Ẋ〉 − ζ‖Ẋ‖2)

= 2
d

dt
d(X,x∗)2 − 2ζ

d

dt
d(X,x∗)2 + 2(ζ − 1)

d

dt
d(X,x∗)2 + 2αt(〈∇logX(x∗),−Ẋ〉 − ζ‖Ẋ‖2)

= 2αt(〈∇logX(x∗),−Ẋ〉 − ζ‖Ẋ‖2) ≤ 0

by Lemma 2. Thus,

α2t2(f(X)− f(x∗)) ≤ ε(t) ≤ ε(0) = 2ζ‖logx0
(x∗)‖2

and the result follows.
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D.3 The strongly convex case

Theorem 7. Let f be a geodesically µ-strongly convex function. The solution of the differential equation

∇Ẋ +

(
1√
ζ

+
√
ζ

)
√
µẊ + gradf(X) = 0 (4)

converges to a minimizer x∗ of f with rate

f(X)− f∗ ≤
µ
2 ‖logx0

(x)‖2 + f(x0)− f∗

e
√

µ
ζ t

(t > 0).

Proof. Consider the Lyapunov function

ε(t) = e
√

µ
ζ t

(
µ

2ζ
‖ − logX(x∗) +

√
ζ

µ
Ẋ‖2 + f(X)− f∗ +

µ(ζ − 1)

2ζ
‖logX(x∗)‖2

)
.

We have that

d

dt

(
e
√

µ
ζ t

(
µ

2ζ
‖ − logX(x∗) +

√
ζ

µ
Ẋ‖2 +

µ(ζ − 1)

2ζ
‖logX(x∗)‖2

))

=

√
µ

ζ

µ

ζ
e
√

µ
ζ t

(
1

2
‖ − logX(x∗) +

√
ζ

µ
Ẋ‖2 +

ζ − 1

2
‖logX(x∗)‖2

)

+
µ

ζ
e
√

µ
ζ t

(
〈−logX(x∗) +

√
ζ

µ
Ẋ,−∇logX(x∗) +

√
ζ

µ
∇Ẋ〉+ (ζ − 1)〈logX(x∗),−Ẋ〉

)

=

√
µ

ζ

µ

ζ
e
√

µ
ζ t

(
1

2
‖ − logX(x∗) +

√
ζ

µ
Ẋ‖2 +

ζ − 1

2
‖logX(x∗)‖2

)

+
µ

ζ
e
√

µ
ζ t

(
〈−logX(x∗) +

√
ζ

µ
Ẋ,−∇logX(x∗)− ζẊ + ζẊ +

√
ζ

µ
∇Ẋ〉+ (ζ − 1)〈logX(x∗),−Ẋ〉

)

=

√
µ

ζ

µ

ζ
e
√

µ
ζ t

(
1

2
‖ − logX(x∗) +

√
ζ

µ
Ẋ‖2 +

ζ − 1

2
‖logX(x∗)‖2

)

+
µ

ζ
e
√

µ
ζ t

(
〈−logX(x∗) +

√
ζ

µ
Ẋ,−∇logX(x∗)− ζẊ〉+ (ζ − 1)〈logX(x∗),−Ẋ〉

+ 〈−logX(x∗) +

√
ζ

µ
Ẋ,−Ẋ −

√
ζ

µ
gradf(X)〉

)
.

The expression

µ

ζ
e
√

µ
ζ t

(
〈−logX(x∗) +

√
ζ

µ
Ẋ,−∇logX(x∗)− ζẊ〉+ (ζ − 1)〈logX(x∗),−Ẋ〉

)

is equal to

µ

ζ
e
√

µ
ζ t((1− ζ)(d(X,x∗)2)′ + (ζ − 1)(d(X,x∗)2)′ +

√
ζ

µ
(〈−∇logX(x∗), Ẋ〉 − ζ‖Ẋ‖2)) ≤ 0

by Lemma 2.
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Thus, we have

d

dt

(
e
√

µ
ζ t

(
µ

2ζ
‖ − logX(x∗) +

√
ζ

µ
Ẋ‖2 +

µ(ζ − 1)

2ζ
‖logX(x∗)‖2

))

≤
√
µ

ζ

µ

ζ
e
√

µ
ζ t

(
1

2
‖ − logX(x∗) +

√
ζ

µ
Ẋ‖2 + 〈−logX(x∗) +

√
ζ

µ
Ẋ,−

√
ζ

µ
Ẋ〉

+
ζ − 1

2
‖logX(x∗)‖2

)
+
µ

ζ
e
√

µ
ζ t〈−logX(x∗) +

√
ζ

µ
Ẋ,−Ẋ −

√
ζ

µ
gradf(X)〉

=

√
µ

ζ

µ

ζ
e
√

µ
ζ t

(
−1

2
‖
√
µ

ζ
Ẋ‖2 +

1

2
‖logX(x∗)‖2

+
ζ − 1

2
‖logX(x∗)‖2

)
+
µ

ζ
e
√

µ
ζ t〈−logX(x∗) +

√
ζ

µ
Ẋ,−Ẋ −

√
ζ

µ
gradf(X)〉

≤
√
µ

ζ
e
√

µ
ζ t
µ

2
‖logX(x∗)‖2 +

√
µ

ζ
e
√

µ
ζ t〈logX(x∗), gradf(X)〉 − e

√
µ
ζ t〈gradf(X), Ẋ〉

≤ −
√
µ

ζ
e
√

µ
ζ t(f(X)− f∗)− e

√
µ
ζ t〈gradf(X), Ẋ〉

=
d

dt

(
−e
√

µ
ζ t(f(X)− f∗)

)
,

where the last inequality follows from geodesic µ-strong convexity of f . Thus, ε̇(t) ≤ 0 and the result follows.

E Proofs about shadowing

E.1 Pseudo-orbit property

In this subsection, we prove that the continuous-time limit of Riemannian gradient descent (y = −gradf(y))
returns a pseudo-orbit of Riemannian gradient descent. This result is standard in numerical analysis (error of
Euler integration), and can be also found (in a less general form) as Proposition 2 in (Absil and Malick, 2012).

We recall that, in analogy with (Orvieto and Lucchi, 2019b), we assume that f : M → R is a C2 function such
that for all points on the ODE solution, ‖gradf(x)‖ ≤ ` and µ ≤ ‖Hessf(x)‖ ≤ L.

Proposition 9. There exists a constant C, independent of h but dependent on `, L and the Riemannian structure
of M , such that, for any y0 ∈M and k ∈ N,

d(yk+1, expyk(−hgradf(yk))) ≤ Ch2.

Proof. We consider the curve y : [kh, kh+h]→M which is the solution of the gradient flow ODE ẏ = −gradf(y)
and the geodesic γ(t− kh) = expy(kh)(tẏ(kh)), which has the same initial velocity with y. Here yk = y(kh) and
yk+1 = y((k + 1)h).
The manifold M can be considered as a submanifold of Rn for sufficiently large n, up to isometry, because of
the Nash-Kuiper embedding theorem. Thus we can expand y and γ using a Taylor series in the ambient space:

y(kh+ h) = y(kh) + hẏ(kh) +

∫ kh+h

kh

ÿ(t)

2
(kh+ h− t)2dt;

γ(kh+ h) = γ(kh) + hγ̇(kh) +

∫ kh+h

kh

γ̈(t)

2
(kh+ h− t)2dt.

We have that y(kh) = γ(kh), ẏ(kh) = γ̇(kh), thus

y(kh+ h)− γ(kh+ h) =

∫ kh+h

kh

ÿ(t)− γ̈(t)

2
(kh+ h− t)2dt

and

‖y(kh+ h)− γ(kh+ h)‖ ≤ h2

2
‖ÿ(t0)− γ̈(t0)‖.
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by the mean value theorem for integrals, where t0 ∈ (kh, kh+ h).
One can easily check that

d(y(kh+ h), γ(kh+ h)) ≤ A‖y(kh+ h)− γ(kh+ h)‖,

where A is a constant depending on the bound D of the working domain.
Indeed let two points p, q ∈ M . If p and q are very close together then the ratio of the intrinsic to extrinsic
distance tends to 1, check lemma 4.2.7 in (Robbin and Salamon, 2020). Obviously d(p, q) → 0 if and only if
‖p− q‖ → 0. Thus if d(p, q) ≥ a > 0, then ‖p− q‖ ≥ b > 0. But our working domain is bounded and d(p, q) ≤ D.
Thus d(p, q) ≤ D

b ‖p− q‖.
The term ‖ÿ(t0)− γ̈(t0)‖ can be written by the Gauss-Weingarden formula as

‖∇ẏ(t0) + Ly(t0)(ẏ(t0), ẏ(t0))− Lγ(t0)(γ̇(t0), γ̇(t0))‖

where L is the second fundamental form. The last expression is less or equal than

‖∇ẏ(t0)‖+ ‖Ly(t0)(ẏ(t0), ẏ(t0))‖+ ‖Lγ(t0)(γ̇(t0), γ̇(t0))‖.

We have that

‖∇ẏ(t0)‖ ≤ ‖Hessf(y(t0))‖‖gradf(y(t0))‖ ≤ `L

by our initial assumptions (` bounds the Riemannian gradient and f is L-smooth).
Finally, it is known that the second fundamental form L is bounded if the sectional curvatures are bounded from
above and below (in our case are just constant equal to K) and the injectivity radius is bounded from below
(this is the case for us, since we assume that there exist always some geodesic connecting any two points in M).
For a discussion of this fact check (Petrunin).
Thus

d(y(kh+ h), expy(kh)(hẏ(kh)) ≤ Ch2

where C is constant depending only on the curvature K, the dimension of the manifold M , ` and L.

E.2 Contraction of RGD

We start with important computations for Jacobi fields in symmetric manifolds. The reader can refer to
(Leimkuhler and Patrick, 1996) (Section 4.3) and (Klingenberg, 1982) (Section 2.2). According to these ref-
erences, the Jacobi field J of a symmetric manifold along the geodesic expp(tw) with initial conditions J(0) = a
and ∇J(0) = b is given by the formula:

J(t) = Γtwp
(
f1(t2Rw)a+ f2(t2Rw)b

)
where

f1(z) = cos(
√
z),

f2(z) =
sin(
√
z)√
z

,

and Rw : TpM → TpM is defined by

Rw(u) = R(u,w)w,

where R is the Riemann curvature tensor.

Lemma 16. A Riemannian manifold M has constant curvature K if and only if

〈R(u1, u2)u3, u4〉 = K(〈u1, u4〉〈u2, u3〉 − 〈u1, u3〉〈u2, u4〉).

Thus

〈Rw(u), v〉 = 〈R(u,w)w, v〉 = K(〈u, v〉‖w‖2 − 〈u,w〉〈w, v〉) = 〈K(‖w‖2u− 〈u,w〉w), v〉
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and we derive that Rw(u) = K(‖w‖2u− 〈u,w〉w). Define A(u) = ‖w‖2u− 〈u,w〉w. Now we must compute the
powers of A:

A2(u) = A(A(u)) = ‖w‖2A(u)− 〈A(u), w〉w
= ‖w‖2u− 〈u,w〉w)− 〈‖w‖2u− 〈u,w〉w,w〉w
= ‖w‖2(‖w‖2u− 〈u,w〉w)− ‖w‖2〈u,w〉w − 〈u,w〉‖w‖2w = ‖w‖2A(u).

By induction we conclude that Al(u) = ‖w‖2l−2A(u) for l ≥ 1 and A0(u) = Id. This implies that Rlw(u) =
(K‖w‖2)l 1

‖w‖2A(u), for l ≥ 1 and R0
w(u) = Id. Now we feed Rw to the operators f1(z) and f2(z). We extend

both these two expressions in power series and we get

f1(Rw) = Id +

∞∑
l=1

(−1)l

(2l)!
Rlw = Id +

∞∑
l=1

(
(−1)l

(2l)!
(K‖w‖2)l

1

‖w‖2
A

)

= Id +
1

‖w‖2
A

( ∞∑
l=0

(
(−1)l

(2l)!
(K‖w‖2)l

)
− 1

)
= Id +

1

‖w‖
A
(

cos(
√
K‖w‖

)
− 1.

In exactly the same way we get that

f2(Rw) = Id +
1

‖w‖2
A

(
sin(
√
K‖w‖)√

K‖w‖)
− 1

)
.

In our case w is the vector defining a geodesic.

We compute now the operator f2(Rw)−1 =
(

Id + 1
‖w‖2

(
sin(a)
a − 1

)
A
)−1

, where a =
√
K‖w‖. We have that

f2(Rw)−1(u) = a
sin(a)u+ 1

‖w‖2

(
1− a

sin(a)

)
〈u,w〉w.

Check: f2(Rw)−1(f2(Rw)(u))

=
a

sin(a)

(
sin(a)

a
u− 1

‖w‖2

(
sin(a)

a
− 1

)
〈u,w〉w

)
+

1

‖w‖2

(
1− a

sin(a)

)
〈 sin(a)

a
u− 1

‖w‖2

(
sin(a)

a
− 1

)
〈u,w〉w,w〉

= u− 1

‖w‖2

(
1− a

sin(a)

)
〈u,w〉w

+
1

‖w‖2

(
sin(a)

a
− 1

)
〈u,w〉w − 1

‖w‖2

(
1− a

sin(a)

)(
sin(a)

a
− 1

)
〈u,w〉‖w‖2w

= u− 1

‖w‖2
(1− a

sin(a)
)〈u,w〉w +

1

‖w‖2
(1− a

sin(a)
)〈u,w〉w

= u,

because f2(Rw)(u) = sin(a)
a u− 1

‖w‖2

(
sin(a)
a − 1

)
〈u,w〉w. We are interested in the norm of the operator f2(Rw).

It is easy to show that it is a self-adjoint operator, thus remains to compute its eigenvalues. We solve the equation

f2(Rw)−1(u) = bu

for real numbers b. It becomes

f2(Rw)−1(u) =
a

sin(a)
u+

1

‖w‖2

(
1− a

sin(a)

)
〈u,w〉w = bu.

If u ∈ w⊥, then b = a
sin(a) . Since dim(w⊥) = dim(M) − 1, a

sin(a) is an eigenvalue of f2(Rw)−1 of multiplicity

dim(M)− 1. If u ∈< w >, then b = 1. Since dim(< w >) = 1, 1 is an eigenvalue of f2(Rw)−1 with multiplicity
1, and there are no other eigenvalues.
In addition, the operators f1(Rw) and f2(Rw) are self-adjoint. We briefly check it for the first one. We have

f1(Rw)(u) = cos(a)u+
1

‖w‖2
(cos(a)− 1)(‖w‖2u− 〈u,w〉w)
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and

〈f1(Rw)u, v〉 = cos(a)〈u, v〉+
1

‖w‖2
(cos(a)− 1)〈u,w〉〈w, v〉

= cos(a)〈v, u〉+
1

‖w‖2
(cos(a)− 1)〈v, w〉〈w, u〉 = 〈u, f1(Rw)v〉.

Lemma 10. Let x1, x2 ∈ M , where M is a Riemannian manifold of constant curvature K and diam(M) ≤ D.
If K > 0 we further assume that D < π√

K
. Then, for ξ := λ(ζ − hµ) we have

d(expx1(−hgradf(x1)), expx2(−hgradf(x2))) ≤ ξd(x1, x2),

Proof. Denote a1 = expx1
(−hgradf(x1)), a2 = expx2

(−hgradf(x2)). We denote the geodesic connecting x1 and
x2 by X and create a variation of geodesics defined by expX(t)(uE(t)) where E(t) is a vector field along X with
E(0) = −hgradf(x1) and E(1) = −hgradf(x2). We have that d(a1, a2) is equal to the length of the geodesic
connecting a1 and a2, which is less or equal than the length of the curve β(t) = expX(t)(E(t)), because β(0) = a1
and β(1) = a2. Thus

d(a1, a2) ≤
∫ 1

0

‖β̇(t)‖dt = ‖β̇(t0)‖,

for some t0 ∈ (0, 1).
By the construction of Jacobi fields as measures of variations through geodesics, we have that β̇(t0) is equal to
J(1) where J is the Jacobi field with initial conditions J(0) = Ẋ(t0) and ∇J(0) = ∇E(t0). A valid choice for
E(t) is −hgradf(X(t)), thus ∇E(t0) = −hHessf(X(t0))Ẋ(t0).
In a complete, connected, simply connected manifold of constant curvature K (i.e. symmetric) we can compute
the Jacobi field J precisely. Namely if J is the Jacobi field along the geodesic from x(t0) to β(t0) with initial
conditions J(0) = a and J(1) = b, we have

J(t) = ΓtwX(t0)
(f1(t2Rw)a+ f2(t2Rw)b)

where f1(z) = cos(
√
z) and f2(z) = sin(

√
z)√
z

and w = logX(t0)(β(t0)).

By our computations for Rw, f1 and f2 above, we get

‖J(1)‖ = ‖f1(Rw)Ẋ(t0)− hf2(Rw)Hessf(X(t0))Ẋ(t0)‖ ≤ ‖f2(Rw)‖‖f1(Rw)

f2(Rw)
− hHessf(X(t0))‖‖Ẋ(t0)‖.

The eigenvalues of f1(Rw) are 1 and cos(d), while of f1(Rw)
f2(Rw) , 1 and d cot(d), where d =

√
K‖w‖. The operator

−hHessf(X(t0)) is symmetric (because it is taken with respect to the Levi-Civita connection, which is torsion-
free) and its largest eigenvalue is −hµ. People have proved that the largest eigenvalue of the sum of two hermitian
operators is at most the sum of the two largest eigenvalues respectively (check for instance (Fulton, 1998)). Thus
we consider cases regarding the curvature K.

• If K ≥ 0, then the largest eigenvalues of f2(Rw) and f1(Rw)
f2(Rw) are both 1. Thus

‖J(1)‖ ≤ (1− hµ)‖Ẋ(t0)‖.

• If K < 0, then the largest eigenvalue of f2(Rw) is sin(d)
d and of f1(Rw)

f2(Rw) is d cot(d). Thus

‖J(1)‖ ≤ sin(d)

d
(d cot(d)− hµ)‖Ẋ(t0)‖ ≤ sinh(

√
−KD√

−KD
(
√
−KD coth(

√
−KD)− hµ)‖Ẋ(t0)‖,

where D is an upper bound for the working domain.

Finally ‖Ẋ(t0)‖ = ‖Ẋ(0)‖ = d(x1, x2), because X is the geodesic connecting x1 and x2 (thus it has constant
speed).
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Figure 4: The lower bound for µ (Equation 6) in negative curvature, plotted for D = h = 1

Theorem 11. Let ε > 4C(λζ−1)
λ2µ2 . Any orbit (yk)∞k=0 of Riemannian gradient flow is ε-shadowed by an orbit

(xk)∞k=0 of Riemannian gradient descent, given that µ > λζ−1
λh and

h ≤ min

{(
λµ

2C
+

√
λ2µ2

4C2
− λζ − 1

Cε

)
ε,

1

L

}
.

Proof. If

µ >
1

h

√
−KD

(
coth(

√
−KD)− 1

sinh(
√
−KD)

)
, (6)

then ξ < 1 and Riemannian gradient descent is contracting. For this to hold we need extra to assume that K and
D are chosen, such that 1

h

√
−KD(coth(

√
−KD)− 1

sinh(
√
−KD)

) < L. Let ε > 0 be the desired tracking accuracy,

to be restricted further later. By the contraction shadowing theorem, an orbit generated by Riemannian gradient
flow is ε-shadowed by a δ-pseudo-orbit generated by Riemannian gradient descent, such that δ ≤ (1− ξ)ε. Since
δ ≤ Ch2, we need Ch2 ≤ (1− ξ)ε. Substituting ξ = λ(ζ − hµ), we get the quadratic inequality:

h2 − λµε

C
h+

(λζ − 1)ε

C
≤ 0.

This inequality has a solution if

ε ≥ 4C(λζ − 1)

λ2µ2
.

Given this condition for ε we have that

h ≤

(
λµ

2C
+

√
λ2µ2

4C2
− λζ − 1

Cε

)
ε

Finally, taking into consideration that h ≤ 1
L we get the result.


