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A Pretraining Strategies

The loss function (10) is highly non-convex with respect
to θ, a consequence of both the objective itself and
the nature of hyperbolic neural networks (Ganea et
al., 2018b). As a result, we found that initialization
plays a crucial role in this problem, since it is very
hard to overcome a poor initial local minimum. Even
layer-wise random initialization of weights and biases
proved futile. As a solution, we experimented with the
following three pre-training initialization schemes, all
of which intuitively try to approximately ensure (in
different ways) that f does not “collapse” the space Y:
Identity. Initialize fθ to approximate the identity:

min
θ

n∑
i=1

dD(yi, fθ(yi)),

which trivially ensures that fθ (approximately) pre-
serves the overall geometry of the space.

CrossMap. Initialize fθ to approximately match
the target points to the source points in a random
permuted order:

min
θ

n∑
i=1

dD(xσ(i), fθ(yi))

for some permutation σ(i), which again ensures that
fθ approximately preserves the global geometry, albeit
for an arbitrary labeling of the points.

Procrustes. Following (Bunne et al., 2019), we
initialize fθ to be approximately end-to-end orthogonal:

min
θ

n∑
i=1

dD(f(yi),Pyi),

where P = argminP∈O(n) ‖X−PY‖22, i.e., P is the
solution of (a hyperbolic version of) the Orthogonal
Procrustes problem for mapping Y to X, which can be
obtained via singular value decomposition (SVD). This
strategy thus requires computing an SVD for every
gradient update on θ; hence, it is significantly more
computationally expensive than the other two.

B Optimization Details

Each forward pass of the loss function (10) requires solv-
ing three regularized OT problems. While this can be
done to completion in O(N2 logNε−3) time (Altschuler
et al., 2017), practical implementations often run the
Sinkhorn algorithm for a fixed number of iterations
with a tolerance threshold on the objective improve-
ment. We rely on the geomloss3 package for efficient

3https://www.kernel-operations.io/geomloss/

differentiable Sinkhorn divergence implementation and
on the geoopt4 package for Riemannian optimization.
We run our method for a fixed number of outer iter-
ations (200 in all our experiments), which given the
decay strategy on the entropy regularization parameter
ε, ensures that ε ranges from 1× 101 to 1× 10−2. All
experiments where run a single machine with 32-core
processor, Intel Xeon CPU @3.20 GHz, and exploiting
computations on the GPU (a single GeForce Titan X)
whenever possible. With this configuration the total
runtime of our method on the experiments ranged from
< 1 to 20 minutes.

C Dataset Details

To generate the parallel WordNet datasets, we use the
nltk interface to WordNet, and proceed as follows. In
the English WordNet, we first filter out all words except
nouns, and generate their transitive closure. For each
of the remaining synsets, we query for lemmas in each
of the four other languages (Es, Fr, It, Ca), for which
nltk provides multilingual support in WordNet. These
tuples of lemmas form our ground-truth translations,
which are eventually split into a validation set of size
5000, leaving all the other pairs for test data (approx-
imately 1500 for each language pairs). Note that the
validation is for visualization purposes only, and all
model selection is done in a purely unsupervised way
based on the training objective. After the multi-lingual
synset vocabularies have been extracted, we ensure
their transitive closures are complete and write all the
relations in these closures to a file, which will be used
as an input to the PoincareEmbeddings toolkit.5

To generate the datasets for the synthetic noise-
sensitivity experiments (§7.2), we start from the origi-
nal CS-PhD dataset.6 Given a pre-defined value ν, we
iterate through the hierarchy removing node x with
probability p, connecting x’s children with x’s parent
to keep the tree connected. We repeat this with noise
values p ∈ P = [0.01, 0.05, 0.1, 0.2] and embed all of
these using the PoincareEmbeddings in hyperbolic
spaces of dimensions d ∈ D = [2, 5, 10, 20]. For a given
dimensionality and noise level, we use our method to
find correspondences between the noise-less and noisy
version of the hierarchy (i.e., |P| × |N| matching tasks
in total).

Statistics about all the datasets used in this work are
provided in Table 3. Further details about the OAEI
datasets can found on the project’s website.7

4https://geoopt.readthedocs.io/en/latest/
5https://github.com/facebookresearch/

poincare-embeddings
6http://networkrepository.com/CSphd.php
7http://oaei.ontologymatching.org/2018/
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WordNet Anatomy Biodiv

English (En) Spanish (Es) French (Fr) Catalan (Ca) Human Mouse Flopo Pto Envo Sweet

Entities 8206 8206 8206 8206 3298 2737 360 1456 6461 4365
Relations 47938 47938 47938 47938 18556 7364 472 11283 73881 30101

Embedding Size 10 10 10 10 10 10 10 10 10 10

Table 3: Dataset characteristics. All datasets embedded with the method of Nickel and Kiela (2017).

Model Metric Cost Pretrain ε-annealing Layers Hidden dim Layer Type Nonlin. Opt LR

Full Poincare d(x, y) CrossMap 101 → 10−2 10 20 HyperLinear elu Radam 10−3

Small – – – – 2 10 – – – –
Euclidean Euclidean – – – – – – – – –

ReLU – – – – – – ReLU – –
Rsgd – – – – – – – – Rsgd 5× 10−2

Möbius – – – – – 10 Möbius – – –
cosh Cost – − cosh ◦dD – – – – – – – –

No Pretrain – – None – – – – – – –

Table 4: Ablated model configurations for the monolingual En →En WordNet task.

D Model Configurations and
Hyperparameters

In Table 4, we provide full configuration details for
all the ablated models used in the WordNet En →En
self-recovery experiment (results shown in Table 1a).
Dashed lines indicate a parameter being the same as
in the Full Model.

E A Brief Summary of Theoretical
Guarantees for Optimal Transport
(Euclidean Case)

As mentioned in Section 4.2, whenever optimal trans-
port is used with the goal of obtaining correspondences,
there are various theoretical considerations that become
particularly appealing.

The first of such considerations pertains to the nature
of the solution, i.e., the optimal coupling π∗ which
minimizes the cost (5). When the final end goal is to
transport points from one space to the other, the best
case scenario would be if the optimal π happens to be
a “hard” deterministic mapping. A celebrated result
by Brenier (1987) (see also (Brenier, 1991)) shows that
this indeed the case for the quadratic cost,8 i.e., for
the 2-Wasserstein distance. Even when solving the
problem approximately with entropic regularization (cf.
Eq. (7)), this result guarantees that the solution found
in this way converges to a deterministic mapping as
ε→ 0.

Now, assuming now that such a map exists, the next
8This result holds in more general settings. We refer the

reader to (Santambrogio, 2010; Ambrosio and Gigli, 2013)
for further details.

aspect we might be interested in is its smoothness. In-
tuitively, smoothness of this mapping is desirable since
it is more likely to lead to robust matchings in the con-
text of correspondences, even if, again, the argument
holds asymptotically for the regularized problem. This,
clearly, is a very strong property to require. While
not even continuity can be guaranteed in general (Am-
brosio and Gigli, 2013), again for the quadratic-cost
things are simpler: if the source and target densities
are smooth and the support of the target distribution
satisfies suitable convexity assumptions, the optimal
map is guaranteed to be smooth too (Caffarelli, 1992a;
Caffarelli, 1992b).

F A Brief Summary of Theoretical
Guarantees for Optimal Transport
(Riemannian Manifold Case)

Extending the problem beyond Euclidean to more gen-
eral spaces has been one of the central questions theo-
retical optimal transport research over the past decades
(Villani, 2008). For obvious reasons, here we focus the
discussion on results related to hyperbolic spaces, and
more generally, to Riemannian manifolds.

Let us first note that Problem (5) is well-defined for
any complete and separable metric space X . Since
the arclength metric of a Riemannian manifold allows
for the direct construction of an accompanying met-
ric space (X , dX ), then OT can be defined over those
too. However, some of the theoretical results of their
Euclidean counterparts do not transfer that easily to
the Riemannian case (Ambrosio and Gigli, 2013). Nev-
ertheless, the existence and uniqueness of the optimal
transportation plan π∗, which in addition is induced by
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a transport map T , can be guaranteed with mild regu-
larity conditions on the source distribution α. This was
first shown in seminal work by McCann (2001). The
result, which acts as an Riemannian analogue of that
of Brenier for the Euclidean setting (Brenier, 1987),
is shown below as presented by Ambrosio and Gigli
(2013):

Theorem F.1 (McCann, version of (Ambrosio and
Gigli, 2013)). LetM be a smooth, compact Riemannian
manifold without boundary and α ∈ P(M). Then the
following are equivalent:

(i) ∀β ∈ P(M), there exists a unique optimal π ∈
Π(α, β), and this plan is induced by a map T .

(ii) α is regular.

If either (i) or (ii) holds, the optimal T can be written
as x 7→ expx(−∇φ(x)) for some c-concave function
φ :M→ R.

The question of regularity of the optimal map, on the
other hand, is much more delicate now than in the
Euclidean case (Ambrosio and Gigli, 2013; Ma et al.,
2005; Loeper, 2009). In addition to the suitable convex-
ity assumptions on the support of the target density,
a restrictive structural condition, known as the Ma-
Trudinger-Wang (MTW) condition (Ma et al., 2005),
needs to be imposed on the cost in order to guaran-
tee continuity of the optimal map. Unfortunately for
our setting, in the case of Riemannian manifolds the
MTW condition for the usual quadratic cost c = d2/2
is so restrictive that it implies that X has non-negative
sectional curvature (Loeper, 2009), which rules out
hyperbolic spaces. However, a recent sequence of re-
markable results (Lee and Li, 2012; Li, 2009) prove
that for simple variations of the Riemannian metric d
on hyperbolic spaces, smoothness is again guaranteed:

Theorem F.2 (Lee and Li, (Lee and Li, 2012)). Let d
be the Riemannian distance function on a manifold of
constant sectional curvature −1; then the cost functions
− cosh ◦d and − log ◦(1 + cosh) ◦ d satisfy the strong
MTW condition, and the cost functions ± log ◦ cosh ◦d
satisfy the weak MTW condition.

Thus, these cost objectives can be used it out hyperbolic
optimal transport matching setting with the hopes of
obtaining a smoother solution, and therefore a more
stable set of correspondences.


